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1 The Response Function Model, R

The LIGO interferometers’ digital response to length change ∆L is

RL(f, t) ≡ 1 + γ(t)GL(f)
γ(t) CL(f)

(1)

where

∆Lext(f, t) = RL(f, t) eD(f) (2)

with eD(f) as the digital readout of light captured at the anti-symmetric port and ∆Lext(f, t) is
the external length disturbance composed of both signal and noise.

The terms in the response function are the following: the interferometer’s response to DARM
length changes known as the length sensing function CL(f) (its slow time dependence is tracked by
the real, positive coefficient γ(t)), and the open loop gain of the differential arm (DARM) length
control loop GL(f) = A(f) D(f) CL(f), whose components (besides CL(f)) are the actuation
function of the test masses which define the DARM length degree of freedom A(f), the digital
control filters D(f). The loop is drawn schematically in Figure 1.
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Figure 1: Diagram of the differential arm length control loop. External changes in differential
arm length ∆Lext are sensed by the interferometer and digitized according to the length sensing
function CL(f), from which the differential arm length error signal eD(f) is derived. The loop is
closed by a set of digital filters D(f), whose control signal sD(f) is transformed by the actuation
function of the interferometer’s end test masses A(f) into physical control of the differential arm
length.

This document serves to define the assumptions made about, and derive equations for, the
dominant uncertainty terms in the magnitude and phase of the response function the error budget,(

σ|R|

|R|

)2

=
(
σ|A|

|A|

)2

+ <e{W}2
(
σ|G|

|G|

)2

+ =m{W}σ2
φG

+ <e{W}2
(
σγ
γ

)2

(3)

σ2
φR

= σ2
φA

+ =m{W}2
(
σ|G|

|G|

)2

+ <e{W}2 σ2
φG

+ =m{W}2
(
σγ
γ

)2

(4)

For convenience and legibility, we drop all function dependence and subscripts in our notation
in the remainder of this document, such that RL(f, t) = R, GL(f) = G, A(f) = A, D(f) = D,
CL(f), and γ(t) = γ.

2 Assumptions of the Uncertainty in the Response Function

Standard analysis techniques [1] tell us that if we approximate a non-linear function f(xi) using
a taylor expansion then to first order,

f ' f0 +
N∑
i=1

(
∂f

∂xi

)
xi (5)

then the variance or “uncertainty” on f(xi) for N variables xi is

σ2
f =

N∑
i,j

(
∂f

∂xi

)(
∂f

∂xj

)
σ2
xixj

=
N∑
i

(
∂f

∂xi

)2

σ2
xi

+
N∑
i 6=j

(
∂f

∂xi

)(
∂f

∂xj

)
σ2
xixj

(6)
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where we have divided the uncertainty into uncorrelated terms and correlated terms containing

σ2
xi

= lim
n→∞

[
1
n

n∑
k

[
(xi)k − xi

]2]
, (7)

and

σ2
xixj

= lim
n→∞

[
1
n

n∑
k

[
(xi)k − xi

][
(xj)k − xj

]]
(8)

where n is the number the measurements of a given set of N variables.
In principle, we must therefore find the uncertainty in all components of the response function

(Eq. 1). However, in practice we model the sensing function C as it is intrinsically difficult at best
to measure independently i.e. without the interferometer under control of the closed loop. Hence,
in order to estimate the errors of the response function, we re-cast it in terms of quantities that
can be easily measured, (remembering that C = G/AD )

R = A D

(
1 + γ G

)
γ G

(9)

Ignoring that the functions A, D and G are complex for the time being, we find the uncertainty
on Eq. 9 to be

σ2
R = σ2

A

(
∂R

∂A

)2

+ σ2
D

(
∂R

∂D

)2

+ σ2
G

(
∂R

∂G

)2

+ σ2
γ

(
∂R

∂γ

)2

+ 2 σ2
AD

(
∂R

∂A

)(
∂R

∂D

)
+ 2 σ2

AG

(
∂R

∂A

)(
∂R

∂G

)
+ 2 σ2

Aγ

(
∂R

∂A

)(
∂R

∂γ

)
+ 2 σ2

DG

(
∂R

∂D

)(
∂R

∂G

)
+ 2 σ2

Dγ

(
∂R

∂D

)(
∂R

∂γ

)
+ 2 σ2

Gγ

(
∂R

∂G

)(
∂R

∂γ

)
. (10)

We do not assign any error to the digital filters D. This function is a well known digital
quantity and any errors are negligible compared with all other error terms in the response function.
Hence, for the purposes of error propagation we assume Dk −D = 0 for all n measurements, drop
it from the error budget, and

σ2
R = σ2

A

(
∂R

∂A

)2

+ σ2
G

(
∂R

∂G

)2

+ σ2
γ

(
∂R

∂γ

)2

+ 2 σ2
AG

(
∂R

∂A

)(
∂R

∂G

)
+ 2 σ2

Aγ

(
∂R

∂A

)(
∂R

∂γ

)
+ 2 σ2

Gγ

(
∂R

∂G

)(
∂R

∂γ

)
. (11)

As γ is a function of time alone, and A and G are functions of frequency alone, we assume γ is by
definition are uncorrelated with A and G: on average, we expect to find equal distributions
of positive and negative values for their respective covariant terms such that they vanish in the
limit of a large random selection of observations. This leaves only the actuation function A and
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open loop gain G to have some possible correlation, and the relative uncertainty becomes

σ2
R

R2
=

[
σ2
A

R2

(
∂R

∂A

)2

+
σ2
G

R2

(
∂R

∂G

)2

+ 2
σ2
AG

R2

(
∂R

∂A

)(
∂R

∂G

)]
+
σ2
γ

R2

(
∂R

∂γ

)2

. (12)

We can write out each weighting coefficient explicitly using Eq. 9(
∂R

∂A

)
= D

1 + γG

γG

(
∂R

∂G

)
= −AD 1

γG2

(
∂R

∂γ

)
= −AD 1

γ2G

1
R2

(
∂R

∂A

)2

=
1
A2

1
R2

(
∂R

∂G

)2

=
1
G2

(
1

1 + γG

)2

= W 2 1
G2

1
R2

(
∂R

∂γ

)2

=
1
γ2

(
1

1 + γG

)2

= W 2 1
γ2

1
R2

(
∂R

∂A

)(
∂R

∂G

)
= − 1

A

1
G

(
1

1 + γG

)
= −W 1

A

1
G

(13)

where we’ve defined the weighting function

W ≡ 1
1 + γG

. (14)

In doing so, we find that assuming A and G are correlated reduces the estimate of the total
response function error,

σ2
R

R2
=

[
σ2
A

A2
+W 2 σ2

G

G2
− 2W

σ2
AG

AG

]
+W 2

σ2
γ

γ2
(15)

as opposed to if we assume they are uncorrelated,

σ2
R

R2
=

[
σ2
A

A2
+W 2 σ2

G

G2

]
+W 2

σ2
γ

γ2
(16)

In principle, there is a third, “worst case” scenario, in which σ2
AG is negative implying that A and

G are anti -correlated. In this case, the uncertainty is inflated to

σ2
R

R2
=

[
σ2
A

A2
+W 2 σ2

G

G2
+ 2W

|σ2
AG|
AG

]
+W 2

σ2
γ

γ2
. (17)

However, we can imagine no physical grounds for this case to occur.
We adopt the conservative assumption that A(f) and G(f), and therefore all terms

in response function are uncorrelated,

σ2
R

R2
=

σ2
A

R2

(
∂R

∂A

)2

+
σ2
G

R2

(
∂R

∂G

)2

+
σ2
γ

R2

(
∂R

∂γ

)2

. (18)
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Though we suspect that the uncertainty in G comes from our uncertainty in A, we have no direct
evidence that this is the case. It is conceivable (in fact, probable) that there is uncertainty in
our model of C. Hence, we adopt this conservative assumption, which implies that we treat the
uncertainty in G as though it were composed entirely of the uncertainty in C.

Though we take A and G to be uncorrelated in the overall response function uncertainty
estimate, we assign the systematic uncertainty in A to be the larger of the frequency dependent
error in the measurements of A and the residuals between model and measurement of G. In
practice

3 The Complex Response Function Uncertainty Estimation

We choose to report the variance separated into the magnitude and phase of the complex response
function. If the magnitude and phase of a given complex function X are defined as usual,

|X| =
√

(X X∗)

φX = arctan
(
=m{X}
<e{X}

)
= arctan

(
1
i

X −X∗

X +X∗

)
then the magnitude and phase of Eq. (9) is

|R| =

√(
|A||D|
γ|G|

)2

(1 + (γ|G|)2 + 2γ|G| cos (φG)) (19)

φR = arctan
(
γ|G| sin (φA + φD) + sin (φA + φD − φG)
γ|G| cos (φA + φD) + cos (φA + φD − φG)

)
(20)

The remainder of this document will focus on the details of calculating the (relative) error in
magnitude (σ|R|/|R|)2 and (absolute) error in phase σ2

φR
of our response function model R.

3.1 Relative Magnitude Uncertainty,

(
σ|R|

|R|

)2

We know |R| = f(|A|, |D|, |G|, φG, γ). As described in §2, we ignore terms involving uncertainty
in σ|D|, and we treat all remaining variables as uncorrelated, such that

σ2
|R| =

(
∂|R|
∂|A|

)2

σ2
|A| +

(
∂|R|
∂|G|

)2

σ2
|G| +

(
∂|R|
∂φG

)2

σ2
φG

+
(
∂|R|
∂γ

)2

σ2
γ (21)

and therefore the relative variance is

σ2
|R|

|R|2
=

(
∂|R|
∂|A|

)2 σ2
|A|

|R|2
+
(
∂|R|
∂|G|

)2 σ2
|G|

|R|2
+
(
∂|R|
∂φG

)2 σ2
φG

|R|2
+
(
∂|R|
∂γ

)2 σ2
γ

|R|2

=
(

(∂|A||R|)2

|R|2

)
σ2
|A| +

(
(∂|G||R|)2

|R|2

)
σ2
|G| +

(
(∂φG

|R|)2

|R|2

)
σ2
φG

+
(

(∂γ |R|)2

|R|2

)
σ2
γ(

σ|R|

|R|

)2

=
(
∂|A||R|
|R|

)2

σ2
|A| +

(
∂|G||R|
|R|

)2

σ2
|G| +

(
∂φG
|R|
|R|

)2

σ2
φG

+
(
∂γ |R|
|R|

)2

σ2
γ (22)
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The weighting coefficients for each variance term in Eq. (22) are(
∂|A||R|
|R|

)2

=
1
|A|2

(23)(
∂|G||R|
|R|

)2

=
1
|G|2

(1 + γ|G| cosφG)2

(1 + (γ|G|)2 + 2γ|G| cosφG)2
(24)(

∂φG
|R|
|R|

)2

=
(γ|G|)2 sin2(φG)

(1 + (γ|G|)2 + 2γ|G| cosφG)2
(25)(

∂γ |R|
|R|

)2

=
1
γ2

(1 + γ|G| cosφG)2

(1 + (γ|G|)2 + 2γ|G| cosφG)2
(26)

Eqs. (24), (25), and (26), can be cleaned up a bit if we note that the real and imaginary parts of
the weighting function W are

W ≡ 1
1 + γG

<e {W} = <e
{

1
1 + γG

}
=

1
2

(
1

1 + γG
+

1
1 + γG∗

)
=

1
2

(
1

1 + γ|G|eiφG
+

1
1 + γ|G|e−iφG

)
=

1
2

(
(1 + γ|G|e−iφG) + (1 + γ|G|eiφG)

(1 + γ|G|eiφG)(1 + γ|G|e−iφG)

)
=

1
2

(
2 + γ|G|(eiφG + e−iφG)

(1 + (γ|G|)2) + γ|G|(eiφ + e−iφ)

)
(
eiθ + e−iθ

2
= cos θ

)
<e {W} =

1 + γ|G| cos (φG)
(1 + (γ|G|)2 + 2γ|G| cos (φG))

⇒ <e {W}2 =
(1 + γ|G| cos (φG))2

(1 + (γ|G|)2 + 2γ|G| cos (φG))2
(27)

=m {W} = =m
{

1
1 + γG

}
=

1
2i

(
1

1 + γG
− 1

1 + γG∗

)
=

1
2i

(
1

1 + γ|G|eiφG
− 1

1 + γ|G|e−iφG

)
=

1
2i

(
(1 + γ|G|e−iφG)− (1 + γ|G|eiφG)

(1 + γ|G|eiφG)(1 + γ|G|e−iφG)

)
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=
1
2i

(
−γ|G|(eiφG − e−iφG)

(1 + (γ|G|)2) + γ|G|(eiφ + e−iφ)

)
(
eiθ − e−iθ

2i
= sin θ

)
=m {W} =

γ|G| sin (φG)
(1 + (γ|G|)2 + 2γ|G| cos (φG))

⇒ =m {W}2 =
(γ|G|)2 sin2 (φG)

(1 + (γ|G|)2 + 2γ|G| cos (φG))2
(28)

Thus, we combine Eqs. (22) through (28) to arrive at our final expression for the relative magnitude
error on the response function,(

σ|R|

|R|

)2

=
(
σ|A|

|A|

)2

+ <e{W}2
(
σ|G|

|G|

)2

+ =m{W}2 σ2
φG

+ <e{W}2
(
σγ
γ

)2

(29)

3.2 Phase Uncertainty, σ2
φR

The calculation of the phase error is quite similar. We know φR = f(φA, φD, |G|, φG, γ), but
we ignore uncertainty in φD and take the conservative estimate that all other uncertainties are
uncorrelated such that the absolute variance in phase is

σ2
φR

=
(
∂φR
∂φA

)2

σ2
φA

+
(
∂φR
∂|G|

)2

σ2
|G| +

(
∂φR
∂φG

)2

σ2
φG

+
(
∂φR
∂γ

)2

σ2
γ . (30)

Thus, as before we calculate the weighting factors,(
∂φR
∂φA

)2

= 1 (31)(
∂φR
∂|G|

)2

=
γ2 sin2(φG)

(1 + (γ|G|)2 + 2γ|G| cosφG)2
= =m{W}2 1

|G|2
(32)(

∂φR
∂φG

)2

=
(1 + γ|G| cosφG)2

(1 + (γ|G|)2 + 2γ|G| cosφG)2
= <e{W}2 (33)(

∂φR
∂γ

)2

=
|G|2 sin2(φG)

(1 + (γ|G|)2 + 2γ|G| cosφG)2
= =m{W}2 1

γ2
(34)

and substitute back into Eq. (30),

σ2
φR

= σ2
φA

+ =m{W}2
(
σ|G|

|G|

)2

+ <e{W}2 σ2
φG

+ =m{W}2
(
σγ
γ

)2

(35)

4 Summary

The model of the LIGO interferometer’s response to gravitational wave strain from an optimally-
oriented source is

R ≡ 1 + γG

γC
(36)
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which, for the purposes of error estimation can be re-written in terms of easily measurable quan-
tities,

R = A D
(1 + γ G)
γ G

(37)

Where G = ADC, and we assume that the digital filter function D has negligible error.
We report the errors of our model in terms or relative magnitude and absolute phase error,

which are comprised of the measured error in each model component,(
σ|R|

|R|

)2

=
(
σ|A|

|A|

)2

+ <e{W}2
(
σ|G|

|G|

)2

+ =m{W}σ2
φG

+ <e{W}2
(
σγ
γ

)2

(38)

σ2
φR

= σ2
φA

+ =m{W}2
(
σ|G|

|G|

)2

+ <e{W}2 σ2
φG

+ =m{W}2
(
σγ
γ

)2

(39)

where W = 1/(1 +G) is the weighting function of the DARM control loop. In these definitions is
the implicit assumption that the uncertainties in the actuation function A and open loop gain G
are treated conservatively as uncorrelated.
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