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Abstract

Data from a network of gravitational wave detectors can be analyzed in coincidence to increase

detection con�dence and reduce non-stationarity of the background. We propose and explore a

geometric algorithm to combine the data from a network of detectors. The algorithm makes optimal

use of the variances and covariances that exist amongst the di�erent parameters of a signal in a

coincident detection of events. The new algorithm essentially associates with each trigger ellipsoidal

regions in parameter space de�ned by the covariance matrix. Triggers from di�erent detectors are

deemed to be in coincidence if their ellipsoids have a non-zero overlap. Compared to an algorithm

that uses uncorrelated windows separately for each of the signal parameters, the new algorithm

greatly reduces the background rate thereby increasing detection e�ciency at a given false alarm

rate.
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I. MOTIVATION

Long baseline interferometric gravitational wave detectors, such as the Laser

Interferometer Gravitational-Wave Observatory (LIGO) [1], Virgo [2], and GEO 600 [3],

are currently acquiring the best data ever. The data sets from the di�erent detectors can

be either brought together and analyzed phase coherently [4, 5, 6, 7], or analyzed separately

followed up by a coincidence analysis [6, 8, 9, 10, 11, 12, 13, 14, 15] of the triggers obtained.

Coherent analysis maximizes signal visibility (i.e., gives the best possible signal-to-noise

ratio in the likelihood sense) while the goal of coincidence analysis is to reduce and mitigate

the non-stationary and non-Gaussian background noise. A recent comparison of coherent

analysis vis-a-vis coincidence analysis under the assumption that the background noise is

Gaussian and stationary has concluded that coherent analysis, as one might expect, is far

better than coincidence analysis [16]. However, there are two reasons why current data

analysis pipelines prefer the latter over former. Firstly, since the detector noise is neither

Gaussian nor stationary, coincidence analysis can potentially reduce the background rate

far greater than one might think otherwise. Secondly, coherent analysis is computationally

far more expensive than coincidence analysis and it is presently not practicable to employ

coherent analysis.

A. The problem of coincident detection

In coincidence analysis (see for example, Refs. [11, 12, 13, 14, 17, 18]), data sets from

each detector will be analyzed separately and the triggers from the end of the pipeline

from di�erent detectors compared with one another to identify triggers that might be in

coincidence with one another. More precisely, the goal is to �nd if the parameters of a

trigger (e.g., in the case of a coalescing binary the time of merger, the component masses

and spins) from one detector are identical to those from another. Since the presence of noise

causes errors in the measurement of parameters of an inherent signal, it is highly improbable

that the same gravitational wave in di�erent detectors can be associated with exactly the

same set of parameters. However, it should be possible to detect signals in coincidence

by demanding that the measured parameters lie in a su�ciently small range of each other

[11, 12, 13, 14, 17, 18]. Thus, we can revise the coincidence criteria as follows: triggers from
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di�erent detectors are said to be in coincidence if their parameters all lie within a certain

acceptable range. Events that pass the coincidence test are subject to further scrutiny but

we shall focus in this paper on the coincidence test itself.

From the above discussion it is clear that an important aspect of coincidence analysis

is the determination of the range of parameter values to be associated with each trigger.

To this end, until recently, the LIGO Scienti�c Collaboration (LSC) has deployed a

phenomenological method for assigning the ranges [11, 12, 13, 14, 17, 18]. More precisely,

one performs a large number of simulations in which a signal with a known set of parameters

is added in software to the data which is then passed through the analysis pipeline. The

pipeline identi�es the most probable parameters with each injected signal and the ensemble

of injected and measured parameters gives the distribution of the errors incurred in the

measurement process. Given the distribution of the errors, one can choose a range for each

parameter such that more than, say, 95% of the injected signals are detected in coincidence.

Choosing wider windows will enable greater detection probability but also increases the

rate of accidental triggers. On the contrary, smaller windows decrease the false alarm

rate but also reduce the detection probability. Recently, a Bayesian coincidence test has

been proposed [19] as an alternative wherein one computes the likelihood of a candidate

event as belonging to a distribution obeyed by true signals rather the noise background.

Unfortunately, measuring the distribution function when the parameter space is large could

be computationally formidable [19] except when the parameters are independent.

B. A geometric approach to choosing coincident windows

In this paper we propose a new algorithm based on the metric (equivalently, the

information matrix) de�ned on the signal manifold. The idea is very simple, even obvious,

but leads to a great reduction in the background trigger rate. The advantages of the

new algorithm are better appreciated by listing certain drawbacks of the phenomenological

method. The drawbacks are quite naturally remedied in the new approach.

First, because the current method uses rectangular windows it ignores the correlations

between di�erent parameters. For instance, in the case of a chirping signal from a black

hole binary the shape of the signal depends, among others, on the component masses.

However, not all combinations of the two masses lead to signals that are easily distinguishable
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from one another. Indeed, at the lowest post-Newtonian order the waveform depends only

on a certain combination of the masses called the chirp mass; binaries of di�erent values

for the two masses but the same chirp mass produce essentially the same signal. This

degeneracy is broken when post-Newtonian corrections are included. Nevertheless, the two

mass parameters continue to be highly correlated.

The second drawback is that the method employs windows of the same size throughout the

parameter space while we know that errors in the measurement of the parameters depends,

in some cases quite sensitively, on the parameters. Drawing again from our example of a

binary, the error in the estimation of the chirp mass can vary by more than two orders

of magnitude across the parameter space of interest in the case of systems that LIGO is

expected to observe (see, e.g., [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]). Clearly, it is not

optimal to deploy windows of the same size all over the parameter space.

Thirdly, by not taking into account parameter covariances, the method entails

independent tuning of several parameters at the same time. This could be a horrendous

problem when dealing with signals characterized by many parameters. For instance,

continuous radiation from a pulsar is characterized by the location of the pulsar, its spin

frequency, the derivative of the frequency and so on. These physical parameters are all not

independent; the existence of covariances among them imply that the e�ect of variation

in one parameter can be absorbed by another - thereby complicating the pipeline tuning

procedure. In the case where parameters have perfect or near perfect covariances, variations

of the parameters may not even lead to distinct signals at all. This further implies that it may

not be necessary to tune each parameter separately, rather it should be enough to tune only

a subset of the parameters or, more precisely, only the principal components. Furthermore,

the method does not provide a unique set of windows, rather several possibilities could be

worked out.

Finally, by using windows of the same size irrespective of the signal-to-noise ratio (SNR)

of the trigger, the method su�ers from an undesirably high false alarm rate, particularly

in the tail of the SNR distribution. Needless to say, a successful detection of gravitational

waves necessitates as clean a distribution of the SNRs as possible, with little contamination

of the tails. One way of reducing the false alarm rate is by using tighter windows at higher

SNRs. This is well-motivated since true high-SNR events will be associated with smaller

errors.
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The geometric algorithm proposed in this paper quite naturally overcomes the drawbacks

of the phenomenological method. The algorithm takes into account the correlations amongst

the various parameters and deploys parameter- and SNR-dependent ellipsoidal windows

de�ned by the Fisher information matrix using a single parameter. The most important

consequence of the new algorithm is a great reduction in the background rate.

C. Organization of the paper

In Secs. II, III and IV, we present and discuss the new algorithm to identify events in

coincidence. The algorithm comprises of two steps. The �rst step consists in associating each

trigger with a p-dimensional ellipsoid. In the second step one tests if the ellipsoid associated

with a trigger from one detector overlaps, or at least touches, an ellipsoid associated with

a trigger from another detector. In Sec. V we apply the algorithm developed in Sec. II to

the case of a transient chirp signal from a binary black hole. This will help us assess the

extent to which the algorithm is helpful in reducing the background. Sec. VI concludes by

summarizing the application of the new algorithm in real data analysis pipelines and future

prospects.

II. A GEOMETRIC COINCIDENCE ALGORITHM

This Section begins with a brief introduction to the geometric formulation of signal

manifold and metric introducing the terminology needed in later Sections. The metric so

de�ned helps us in identifying ellipsoidal regions with a given point on the manifold whose

size is chosen depending on the signal-to-noise ratio (SNR) and the parameter space region

where the point lies. As an exercise to estimate the e�cacy of the new coincidence algorithm

we then compare the volume of the ellipsoid with that of a proper rectangular box enclosing

the ellipsoid and aligned along the coordinate lines.

A. Scalar Product, Signal Manifold and Metric

The problem of gravitational wave data analysis was addressed in a geometric framework

with the intention of understanding parameter estimation [27, 28] and computational
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requirements for matched �ltering [31, 32, 33]. In this framework, one thinks of the outputs

of an ensemble of detectors as either �nite- or in�nite-dimensional vectors depending on

whether one considers data streams as a discrete sampled set or the continuum limit of

the same, respectively. For the sake of convenience, in this paper we shall deal with the

continuum limit. However, all our results are applicable to the more realistic case in which

detector outputs are treated as �nite dimensional vectors. It is easy to see that the set

of all detector outputs form a vector space satisfying the usual axioms of a vector space.

The starting point of our discussion is the de�nition of the scalar product. Given any two

functions x(t) and y(t), their scalar product 〈x, y〉 is de�ned as [20, 21, 22, 23]

〈x, y〉 = 2

∫ ∞
0

df

Sh(f)
[X(f)Y ∗(f) +X∗(f)Y (f)] , (2.1)

where X(f) ≡
∫∞
−∞ dt x(t) exp(−2πift) is the Fourier transform of the function x(t) (and

similarly, Y (f)) and Sh(f) is the one-sided noise power-spectral density of the detector.

The scalar product in Eq. (2.1) is motivated by the likelihood of a known signal buried in

Gaussian, stationary background [34].

Amongst all vectors, of particular interest are those corresponding to gravitational waves

from a given astronomical source. While every signal can be thought of as a vector in the

in�nite-dimensional vector space of the detector outputs, the set of all such signal vectors

don't, by themselves, form a vector space. One can immediately see that the norm of a

signal h (i.e., the square-root of the scalar product of a signal with itself) gives the SNR ρ

for a noiseless signal that is �ltered using an optimal template [35, 36]:

ρ ≡ 〈h, h〉1/2 = 2

[∫ ∞
0

df

Sh(f)
|H(f)|2

]1/2

, (2.2)

where H(f) is the Fourier transform of the signal h(t). In particular, we can de�ne signals

ĥ of unit norm:

ĥ ≡ h√
〈h, h〉

=
h

ρ
,

〈
ĥ, ĥ

〉
= 1. (2.3)

The set of all normed signal vectors (i.e., signal vectors of unit norm) form a manifold,

the parameters of the signal serving as a coordinate system [27, 28, 32, 33]. Thus, each

class of astronomical source forms an n-dimensional manifold Sn, where n is the number of

independent parameters characterizing the source. For instance, the set of all signals from a

binary on a quasi-circular orbit inclined to the line-of-sight at an angle ι, consisting of non-
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spinning black holes of masses m1, and m2, located a distance D from the Earth1 initially in

the direction (θ, ϕ) and expected to merge at a time tC with the phase of the signal at merger

ϕC , forms a nine-dimensional manifold with coordinates {D, θ, ϕ, m1, m2, tC , ϕC , ι, ψ},

where ψ is the polarization angle of the signal. In the general case of a signal characterized

by n parameters we shall denote the parameters by pα, where α = 1, . . . , n.

The manifold Sn can be endowed with a metric gαβ that is induced by the scalar product

de�ned in Eq. (2.1). The components of the metric in a coordinate system pα are de�ned

by2

gαβ ≡
〈
∂αĥ, ∂βĥ

〉
, ∂αĥ ≡

∂ĥ

∂pα
. (2.4)

The metric can then be used on the signal manifold as a measure of the proper distance

d` between nearby signals with coordinates pα and pα + dpα, that is signals ĥ(pα) and

ĥ(pα + dpα),

d`2 = gαβdpαdpβ. (2.5)

Now, by Taylor expanding ĥ(pα+dpα) around pα, and keeping only terms to second order

in dpα, it is straightforward to see that the overlap O of two in�nitesimally close-by signals

can be computed using the metric:

O(dpα; pα) ≡
〈
ĥ(pα), ĥ(pα + dpα)

〉
= 1− 1

2
gαβdpαdpβ, (2.6)

The metric on the signal manifold is nothing but the well-known Fisher information

matrix usually denoted Γαβ, (see, e.g., [34, 37]) but scaled down by the square of the SNR,

i.e., gαβ = ρ−2Γαβ. The information matrix is itself the inverse of the covariance matrix Cαβ

and is a very useful quantity in signal analysis. The ambiguity function A(dpα; pα), familiar

to signal analysts, is the overlap function de�ned above: A(dpα; pα) ' O(dpα; pα). Thus,

the equation

A(dpα; pα) = ε, or O(dpα; pα) = ε, (2.7)

1 Even though we deal with normed signals (which amounts to �xing D), astrophysical gravitational wave

signals are characterised by this additional parameter.
2 We have followed the de�nition of the metric as is conventional in parameter estimation theory (see, e.g.,

Refs. [21, 22, 23, 28]) which di�ers from that used in template placement algorithms (see, e.g. Refs. [32])

by a factor of 2. This di�erence will impact the relationship between the metric and the match as will be

apparent in what follows.
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where ε (0 < ε < 1) is a constant, de�nes the ambiguity surface, or level surface. In

gravitational wave literature ε, which measures the overlap between two mis-matched signals,

is also called the match. Using the expression for the overlap O [cf. Eq. (2.6)] in Eq. (2.7),

we can see that the coordinate distance dpα to the ambiguity surface from the coordinate

point pα is related to the proper distance3 by:

gαβdpαdpβ = 2(1− ε). (2.8)

Equivalently, d` =
√

2(1− ε). For a given value of the match ε the above equation de�nes

a (n − 1)-dimensional ellipsoid in the n-dimensional signal manifold. Every signal with

parameters pα + dpα on the ellipsoid has an overlap ε with the reference signal at pα.

B. Coincidence windows

Having de�ned the metric (equivalently, the information matrix) and the ambiguity

function, we next consider the application of the geometric formalism in the estimation

of statistical errors involved in the measurement of the parameters and then discuss how

that information may be used in coincidence analysis. We closely follow the notation of Finn

and Cherno� [21, 22, 23] to introduce the basic ideas and apply their results in the choice

of coincidence windows.

Let us suppose a signal of known shape with parameters pα is buried in background

noise that is Gaussian and stationary. Since the signal shape is known one can use matched

�ltering to dig the signal out of noise. The measured parameters pα will, in general, di�er

from the true parameters of the signal4. Geometrically speaking, the noise vector displaces

the signal vector and the process of matched �ltering projects the (noise + signal) vector

back on to the signal manifold. Thus, any non-zero noise will make it impossible to measure

the true parameters of the signal. The best one can hope for is a proper statistical estimation

of the in�uence of noise.

The posterior probability density function P of the parameters pα is given by a multi-

3 Here the proper distance refers to the distance between the signal ĥ(pα) at the coordinate point pα and

a signal ĥ(pα + dpα) with coordinates pα + dpα on the ambiguity surface.
4 In what follows we shall use an over-line to distinguish the measured parameters from true parameters

pα.
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variate Gaussian distribution 5:

P(∆pα) dn∆p =
dn∆p

(2π)n/2
√
C

exp

[
−1

2
C−1
αβ ∆pα∆ pβ

]
, (2.9)

where n is the number of parameters, ∆pα = pα − pα, and Cαβ is the covariance matrix, C

being its determinant. Noting that C−1
αβ = ρ2gαβ, we can re-write the above distribution as:

P(∆pα) dn∆p =
ρn
√
g dn∆p

(2π)n/2
exp

[
−ρ

2

2
gαβ ∆pα∆ pβ

]
. (2.10)

where we have used the fact that C = 1/(ρ2n g), g being the determinant of the metric gαβ.

Note that if we de�ne new parameters p′α = ρpα, then we have exactly the same distribution

function for all SNRs, except the deviations ∆pα are scaled by ρ.

Let us �rst specialize to one-dimension to illustrate what region of the parameter space

one should associate with a given trigger. In one-dimension the distribution of the deviation

from the mean of the measured value of the parameter p is given by:

P(∆p)d∆p =
d∆p√
2πσ

exp

(
−∆p2

2σ2

)
=
ρ
√
gppd∆p
√

2π
exp

(
−ρ

2

2
gpp∆p

2

)
, (2.11)

where, analogous to the n-dimensional case, we have used σ2 = 1/(ρ2gpp). Now, at a given

SNR, what is the volume VP in the parameter space such that the probability of �nding the

measured parameters p inside this volume is P? This volume is de�ned by:

P =

∫
∆p∈VP

P(∆p)d∆p. (2.12)

Although VP is not unique it is customary to choose it to be centered around ∆p = 0 :

P =

∫
(∆p/σ)2≤r2(P )

d∆p√
2πσ

exp

(
−∆p2

2σ2

)
=

∫
ρ2gpp∆p2≤r2(P )

ρ
√
gppd∆p
√

2π
exp

(
−ρ

2 gpp∆p
2

2

)
,

(2.13)

where given P the above equation can be used to solve for r(P ) and it determines the range

of integration. For instance, the volumes VP corresponding to P ' 0.683, 0.954, 0.997, . . . ,

are the familiar intervals [−σ, σ], [−2σ, 2σ], [−3σ, 3σ], . . . , and the corresponding values of

r are 1, 2, 3. Since σ = 1/
√
ρ2gpp we see that in terms of gpp the above intervals translate to

1

ρ

[
− 1
√
gpp

,
1
√
gpp

]
,

1

ρ

[
− 2
√
gpp

,
2
√
gpp

]
,

1

ρ

[
− 3
√
gpp

,
3
√
gpp

]
, . . . . (2.14)

5 A Bayesian interpretation of P(∆pα) is the probability of having the true signal parameters to lie

somewhere inside the ellipsoidal volume centered at the Maximum Likelihood point pα. In this case

the overlap-test for determining coincidence test is motivated by a test of concordance that the true signal

parameters pα should lie in the overlap region.
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Thus, for a given probability P , the volume VP shrinks as 1/ρ. The maximum distance dmax

within which we can expect to �nd �triggers� at a given P depends inversely on the SNR ρ :

d` =
√
gpp∆p2 = r/ρ. Therefore, for P ' 0.954, r = 2 and at an SNR of 5 the maximum

distance is 0.4, which corresponds to a match of ε = 1 − 1
2
d`2 = 0.92. In other words, in

one-dimension 95% of the time we expect our triggers to come from templates that have

an overlap greater than or equal to 0.92 with the buried signal when the SNR is 5. This

interpretation in terms of the match is a good approximation as long as d`� 1, which will

be true for large SNR events. However, for weaker signals and/or greater values of P we

can't interpret the results in terms of the match although, the foregoing equation Eq. (2.12)

can be used to determine r(P ). As an example, at P ' 0.997, r = 3 and at an SNR of ρ = 4

the maximum distance is d` = 0.75 and the match is ε = 23/32 ' 0.72, which is signi�cantly

smaller than 1 and the quadratic approximation is not good enough to compute the match.

These results generalize to n dimensions. In n-dimensions the volume VP is de�ned by

P =

∫
∆pα∈VP

P(∆pα) dn∆p. (2.15)

Again, VP is not unique but it is customary to center the volume around the point ∆pα = 0 :

P =

∫
ρ2gαβ ∆pα∆ pβ≤r2(P,n)

ρn
√
g dn∆p

(2π)n/2
exp

[
−ρ

2

2
gαβ ∆pα∆ pβ

]
. (2.16)

Given P and the parameter space dimension n, one can iteratively solve the above equation

for r(P, n). The volume VP is the surface de�ned by the equation

gαβ∆pα∆pβ =

(
r

ρ

)2

. (2.17)

This is the same as the ellipsoid in Eq. (2.8) except that its size is de�ned by r/ρ. Let us

note the generalization of a result discussed previously, namely that the size of the ellipsoid

is not small enough for all combinations of P and ρ and, therefore, it is not always possible

to interpret the distance from the centre of the ellipsoid to its surface in terms of the overlap

or match of the signals at the two locations except when the distance is close to zero. This

is because the expression for the match in terms of the metric is based on the quadratic

approximation which breaks down when the matches are small. However, the region de�ned

by Eq. (2.17) always corresponds to the probability P and there is no approximation here

(except that the detector noise is Gaussian).
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TABLE I: The value of the (squared) distance d`2 = r2/ρ2 for several values of P and the

corresponding smallest match that can be expected between templates and the signal at di�erent

values of the SNR.

P = 0.683 P = 0.954 P = 0.997

ρ d`2 εMM d`2 εMM d`2 εMM

n = 1

5 0.04 0.9899 0.16 0.9592 0.36 0.9055

10 0.01 0.9975 0.04 0.9899 0.09 0.9772

20 0.0025 0.9994 0.01 0.9975 0.0225 0.9944

n = 2

5 0.092 0.9767 0.2470 0.9362 0.4800 0.8718

10 0.023 0.9942 0.0618 0.9844 0.1200 0.9695

20 0.00575 0.9986 0.0154 0.9961 0.0300 0.9925

n = 3

5 0.1412 0.9641 0.32 0.9165 0.568 0.8462

10 0.0353 0.9911 0.08 0.9798 0.142 0.9638

20 0.00883 0.9978 0.02 0.9950 0.0355 0.9911

When the SNR ρ is large and 1− P is not close to zero, the triggers are found from the

signal with matches greater than or equal to 1− r2(P,n)
2ρ2

. Table I lists the value of r for several

values of P in one-, two- and three-dimensions and the minimum match εMM for SNRs 5,

10 and 20. Table I should be interpreted in the light of the fact that triggers come from an

analysis pipeline in which the templates are laid out with a certain minimal match and one

cannot, therefore, expect the triggers from di�erent detectors to be matched better than the

minimal match.

From the Table, we see that when the SNR is large (say greater than about 10) the

dependence of the match εMM on n is very weak; in other words, irrespective of the number

of dimensions we expect the match between the trigger and the true signal (and for our

purposes the match between triggers from di�erent instruments) to be pretty close to 1,

and mostly larger than a minimal match of about 0.95 that is typically used in a search.

Even when the SNR is in the region of 5, for low P again there is a weak dependence of
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εMM on the number of parameters. For large P and low SNR, however, the dependence of

εMM on the number of dimensions becomes important. At an SNR of 5 and P ' 0.997,

εMM = 0.91, 0.87, 0.85 for n = 1, 2, 3 dimensions, respectively.

In general, for a given probability P the size of the ellipsoid at an SNR ρ is smaller by

a factor ρ compared to that at ρ = 1. Thus, the volume in the parameter space in which

the measured parameters will lie at a given probability P will scale with the SNR as ρ−n.

Therefore, if the goal of an experiment is to have false dismissal probability that is no greater

than 1−P then the ellipsoidal windows given by Eq. (2.17) could be employed when testing

triggers from di�erent detectors for coincidences. We now have our �rst result which states

that:

When performing coincidence analysis of triggers one should test to see if the

associated ellipsoids overlap with each other. These ellipsoids describe the

smallest possible volume within which the false dismissal probability is no more

than a pre-speci�ed value.

Notice also that, if one assumes that false alarms are due to accidental coincidences between

triggers which are otherwise uncorrelated6, the false alarm rate would then also go down

by ρ−n. Thus, given the false dismissal probability 1 − P the size of the ellipsoid further

depends on the SNR of the events that are being subject to coincidence analysis, the size

shrinking sharply as a function of the event's SNR. Thus we have the second of our results:

The size of the ellipsoids should be chosen in inverse proportion to the signal-to-

noise ratio.

However, this latter feature has not yet been implemented in current gravitational wave

searches and will be a priority for implementation in future versions of the search pipeline

[38]. The �nal, and practically speaking probably the most important, result is the following:

Our coincidence algorithm reduces the number of tunable parameters from n

(where n is the number of parameters) to 1, irrespective of the dimensionality of

the signal parameter space.

6 This is not the case for co-located detectors such as the two LIGO Hanford interferometers.
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This parameter µ introduced in Eq. 3.2 essentially scales the volume of the ambiguity

ellipsoid � the shape and orientation of which is entirely determined from the metric

components. The appropriate value of this parameter can be determined by extensive

Monte-Carlo tests where one injects GW signals in interferometer noise and by optimising

the detection e�ciency vis-a-vis false alarm rate, an acceptable value of µ is arrived at.

Having just one parameter greatly simpli�es this tuning procedure. Note that as argued

before µ is SNR-dependent: loud signals with high SNRs are expected to be more consistent

in their parameters in di�erent detectors. Thus the ellipsoids associated with these high

SNR triggers are expected to overlap (and hence pass coincidence) even if they each have a

smaller volume. On the other hand, for weaker signals we need to associate larger ellipsoids

in order for them to overlap.

III. OVERLAP OF ELLIPSOIDS

A key tool in determining coincidences of triggers from two or more detectors is a

mathematical algorithm to determine if the ellipsoids associated with triggers either touch

or overlap with each other. This algorithm forms the workhorse for identifying coincidence

of triggers from two or more detectors.

As stated in Section IIA, triggers resulting from the analysis pipeline are projections of

the data by normed signal vectors onto an n-dimensional space Sn, where n is the number of

independent parameters characterizing the source. In the foregoing Section we introduced

ellipsoidal regions in the n-dimensional parameter space with their centers at the location

of the maximum likelihood point. When we analyze the data, however, we will not know

before hand if a signal is present in the data and even when there is one we would not know

where its location in the parameter space is. We will have, nevertheless, the knowledge of the

location of the triggers in the parameter space. Let us denote the coordinates of a trigger

from a detector A as qαA, where α is the index on the parameter space. The coincidence

analysis proceeds in the following manner. De�ne an ellipsoidal region E(pA, g) around

each trigger qαA by

E(pA, g) =
{
pA ∈ Sn | (pA − qA)T g (pA − qA) 6 1

}
, (3.1)

where qA ∈ Sn is the position vector of the center of the ellipsoid (i.e., the location of the
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trigger from detector A) and g is the rescaled metric which we shall refer to as the shape

matrix. It is related to the metric by

gαβ = µ2gαβ (3.2)

where µ2 is a numerical scaling factor used to expand the linear distances of the ellipsoid

while holding the position of the center and the spatial orientation constant. Eq. (2.17)

allows us to interpret the parameter µ in terms of the probability P with which the trigger

can be expected to be found within the ellipsoid E(pA, g) :

µ2 =
ρ2

r2(P )
. (3.3)

Further, the probabilities P associated with a given µ can be found using Eq. (2.16) when

the background noise is Gaussian. However, most detector noise is non-Gaussian and non-

stationary and in those cases µ serves as a parameter that must be tuned to achieve a certain

detection e�ciency or, alternatively, a certain false alarm rate.

Thus, the shape matrix is the scaled metric and encodes the local correlations between

the parameters in the neighborhood of the trigger center. It is trivial to check that when

µ = 1, Eq. (3.1) de�nes the interior of the ambiguity ellipsoid previously de�ned in Eq. (2.7).

Once an ellipsoidal model for the trigger is established, following [39] one can construct a

contact function FAB(λ) of two ellipsoids E(qA, gA) and E(qB, gB) (de�ned around triggers

from detectors A and B) as

FAB(λ) = λ(1− λ) r T
AB

[
λg−1

B + (1− λ)g−1
A

]−1
rAB, (3.4)

where rAB = qB − qA and λ ∈ [0, 1] is a scalar parameter. The maximum of the contact

function over λ in the interval [0, 1] can be shown [39] to be unique. It can also be shown

that for two overlapping ellipsoids, the maximum of the contact function is less than 1, i.e,

F = max
06λ61

[FAB(λ)] < 1. (3.5)

When F = 1, the two ellipsoids 'touch' each other externally.

In the `coincidence' data-analysis paradigm, given triggers from N detectors (N ≥ 2),

one draws up a list of `coincident triggers' for further analysis to test their signi�cance.

The simplest coincident triggers consist of those which have `consistent' parameters in two
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FIG. 1: Panel A plots the contact function Eq. (3.4) for two pairs of three-dimensional ellipsoids

taken from a search for binaries consisting of non-spinning compact objects characterized by

parameters (tc, τ0, τ3) [see Sec. V, in particular Eq. (5.4)]. Panels B, C and D are the projections of

the ellipsoids in (tc, τ0), (tc, τ3) and (τ0, τ3) orthogonal planes, respectively. Solid lines refer to the

case of non-overlapping ellipsoids and dashed lines are for over-lapping (i.e., coincident) triggers.

Note that in the latter case the maximum of the contact function is ≤ 1, which is the test that is

carried out to determine if a pair of triggers are in coincidence.

detectors (two-way coincidence). Testing for two-way coincidences for triggers from co-

located detectors (e.g., the two LIGO detectors at Hanford) can be accomplished by a single

test of Eq. (3.5) on a pair of triggers.

When the detectors are non-colocated, one needs to allow for a non-zero `time-of-�ight'

delay between the trigger arrival times. One assumes that the GW signals travel at the speed

of electro-magnetic radiation in vacuum c and the maximum allowed time delay is then set

to ±∆/c, where ∆ is the distance between the two detectors. As far as the geometrical

picture of the coincidence test is concerned, for the non-colocated case one needs to test
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for the overlap of a `cylindrical' volume (of length 2∆/c along the time-dimension) and an

ellipsoid7. In practice, however, the test can be carried out iteratively by adding discrete

time delays to the trigger (spanning the allowed time-delay) from one detector and testing

for the overlap condition against the trigger from the other detector, keeping the latter

�xed in time. The discrete time step can be set to the inverse of the sampling frequency of

the time series. The fact that the overlap-test is computationally cheap allows for such a

brute-force implementation strategy to be viable.

These 2-IFO coincident triggers can now be used as building blocks to construct

more complex coincidence triggers that have consistent parameters over three or more

interferometers (3-IFO, ..., n-IFO coincidence triggers). For example, the set of triggers

(Ti, Tj, Tk) can be classi�ed as 3-IFO coincident if (Ti, Tj), (Tj, Tk) and (Ti, Tk) 2-IFO

coincident pairs exist. Here again, the subscripts i 6= j 6= k are labels on interferometers.

This idea can be generalised to determine the list of n-IFO coincident triggers given the list

of (n − 1)-IFO coincidences. It is useful to note that Eq. 3.5 is the only test we need in

order to build the entire hierarchy of coincidence triggers.

We conclude this Section by drawing attention to two practical issues in implementing

this geometrical coincidence test. The �rst has to do with the algorithm one uses to draw

up two-way coincidences. Given the set of triggers from two detectors, one can (a) work

with time-ordered triggers and (b) �nd the maximum length of the bounding box of the

ellipsoid along the time dimension over all the triggers such that for any trigger from one

detector, the test for overlap is carried out only if a trigger from the other detector occurs at

a time that is within twice this interval. This approach greatly reduces the overall number

of overlap tests required to �nd two-way coincidences. The expression for the length of the

sides of the bounding box can be algebraically determined given the shape matrix of the

triggers and is explicitly given for 2- and 3-dimensions in the next Section.

The second point is on the numerical implementation of the test of the overlap of ellipsoids

where we maximize the contact function over a single parameter λ. Evaluation of the contact

function involves matrix inversion which can be quite expensive computationally. Under

these circumstances, prior knowledge of the inverse of trigger shape matrices can prove to

7 Note that, in the case of an externally triggered search, where the position of the source is known, we can

use a �xed time delay for non-colocated detectors.
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be more e�cient than on-the-�y computation. Brent's minimization method [40, 41] is

particularly suitable for fast convergence to the maxima given the well behaved nature of

the contact function and is available as part of the GNU Scienti�c Library [42].

IV. EXPECTED REDUCTION IN FALSE ALARM RATE

Next, let us consider the reduction in the false alarm rate as a result of using ellipsoidal

windows as opposed to rectangular windows8. In order to achieve false dismissal probability

less than or equal to 1 − P, a rectangular window has to be at least as large as the box

that encloses the ellipsoid. Now the volume of an n-dimensional ellipsoid (n ≥ 2) whose

semi-axes are ak, k = 1, . . . , n, is given by a recursive formula:

Vn =
2πVn−2

n

n∏
k=1

ak, where V0 = 1, V1 = 2. (4.1)

On the other hand, the smallest volume an n-dimensional box that encloses the ellipsoid

would be

Un =
n∏
k=1

(2ak) = 2n
n∏
k=1

ak, (4.2)

where a factor of 2 arises since ak are semi-major axes and the side-lengths of the enclosing

box will be twice that value. Thus, the rectangular box's volume is larger than that of the

ellipsoid by the factor

r ≡ Un
Vn

=
n 2n−1

πVn−2

. (4.3)

Thus, in 2-, 3- and 4-dimensions the saving is 4/π, 6/π and 32/π2, respectively. However,

the real factor could be far greater as the error ellipsoids are generally not oriented along

the coordinate axes.

When the ellipsoid is not aligned with the coordinate axes, which will be the case when

there are correlations between the di�erent parameters, the side-lengths of the bounding box

are given by maximizing each coordinate axis over the entire ellipsoidal surface as follows.

Starting from Eq. (2.17) one can express the �rst of the coordinates p ≡ p1 in terms of the

other coordinates:

g11p
2 + 2g1ip p

i + gijp
ipj −

(
r

ρ

)2

= 0, i, j = 2, . . . n, (4.4)

8 This discussion again assumes that false alarms are due to accidental coincidences between otherwise

uncorrelated triggers.
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which can be solved to obtain

p± =
1

g11

[
−g1i p

i ±
√

(g1i g1j − g11 gij) pipj + (g11 r2/ρ2)

]
. (4.5)

For our purposes we only need the `plus' solution. One can then set-up n − 1 equations in

as many variables by demanding that ∂p+/∂p
k = 0, which gives[

(g1ig1k − g11gik)(g1jg1k − g11gjk)

g2
1k

− (g1ig1j − g11gij)

]
pipj = g11

r2

ρ2
. (4.6)

These are again quadratic equations that must be solved (simultaneously) for the coordinates

pj, j = 2 . . . , n. The resulting (positive) roots, denoted pj1 can be substituted in Eq. (4.4)

to obtain the half-side-length of the ellipse. We shall next give explicit expressions for the

side-lengths of the enclosing box in two and three dimensions. In higher dimensions the

expressions are rather cumbersome but the general procedure outlined above can be used to

compute the volume of the bounding box in all cases.

The side-lengths of the bounding box are given in two dimensions by

x = 2

√
g22

|g|
, y = 2

√
g11

|g|
, (4.7)

and in three dimensions by:

x = 2

√
(g2

23 − g22g33) g22

(g12g23 − g22g13)2 − (g2
23 − g22g33) (g2

12 − g11g22)
,

y = 2

√
(g2

13 − g11g33) g11

(g12g13 − g11g23)2 − (g2
13 − g11g33) (g2

12 − g11g22)
,

z = 2

√
(g2

12 − g11g22) g11

(g12g13 − g11g23)2 − (g2
12 − g11g22) (g2

13 − g11g33)
. (4.8)

V. APPLICATION TO COALESCING BINARIES

Inspiralling compact binaries are one of the most promising candidates for detection by

the laser interferometric detectors. It will, therefore, be interesting to investigate the gains

of using the new coincidence method in such searches. For the purpose of our discussion, it

will su�ce to use a simple model of the signal. We shall use the Fourier representation of the

waveform from a binary consisting of non-spinning compact objects on a quasi-circular orbit

in which post-Newtonian (PN) corrections to the amplitude are neglected, but corrections to
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the phase are included to the desired order. This waveform is calculated using the stationary

phase approximation, and is of the form:

h̃(f) =
AM5/6

Dπ2/3

√
5η

24
f−7/6 exp

[
iΨ(f ; tC , φC , k) + i

π

4

]
, (5.1)

Ψ(f) = 2πftC + φC +
∑
k

λkf
(k−5)/3 (5.2)

Where D is the distance to the source, and A is a constant which depends on the relative

orientations of the detector and the binary orbit, and tC and φC are as de�ned in Section IIA.

Waveforms of this type at 2PN order [43, 44] have been used in previous searches for binary

neutron star inspirals [12], and are currently being used in searches for compact binary

inspirals with a total mass of < 35M� [38]. Moreover, the metric computed for such a

waveform has been shown to be approximately valid for a range of physical approximants [45,

46]. At the 2PN order, the coe�cients λk are given by the following expressions:

λ0 =
3

128η(πM)5/3
, λ1 = 0, λ2 =

5

96πηM

(
743

336
+

11

4
η

)
,

λ3 =
−3π1/3

8ηM2/3
, λ4 =

15

64η(πM1/3

(
3058673

1016064
+

5429

1008
η +

617

144
η2

)
, (5.3)

whereM is the total mass of the system, and η is the symmetric mass ratio, which is de�ned

as η ≡ m1m2/M
2.

The metric required for determining coincidence in the case of non-spinning binaries is

that in the 3-dimensional space of (tC , τ0, τ3), where τ0 and τ3 are the chirp times, which are

a convenient way of parameterizing the masses of the binary system. They are given by

τ0 =
5

256πfLη
(πMfL)−5/3, τ3 =

1

8fLη
(πMfL)−2/3, (5.4)

where fL is the frequency below which no appreciable signal can be detected due to rising

detector noise at low frequencies.

In obtaining the metric, it proves to be more convenient to use parameters (tC , θ1, θ2),

where θ1 ≡ 2πfLτ0, and θ2 ≡ 2πfLτ3. This metric was obtained by Owen in [32]. Here,

Eq. (2.6) was used, and the phase φC maximized over to give the expression for the metric:

gαβ =
1

2
(J [ψαψβ]− J [ψα]J [ψβ]) , (5.5)

where ψα is the derivative of the Fourier phase of the inspiral waveform with respect to

parameter θα. J is the moment functional of the noise PSD, which is de�ned for any
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function a(x) as:

J (a) ≡ 1

I(7)

∫ xU

xL

a(x)x−7/3

Sh(x)
dx. (5.6)

I(q) is the qth moment of the noise PSD, which is de�ned by:

I(q) ≡ Sh(f0)

∫ xU

xL

x−q/3

Sh(x)
dx, (5.7)

where x ≡ f/f0, f0 being a �ducial frequency used to set the range of the numerical values

of the functions contained in the integrals. The value of xL is chosen so that the contribution

to the integral for values below xL would be negligible. xU ≡ fU/f0, where fU is the ending

frequency of the inspiral waveform in question. In deriving the explicit expression for the

metric, the starting point is the Fourier phase of the waveform in the form [45]:

Ψ(f ; tC , θ1, θ2) = 2πftC + a01θ1x
−5/3 +

[
a21 (θ1/θ2) + a22

(
θ1θ

2
2

)1/3
]
x−1 + a31θ2x

−2/3

+
[
a41

(
θ1/θ

2
2

)
+ a42 (θ1/θ2)1/3 + a43

(
θ4

2/θ1

)1/3
]
x−1/3, (5.8)

where the coe�cients akm are given by

a01 =
3

5
, a21 =

11π

12
, a22 =

743

2016

(
25

2π2

)1/3

, a31 =
−3

2
, a41 =

617

384
π2,

a42 =
5429

5376

(
25π

2

)1/3

a43 =
15293365

10838016

(
5

4π4

)1/3

(5.9)

Using the above in Eq. (5.5), one can �nd an explicit expression for the metric. This

expression is too unwieldy to write here, but it can be obtained by utilising the fact that,

since the Fourier phase is a polynomial function, J can be expanded in terms of normalised

moments J , where

J(p) ≡ I(p)

I(7)
. (5.10)

To assess the potential gains of using this coincidence method for inspiral analysis, it is

useful to consider the di�erence in volume between the ellipsoidal region de�ned by g, and

its bounding box aligned with the co-ordinate axes (tC , τ0, τ3). This ratio can be calculated

with the help of Eqs. (4.8). Fig. 2 shows how this ratio varies across the (τ0, τ3) space in

the case of Initial and Advanced LIGO, Virgo and Einstein Telescope (a third generation

European detector that is currently being designed). It can be seen that for most of the

parameter space, the volume of the bounding box is an order of magnitude larger than the

volume of the ellipsoid; however, in certain regions, corresponding to high masses, this ratio
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FIG. 2: The log10 of the ratio of the volume of the bounding box to the volume of the ellipsoid as a

function of location in (τ0, τ3) space. The plots shown are (clockwise from top-right) for the initial

LIGO, advanced LIGO, Virgo and Einstein Telescope. The low frequency cuto� is chosen to be 20

Hz.

can be as large as two orders of magnitude. This suggests that signi�cant reductions of

the background can be achieved by using ellipsoidal windows. Runs on example data sets

suggest that in practice, the reduction in background coincident triggers due to using such

a coincidence method will be a factor of ∼ 10.

To assess the improvement in the con�dence in any candidate detection, it is helpful to

look at how reducing the background rate by a factor of k will improve the odds O of a

detection

O(h|D) =
P (h|D)

P (0|D)
, (5.11)

where P (h|D) is the posterior probability of a signal h being present given the set of triggers

D has been obtained, and P (0|D) is the probability of there being no signal given D. We

take the accidental trigger rate to be a Poisson process, with a trigger rate prior to reduction

λ. Assuming that the detection e�ciency is not a�ected by the reduction in the trigger rate,
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we see that the odds improves by the following factor:

O(h|D)λ/k
O(h|D)λ

=
1− e−λT

1− e−λT/k
, (5.12)

where T is the duration of the run.

The factor by which the odds of a signal being present improves by reducing the false

alarm rate by a factor of k depends on how high the false alarm rate was to start with. If the

initial false alarm rate is low (λT � 1), the improvement in the odds approaches the factor

k. However, for high false alarm rates, the improvement becomes less marked, tending to a

factor of 1 as λT →∞.

VI. SUMMARY AND CONCLUSIONS

A new method of coincidence analysis is proposed in which, instead of the rectangular

windows on parameters conventionally used, ellipsoidal windows are employed based on the

metric de�ned on the signal manifold. This allows us to use windows of appropriate size

depending on the location in the parameter space, instead of using a phenomenological

`best �t' choice of windows across the entire space. The algorithm has a massive practical

advantage in that it requires the tuning of only one parameter irrespective of the number of

dimensions of the parameters. This contrasts with the conventional method that required

us to tune nearly as many parameters as the dimension of the parameter space. In addition,

the method allows us to take into account covariances between parameters, thus signi�cantly

reducing the volume enclosed within the windows. In particular, for the case of non-spinning

compact binary coalescence in Initial LIGO, it is expected that the use of such a method

will reduce the background rate of coincident triggers by roughly an order of magnitude. By

also incorporating SNR-dependence into the size of the windows, the background of high

SNR events can be reduced even further.

The algorithm has been implemented in C code in the LSC Algorithm Library (LAL)

[47]. An implementation in (tC , τ0, τ3) space, as in Section V, using SNR-independent

windows, is being employed in the search for compact binary coalescence in S5 data. This

implementation is referred to as e-thinca [38].
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