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Abstract. We present a method to precisely calibrate the time delay in a long
baseline gravitational-wave interferometer. An accurate time stamp is crucial
for data analysis of gravitational wave detectors, especially when performing
coincidence and correlation analyses between multiple detectors. Our method
uses an intensity-modulated radiation pressure force to actuate on the mirrors.
This injection path is independent from the interferometer controls system. The
time delay is measured by comparing the phase of the signal at the actuation
point with the phase of the recorded signal within the calibrated data stream
used for gravitational wave searches. A measurement performed with the 4 km
interferometer at the LIGO Hanford Observatory shows a 1 µsec relative accuracy,
when averaging over 50minutes. Our understanding of the systematic time delay
in the detector response has reached the level of 10 µsec.
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1. Introduction

The Laser Interferometer Gravitational-wave Observatory (LIGO) is a network of
gravitational wave [1] detectors consisting of three long baseline interferometers [2]
at two sites near Hanford, Washington, and Livingston, Louisiana [3]. On October
1st, 2008, LIGO finished its 5th science run (S5), which collected one year of triple
coincidence data at design sensitivity [4]. LIGO is looking for transient gravitational

LIGO-P080072-00-Z



Accurate measurement of the time delay in the response of the LIGO gravitational wave detectors (draft07)2

wave sources such as the coalescence of compact binary stars and the explosion
of supernovae. LIGO also looks for continuous gravitational wave emissions from
asymmetric pulsars and for a stochastic background in gravitational waves from the
early universe. In order to find weak gravitational wave signals hidden in a noisy
background good timing accuracy of the measured detector signals is required. For
example, in the search for transient gravitational wave signals one compares the
outputs from multiple detectors and looks for a consistent signature [5, 6, 7]. If the
time of the events is not very well known, one can falsely reject real signals. In
other cases, we look for coincident events with other astrophysical detectors such as
gamma-ray and optical telescopes [8, 9, 10, 11, 12]. This requires an absolute time
stamp. When searching for continuous gravitational wave emissions from pulsars, one
coherently integrates the signal over a long time period to improve the signal-to-noise
ratio [13]. An inaccurate time stamp within the detector network can de-phase the
intrinsically coherent signal and thus degrade the signal-to-noise ratio. When searching
for a stochastic gravitational wave background, one computes the correlation between
multiple detectors [14],again, requiring accurate timing to avoid de-phasing.

This paper quantifies the accuracy and provides a detailed description of a method
that can be used to precisely measure the time delay between a simulated gravitational
wave force on an interferometer end test mass and the calibrated data stream used
for gravitational wave searches. This method injects a sinusoidally modulated laser
beam on a test mass mirror and uses the changing radiation pressure to apply a
varying force. The resulting differential displacement signal at the anti-symmetric
port of the interferometer is digitized, recorded and calibrated providing input for
data analysis. One can show that displacing an end test mass at a certain time is
equivalent to detecting a gravitational wave from straight above that passes through
the interferometer plane at exactly the same time. By determining the relative phase
between the calibrated data stream and the injected signal one can measure the time
delay in the interferometer. By taking into account the absolute time stamps and by
using the calibrated strain or displacement signal one can also independently verify
the end-to-end accuracy of the timing and phase calibration.

Using only a single frequency sinusoid would limit our ability to measure the time
delay to less than the period of the sinusoid. To mitigate this limitation one can choose
a lower frequency. However, this will reduce the accuracy in two ways: the sensitivity
of the interferometer gets worse at very low frequencies and a longer period leads to
larger timing errors. We chose to extend the range of the time delay measurement
by injecting two closely spaced sinusoids. Careful comparison of phase delays at the
two frequencies enables us to measure the time delay for a much wider range, up to
±1/(2∆f), where ∆f denotes the difference between the two frequencies.

There are two types of uncertainties we consider: (a) the accuracy of the
synchronization of the analog-to-digital converters (ADCs), which were used to record
the signals, relative to universal coordinate time (UTC) as measured by a GPS clock,
and (b) the intrinsic time delay within the instrument, which has to be accounted for
by the phase calibration of the detector.

2. Measurement

The schematic diagram of the photon calibrator is shown in Figure 1. It consists of
a 500mW Nd:YLF laser at a wavelength of 1047 nm. An acousto-optic modulator
(AOM) is used to modulate the laser intensity. The maximum modulation depth is
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Figure 1. Conceptual diagram of the photon calibrator. AOM: acousto-optic
modulator, PD: photo detector.

Figure 2. Block diagram of the measurement. ADC: analog-to-digital converter.

about 50%. A small part of the beam is split off towards a photodetector which is
used to monitor the injected signal. Most of the beam is sent into the vacuum system
and is bounced off the front-surface of an end test mass. Radiation pressure and,
hence, the force on the mirror is proportional to the incident laser power. By varying
the amplitude of the signal driving the AOM, one can inject any desired waveform.

The whole measurement setup is shown as a block diagram in Figure 2. In this
simplified picture, a LIGO interferometer is treated as a 2-input 2-output device. The
first input to the interferometer is the coil magnet actuators on the mirrors of the
interferometer. These actuators are used to keep the mirrors in the proper operating
positions by the length control loop (marked by a grey box in Figure 2) [15]. Another
input is the modulation drive of the photon calibrator. The anti-symmetric output
from the interferometer which will contain the gravitational wave signals is fed into
ADC1 and recorded. The output signal from the interferometer is affected by the
the control loop. Therefore, the gravitational waveform has to be reconstructed from
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the displacement calibration. This calibrated output of the interferometer is often
called h(t) in the gravitational wave community and we will use this convention in
this paper. The output from the monitor photodetector of the photon calibrator is
recorded by ADC2. The ADCs are synchronized to a GPS clock with high accuracy
through LIGO’s timing distribution system. The accuracy and offset of the ADC
time stamp was measured independently and correction factors were included for this
analysis.

The signal generator produced a superposition of two sinusoids (two-tone or
DuoTone signal) at 110Hz and 111Hz. This two-tone signal was then injected into
the interferometer using the photon calibrator. The experiment was performed on the
4 km interferometer at the LIGO Hanford Observatory. For about 10 hours the signal
was applied to the end test mass of the in-line arm. This measurement was done just
after S5, when the LIGO interferometer was still in the same configuration as during
the science run.

3. Time delay analysis

The analysis of the recorded two-tone signals measures the time delay between the
interferometer’s main output, h(t), and the photon calibrator monitor photodetector.
We denote the photon calibrator monitor signal p(t) for short. We used p(t) as the
reference for the time delay measurement. The time delay between p(t) and the actual
time of the radiation pressure force applied to the mirror is supposed to be small. We
will take into account a small delay in the photo detector and the timing correction
for ADC2 when interpreting the results in section 6.

The time delay was determined by measuring the relative phase between h(t) and
p(t). For a pure sinusoid at fixed frequency ω the phase delay, δφ, and the time delay,
δt, are related by δφ = ωδt. For a single sinusoid a constant time delay corresponds
to a phase which grows proportionally with frequency. Linear filters, such as the ones
used in the instrument, will in general not look like a constant delay. Therefore, it is
convenient to decompose the phase delay into two components: (a) a phase delay due
to a time delay which has linear frequency dependency and (b) a residual phase delay
which is not proportional to frequency.

3.1. Amplitude normalization and sine wave extraction

To measure the phase of one frequency component of the two-tone signal we put h(t)
or p(t) through a zero-phase [16] band-pass filter of 8th order. Zero phase filtering was
realized by applying a 4th order infinite-impulse-response (IIR) filter back and forth to
cancel the phase change of each filter. After the filtering we regularized the amplitude
of the sinusoid to reduce the low frequency noise contribution. For this purpose, we
multiplied the signal with two quadratures, sin(ωt) and cos(ωt). To get the amplitude
variation of the input sinusoid, the resultant time series were quadratically added and
filtered through a 4th order low-pass filter with a corner frequency of 3Hz. The original
signal is then normalized by this amplitude.

3.2. Reconstruction of time delay and phase difference

Our injected signal is a superposition of two sinusoids with unknown phase offset Ψ,

Sinj(t) = sin(ω1t) + sin(ω2t + Ψ). (1)
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We know the frequencies, ω1 and ω2, precisely. This signal is split into two paths
leading to h(t) and p(t). Since those paths have different delays, h(t) and p(t) can be
written as,

h(t) = sin [ω1 (t + ∆th)] + sin [ω2 (t + ∆th) + φh + Ψ] , (2)

p(t) = sin [ω1 (t + ∆tp)] + sin [ω2 (t + ∆tp) + φp + Ψ] . (3)

Here, ∆th and ∆tp are the frequency-independent time delay of the two paths, and φh

and φp are the residual phase delays which are not proportional to frequency. Since we
are only interested in phases, we ignored the amplitudes. Our objective is to measure
the time delay δt ≡ ∆th − ∆tp and the phase difference δφ ≡ φh − φp independently.

After extracting the ω1 component of the signals by sending h(t) and p(t) through
the narrow band-pass filter described in the previous section, we obtain

hω1(t) = sin [ω1 (t + ∆th)] , (4)

pω1(t) = sin [ω1 (t + ∆tp)] . (5)

The phase of each signal is measured by the three parameter sine wave fitting algorithm
described by IEEE standard 1057 [17]. The relative phase θ1 between hω1(t) and pω1(t)
is obtained as,

θ1 = ω1δt mod 2π. (6)

Because of the periodicity of the signals, θ1 is obtained as the common residue of the
true relative phase ω1δt modulo 2π. Here our convention of the modulo operation is
a mod b ≡ sgn(b)|a − ba/bc · b|, so that the obtained phase is always between 0 and
2π (bxc means rounding operation of x towards −∞). Similarly, we can obtain the
relative phase between h(t) and p(t) at frequency ω2 as,

θ2 = (ω2δt + δφ) mod 2π. (7)

By taking the difference between the above two quantities we obtain

δθ = (θ2 − θ1) mod 2π = (δωδt + δφ) mod 2π, (8)

where δω ≡ ω2 − ω1. Now, if we assume that |δωδt + δφ| is smaller than π, we get

δθ =
{

δωδt + δφ for (δωδt + δφ) ≥ 0
δωδt + δφ + 2π for (δωδt + δφ) < 0.

(9)

h(t) and p(t) should only be different by a factor −2 cos α
cMω2 P where P is the incident

laser power amplitude, α is the angle of incident and M is the mass of the mirror. As a
consequence δφ−π should be equal to zero or at least very small. We have eliminated
the π-phase shift from the following calculations by simply redefining p(t) → −p(t).

From (6) we see that δt = (θ1 + 2πn)/ω1, where n is an integer. Since we do not
know this integer beforehand, we try δtk = (θ1 + 2πk)/ω1 (k is the trial integer) and
subtract δωδtk from δθ. When (δωδt + δφ) ≥ 0, we get

δφk ≡ δθ − δωδtk = δω(δt − δtk) + δφ =
δω

ω1
2π(n − k) + δφ. (10)

δφk is at the minimum, δφk = δφ, at k = n assuming δφ < πδω/ω1. Therefore, by
scanning k for the minimum δφk we can find the true value of n and consequently δt
and δφ. When (δωδt + δφ) < 0, we get

δφk =
δω

ω1
2π

(
n − k +

ω1

δω

)
+ δφ. (11)
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Figure 3. The measured
time delays between the
photon calibrator photode-
tector and the calibrated
output of the interferome-
ter.
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Figure 4. The measured
phase difference using the
calibrated data.

δφk is at its minimum at k = n′ ≡ n + ω1/δω. For k = n′, we get δtn′ = δt + 2π/δω.
Here we assume that |δt| is much smaller than π/δω, so that δtn′ is always larger than
π/δω. Then, if the δtk found by the minimization of δφk is greater than π/δω, we can
conclude that (δωδt + δφ) < 0 and the true δt is δtk − 2π/δω.

In the above section we made three assumptions. The assumption |δt| ¿ π/δω
means that |δt| is shorter than the half period of δω. For our experiment, π/δω is
0.5 sec. Since δt is supposed to be much smaller than this value (most likely less than
a millisecond), we can safely assume this. The assumption on δφ that δφ < πδω/ω1

is justified by the fact that the frequencies of the two sinusoids are very close and
that there should be no phase shift in the first place. In fact, for our experiment this
requirement leads to δφ < 1.64◦ between 110Hz and 111Hz. This rate of phase change
is larger than the steepest part of the phase change by a first order low-pass filter with
a cut-off frequency of 100Hz. The calibrated response of the interferometer should
be much flatter than a first order low-pass filter. Finally, the remaining assumption,
|δωδt + δφ| < π, is automatically satisfied by the other two assumptions.

4. Results

Figures 3 and 4 show the measured δt = ∆th − ∆tp and δφ = ∆φh − ∆φp. The
10 hour long data set was divided into 100 sec long segments and δt and δφ were
determined for each segment. The curves labeled “30-segment average” are averages
over 30 consecutive segments. The convention here is that the positive value of δt
means h(t) is advanced from p(t).

There is a spike in δt and δφ at around 6 hours from the start of the measurement.
During this 100 sec segment, there was a large seismic excitation and our weak photon
calibrator signal was overwhelmed by this noise. Therefore, legitimate δt and δφ
are not available in this short period. When measuring scientific data, the LIGO
veto system detects these kind of glitches in the environmental monitors, such as
seismometers, and issues a veto flag. Therefore, noisy segments like this are not used
for data analysis to look for gravitational wave signals.
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Figure 5. Amplitude
spectral density of the
strain data around 110Hz.
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Figure 6. Amplitude
spectral density of the sim-
ulated data around 110Hz.

The mean, error and standard deviation (STD) of δt and δφ are listed in Table 1.
The errors are estimated by dividing the STD by the square root of the number of
segments used for the averaging because the distributions of δt and δφ are well fit with
Gaussians. When calculating these numbers, the noisy segments at the beginning and
at 6 hours were not used.

Mean δt Error of δt STD of δt Mean δφ Error of δφ STD of δφ
211.4µsec ±0.26µsec 5.0µsec 0.019◦ ±0.0039◦ 0.074◦

Table 1. Mean and standard deviation of δt and δφ measured between h(t) and
p(t).

5. Simulation

In Figs. 3 and 4 the measured quantities fluctuate randomly except for the large
glitch. These fluctuations can come either from contamination of the two-tone signal
by the random noise of the interferometer or from the real fluctuation of the time
delay and the phase difference of the interferometer. The latter can occur when the
interferometer’s state, such as the alignment of the mirrors, is changed. In order to see
the amount of contribution from stationary instrument noise, we generated simulated
data which consists of a two-tone signal and white Gaussian noise, and measured the
time delay and phase difference. The simulated two-tone signal is prepared to have
δt = 213 µsec and δφ = 0.019◦ (arbitrary choices). The signal and noise amplitudes
are chosen to be similar to the real strain data around 110Hz. The amplitude spectral
densities of the real and simulated data are shown in Figs. 5 and 6. Since the spectrum
of the real data shows bumps around the signal frequencies, we chose the level of the
top of the bumps as the level of our white noise. The source of the side lobes around
the signal frequencies in Figure 5 is most plausibly non-linearities in the instrument
which show up when a strong excitation is applied.

The results of the simulation are shown in Figures 7 and 8. The mean and
standard deviation of the recovered δt and δφ are shown in Table 2. The injected
time delay was recovered with good precision. The standard deviations of the time
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Figure 7. Simulated time
delay measurement.
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Figure 8. Simulated
phase difference measure-
ment.

delay and the phase difference are in the same order as the numbers listed in Table 1.
Therefore, we believe that the fluctuations observed in Figures 3 and 4 are mostly due
to the noise of the interferometer.

Mean δt STD of δt Mean δφ STD of δφ
212.9 µsec 2.5µsec 0.024◦ 0.149◦

Table 2. Mean and standard deviation of simulated δt and δφ.

6. Discussion

6.1. Interpretation

The measured 211.4µsec time advance in h(t) can be understood as the combination
of the delay in the photon calibrator’s witness photo detector path and the improper
assignment of time delay in the control loop when the preliminary h(t) was generated.

The timing difference between the ADC1 and ADC2 has been monitored by the
LIGO timing distribution system. At the time of the measurement, ADC2 was delayed
from ADC1 by 25.5µsec. This delay combined with a 4.0 µsec delay in the photon
calibrator’s witness photo detector appears as an apparent advance of h(t) with respect
to p(t).

The calibration model used to generate the preliminary h(t) had errors in the
treatment of the time-delay. The expected time-delay in the length control loop of
the interferometer consists of a computer processing delay of 2 samples or 122.1 µsec,
a 30.5µsec for the sample and hold delay of the digital-to-analog converters (DACs)
used to drive the coils and 13.3 µsec for the light travel time in the 4 km arms. Direct
measurements [18] of the computer processing and DAC delays are consistent with
expectations. In addition direct measurements constrain extra delays in sensing the
interferometer output to be less than 5µsec. The expected around-the-loop delay
is therefore approximately 166µsec. The generation of the preliminary h(t) used a
187µsec delay to match our model of the loop transfer function with the measured
open-loop transfer function. It includes an extra DAC sample and hold delay of
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30.5µsec because it was inadvertently included in the model with the wrong sign. This
187µsec delay was assigned to the sensing part (the box designated “Interferometer”
in Figure 2) of the control loop where it had maximal effect on the output. However,
as mentioned above, most of the delays in the loop are attributable to the feedback
part (e.g. the computer processing and DACs). The correct model, which will be
used for the final calibration, assigns this delay, except for the 13.3µsec of the light
travel time, to the coil actuation where it has no effect on the interferometer response.
Therefore the preliminary h(t) used in this analysis includes 173.7(= 187− 13.3)µsec
of time advance to compensate for the wrongly assigned time delay in the sensing part.

The remaining discrepancy between the time delay used to match the model and
the measured transfer functions (156.5 = 187−30.5 µsec) and the sum of the identified
delays (166µsec) is 9.5 µsec. One possible explanation is the uncertainty in the phase
calibration of h(t), which is approximately 50µsec at our measurement frequencies,
mainly arising from uncertainties in measured parameters. For example, the optical
response of the differential arm length shows a pole around 100Hz which is due to the
optical cavities in the Michelson arms. A 1% change in the cavity poles would cause
a change in the delay of 7µsec at 110Hz.

As shown in Table 3, the measured 211.4 µsec time advance is accounted for by
the known correction factors with 10µsec accuracy. This is not significant enough to
cause any concern. To better understand the discrepancy, further investigations of the
unexplained delay and the influence of the cavity pole will be needed. The original
timing requirement is an overall accuracy of ±10µsec. Our understanding of the time
delays in the interferometer and the associated electronics has reached this level.

Effect Value Uncertainty
Measured delay +211.4 µsec 1 µsec
ADC2 delay −25.5 µsec 1 µsec
Monitor photodetector delay −4.0 µsec 2 µsec
Wrongly assigned delay −173.7 µsec 10 µsec
Remaining total +8.2µsec 10 µsec

Table 3. Interpretation of the measured time delay.

So far we have not included a correction from ADC1 or the timing distribution
system. These effects are common to both the h(t) calibrated signal and our
measurement with the photon calibrator. They should be included when an absolute
time stamp is required. The bias from ADC1 is small and will add 3 µsec ± 2 µsec.
There is no known bias in the timing distribution system. Its uncertainty is estimated
to be ±2µsec.

6.2. Verification of the calibration

The optical gain of a LIGO interferometer fluctuates during operations due to,
for example, alignment fluctuations of the mirrors, or variations of the laser
power. Therefore, LIGO’s calibration system monitors the interferometer response
by injecting calibration signals into the interferometer and by adaptively changing
the calibration factors [19]. If the adaptive calibration compensation system develops
a problem, it affects h(t) through the alteration of the unity gain frequency in the
control loop shown in Figure 2. This change in the phase response is detectable by our
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Figure 9. Time delay
δt between h(t) and p(t)
when a restriction is im-
posed on the adaptive cali-
bration compensation sys-
tem.
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Figure 10. Phase dif-
ference δφ between h(t)
and p(t) when a restriction
is imposed on the adap-
tive calibration compensa-
tion system.

time delay measurement. Therefore, we can use our method to verify the validity of
the adaptive calibration compensation system. To see this, we analyzed the same data
as used in section 4, but artificially limit the adaptive compensation of the calibration
factors by prohibiting more than 20% of deviation from the normal values.

Figs. 9 and 10 show the plots of δt and δφ when the restriction was imposed. There
is a big jump in δt at around 6 hours. As discussed before, this was the time when there
was a large seismic excitation. The alignment monitoring system of the mirrors shows
a significant shift in the orientation of some of the mirrors. Consequently, this glitch
caused a large change in the calibration factor and the adaptive compensation system
could not follow it because of the artificial restriction imposed. This is the cause of
the large jump in δt. As is seen in Figure 3, the properly set-up adaptive calibration
compensation system completely removed the problem under normal conditions.

6.3. Strength of photon calibrator excitation

The current LIGO specification on the timing accuracy is 10 µsec. Therefore, it is
desirable to be able to monitor the time delay with the resolution of ∼ 1 µsec. As
is evident in Figure 3, single 100 sec measurements fluctuate more than 1 µsec, the
standard deviation is 5.1µsec. Hence, we have to average over ∼30 segments to bring
the standard deviation below 1 µsec. A 30-segment average takes 3000 sec, or 50min.
In order to detect transient events shorter than 3000 sec, such as the jump shown in
Figure 9, with a resolution of ≤1 µ sec, we would have to increase the signal strength
of the photon calibrator excitation or have a gravitational wave detector that is 10×
more sensitive than initial LIGO was during S5 (e.g., advanced LIGO).

We performed a similar simulation as explained in Section 5 with a 10 time
stronger photon calibrator signal. In this case, the standard deviation of the time
delay is reduced to 0.26 µsec. The standard deviation of the phase difference is 0.014◦.
According to this simulation we can reduce the error coming from the stationary
instrument noise to less than 1 µsec for 100 sec integration by a signal injection with
10 times larger signal-to-noise ratio.
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7. Conclusion

It is crucial for the detection of gravitational waves to accurately calibrate the timing
and phase of the calibrated data stream used for gravitational wave searches. We
investigated and characterized a method capable of directly measuring the time delay
between the force exerted on the test mass of the interferometer and the calibrated
data stream, h(t). The measurement performed using the Hanford 4 km interferometer
shows that our method can provide 1 µsec relative accuracy by averaging over 3000 sec
of data. The simulation study shows that we can achieve the same accuracy with
a 100 sec long measurement, if we improve the signal-to-noise ratio of the photon
calibrator signal by a factor of 10.

This method is useful not only to determine the time delay of the interferometer
but also to provide a direct and near real-time verification of the calibration system.
We have shown agreement between the two methods at the 10 µsec level. We propose
to run this measurement continuously during the operation of the interferometers in
future observations.
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