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Ground-based gravitational wave laser interferometers (LIGO, GEO-600, Virgo, and Tama-300) have

now reached high sensitivity and duty cycle. We present a Bayesian evidence-based approach to the search

for gravitational waves, in particular aimed at the follow-up of candidate events generated by the analysis

pipeline. We introduce and demonstrate an efficient method to compute the evidence and odds ratio

between different models, and illustrate this approach using the specific case of the gravitational wave

signal generated during the inspiral phase of binary systems, modeled at the leading quadrupole

Newtonian order, in synthetic noise. We show that the method is effective in detecting signals at the

detection threshold and it is robust against (some types of) instrumental artifacts. The computational

efficiency of this method makes it scalable to the analysis of all the triggers generated by the analysis

pipelines to search for coalescing binaries in surveys with ground-based interferometers, and to a whole

variety of signal waveforms, characterized by a larger number of parameters.
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I. INTRODUCTION

Ground-based gravitational wave (GW) laser interfer-
ometers—LIGO [1], Virgo [2], GEO-600 [3], and
TAMA-300 [4]—have been in operation for a few years,
alternating times of data taking for science analysis at
progressively greater sensitivity and duty cycle, with com-
missioning periods to improve the instruments’ perform-
ance. Recently LIGO has completed its fifth science run
(S5) which lasted for � 2 years, recording one integrated
year of data in triple coincidence between the two 4-km
arm interferometers and the 2-km arm interferometer at
design sensitivity [5]. In addition, GEO-600 and Virgo
were online for extended periods of S5. LIGO and Virgo
are now being upgraded to the so-called enhanced configu-
ration [6], leading to a new science run (S6) in 2009 at a
strain sensitivity a factor � 2 better than the present one.
The much more intrusive upgrade to advanced LIGO/Virgo
[7,8] is expected to lead to commissioning of the interfer-
ometers in 2014, and will increase the strain sensitivity by
a factor� 10 across the whole frequency band and shift the
low-frequency cutoff to about 10 Hz.

The search for GWs has therefore reached a stage in
which the first direct detection is plausible and there are
expectations that by the time the instruments operate in
advanced configuration it will be possible to routinely
observe a wide variety of sources in this new observational
window and study them in detail, see [9] and references
therein.

One of the most promising classes of sources are binary
systems of compact objects, which are reviewed in [9]. GW
laser interferometers are omnidirectional detectors that
continuously monitor the whole sky looking for rare and/
or weak signals. The general approach to the analysis of the
data is to employ efficient algorithms able to keep up with

the data flow and to identify events above a given signal-to-
noise ratio threshold. The candidate events (or ‘‘triggers’’)
are then followed up with a range of techniques to decide
whether or not a GW signal is present.
Most of the effort on the data analysis side has so far

been devoted to the development and implementation of
techniques for the mass analysis of the data. These algo-
rithms have been reaching maturity and are being applied
to an increasingly large volume of data [10–14]; however,
comparatively less experience has been gained on follow-
up methods, see e.g. Sec. VIII of Ref. [10] (and references
therein) and Ref. [15]. So far the approach to candidate
follow-ups is based [10,15–18] on (i) addressing the proba-
bility of false alarm of an event against the background,
usually quantified by repeating the analysis on data from
multiple interferometers shifted in time by an unphysical
amount (so-called ‘‘time slides’’), (ii) looking for possible
correlations between monitoring channels and the GW
channel that could reveal an anomalous behavior of the
instrument (or subsystem) or anthropogenic causes around
the time of the candidate, and (iii) checking that the signal
at different interferometers shows consistent behavior. In
this paper we propose a conceptually and practically very
different approach to the follow-up of candidates: Bayesian
model selection (or hypothesis testing) that is based on the
evaluation of the marginal likelihood or evidence of a
specific model and on the odds ratios between competing
hypotheses. Note that in principle the method discussed
here could also be used to search for signals in the whole
data set; however, the computational costs involved in
adopting such an approach and the performance of the
existing analysis algorithms do not strongly support an
effort in this direction at present.
The key issue that we address in this paper is, given a

data set and a set of prior information, how we calculate the
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probability of a GW signal being present. In the formalism
of Bayesian inference this is translated into considering
two models—Model 1: ‘‘there is a GW signal and noise,’’
and Model 2: ‘‘only noise is present’’—and computing the
probability of each of them. Bayesian inference provides a
conceptually straightforward prescription to evaluate the
probabilities, or the odds ratio of the two models. In the
context of GWobservations, Bayesian inference is starting
to be considered [19–23] as a powerful approach for
ground-based observations. The heavy computational
load involved in this method when using exhaustive inte-
gration has however limited its use on real data. Recently,
applications of reversible jumps Markov chain Monte
Carlo methods (MCMC) [24] have been considered to
tackle this issue in the context of searches for binary
inspirals [22]: in this approach Markov chains are free to
move between models, and therefore one can estimate the
Bayes factor from the relative time spent by the chains in
each one. This technique is promising, still the computa-
tional burden is quite significant. In this paper we consider
a different and efficient numerical implementation of the
direct calculation of odds ratios that makes this approach
realistically applicable to extensive follow-up studies of
triggers and that we show is robust against a selection of
noise artifacts.

The paper is organized in the following way: in Sec. II
we introduce the key concepts about model selection and
hypothesis testing in the Bayesian framework; we also
introduce the simple case—possible observations of inspir-
alling binary systems in a single interferometer—that we
will consider in the paper; Sec. III contains the key results
of this paper, where we show the power and robustness of
Bayesian hypothesis testing for follow-up studies; Sec. IV
contains our conclusions and pointers to future work.

II. MODEL SELECTION

A. Overview

Let us consider a set of hypotheses (or models) fHg and
denote with I all relevant prior information we hold. The
predictions made by a model depend on a set of 0 or more
parameters, and the possible combinations of parameters
define the parameter space of that model. A parameter

vector ~� represents a point in parameter space, and
although each model has its own set of parameters, for

ease of notation we shall use ~� for them all, and we
represent the data under consideration by d.

A straightforward application of Bayes theorem yields
the probability of a given model:

PðHjjd; IÞ ¼
PðHjjIÞPðdjHj; IÞ

PðdjIÞ : (1)

If the models under consideration are exhaustive and mu-
tually exclusive, then the probabilities above are clearly
normalized and satisfy

PN
j¼1 PðHjjd; IÞ ¼ 1. In Eq. (1),

PðHjjd; IÞ is the posterior probability of model Hj given

the data, PðHjjIÞ is the prior probability of hypothesis Hj,

and PðdjHj; IÞ is the marginal likelihood or evidence for

Hj that can be written as

PðdjHj; IÞ ¼ LðHjÞ ¼
Z
d ~�pð ~�jHj; IÞpðdj ~�; Hj; IÞ; (2)

where pð ~�jHj; IÞ is the prior probability density distribu-

tion for the parameter vector ~� and is normalized to 1.

pðdj ~�;Hj; IÞ is called the likelihood, and is an unnormal-

ized measure of the fit of the data to the model.
If we had an exhaustive set of models, we could simply

calculate the probability of each model and compare them
to find the most likely. Unfortunately, we do not have a
complete set of models of the data from a GW detector, but
we still want to compare the models we do have. This is a
normal procedure in Bayesian inference, which gives what
is termed the odds ratio between hypotheses, which is a
quantification of their relative probability.
For example, the odds of model Hj against model Hk is

O jk ¼
PðHjjd; IÞ
PðHkjd; IÞ ¼

PðHjjIÞ
PðHkjIÞ

PðdjHj; IÞ
PðdjHk; IÞ ¼

PðHjjIÞ
PðHkjIÞBjk

(3)

where PðHjjIÞ=PðHkjIÞ encodes the ratio of the prior

state of belief of the two models and Bjk �
PðdjHj; IÞ=PðdjHk; IÞ is known as the Bayes factor; the

marginal likelihoods PðdjHj;k; IÞ are given by Eq. (2). The

practical advantage of considering the odds ratio (3) is the
fact that one does not need to evaluate PðdjIÞ. Of course, if
one wanted to evaluate the odds of model Hj with respect

to all the other independent alternatives, the appropriate
quantity is

O j;other ¼
PðHjjd; IÞP

k�j

PðHkjd; IÞ ¼
1P

j�k

Okj

: (4)

An interesting consequence of using Bayesian model se-
lection is that it automatically includes a quantitative ver-
sion of ‘‘Occam’s Razor,’’ the principle that the simpler
model should be preferred. Because the evidence is found
by integrating over the entire prior domain of a model, and
this prior is normalized to unity, the larger the volume of
parameter space which the model spreads its prior over the
lower the resulting evidence will be, all else being equal. If
two models can assign the same maximum likelihood to
some data by fitting it equally well, the one which makes
the more precise prediction of the parameters which pro-
duce the maximum likelihood will benefit more than the
one which makes the broader prediction [25,26].
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B. A concrete example

The specific problem that we are addressing here is how
to answer the question: what are the odds that there is a
signal present in the given observations? We actually need
to be more specific and spell out the whole set of back-
ground information I for the problem at hand. Here we
concentrate on searches for inspiralling compact objects,
though the method outlined here has the potential of much
wider applications. The background information I is there-
fore as follows: (i) the data set d consists of the superpo-
sition of noise n and (possibly) an inspiral GW signal h;
(ii) if present, only one GW signal is present at any one
time; (iii) the waveform model is exactly known, though
the actual parameters characterizing the source are un-
known, within some prior range; (iv) gravitational radia-
tion and noise are statistically independent; (v) the noise is
a Gaussian and stationary random process with zero mean
and variance (at any frequency) described by a known
spectral density; (vi) observations are carried out with a
single instrument.

We are therefore considering a situation in which (sche-
matically) there are only two models:

(i) The first hypothesis—that we will label as HS, for
noise and GW signal—corresponds to ‘‘there is a
signal and noise present;’’ the data set in the time
domain is therefore described by

dðtÞ ¼ nðtÞ þ hðtÞ: (5)

(ii) The second hypothesis—that we will indicate as
HN, for noise only—corresponds to ‘‘there is only
noise present,’’ and the data set is therefore

dðtÞ ¼ nðtÞ: (6)

The goal of the analysis is therefore to compute the odds
ratio, Eq. (3), between HS and HN that we will indicated
with OSN.

In this paper, for simplicity we consider the observations
of gravitational radiation produced during the inspiral
phase of a binary system of nonspinning compact objects.
The two objects have individual massm1;2, and the binary’s

chirp and total mass are therefore M ¼ ðm1m2Þ3=5ðm1 þ
m2Þ�1=5 and m ¼ m1 þm2, respectively. We have also
assumed m1 ¼ m2. We model radiation at the leading
Newtonian quadrupole order. As the analysis is more con-
veniently carried out in the frequency domain, the model
that we adopt is the stationary phase approximation to the
radiation in the Fourier domain, see e.g. [27]. Describing
with ~gðfÞ the Fourier transform at frequency f of the time-
domain function gðtÞ, we can express the GW signal as

~hðf; ~�Þ ¼
�
AM5=6f�7=6ei ðf; ~�Þ ðf � fLSOÞ
0 ðf > fLSOÞ

; (7)

where

 ðf; ~�Þ ¼ 2�ftc ��c � �

4
þ 3

4
ð8�MfÞ�5=3 (8)

is the signal phase in the frequency domain and fLSO is the
frequency of the last stable orbit; in this paper we set fLSO
equal to the last stable circular orbit for the Schwarzschild
space-time and equal mass nonspinning objects, so that

fLSO ¼ ð63=221=5�MÞ�1: (9)

In Eqs. (7) and (8), ~� is the 4-dimensional parameter vector
describing the GW signal; as parameters we choose

~� ¼ fA;M; tc; �cg; (10)

where A is an overall amplitude that depends on the source
position in the sky and the inclination and polarization
angle of the source, and tc and �c are the time and phase
at coalescence. Note that we are using geometrical units in
which c ¼ G ¼ 1 and therefore M� ¼ 4:926� 10�6 s.
We model the noise as a Gaussian and stationary random

process with zero mean, and variance at frequency fk given

by �2
k ¼ ðfkf0Þ�4 þ 1þ ðfkf0Þ2, which roughly represents the

shape of a first generation interferometer noise curve up to
a multiplicative constant of the order of 10�44, which is
irrelevant as it cancels in the likelihood function; f0 ¼
150 Hz is chosen to pick the frequency of maximum
sensitivity.
In a real application, the variance of each point can be

estimated from the one-sided power spectral density, cal-
culated with Welch’s method (for example) from the data
around the segment of interest [28]. Notice that in the next
section we will consider deviations of the actual noise
affecting the measurements (but the noise model used to
construct the likelihood will remain unchanged) from the
Gaussian and stationary noise shown above. We will dis-
cuss this in more detail in Sec. III.

C. Evaluation of the odds ratio

We can now spell out the odds ratio that needs to be
calculated; from Eq. (3), this is given by

OSN ¼ PðHSjIÞ
PðHNjIÞ

PðdjHS; IÞ
PðdjHN; IÞ : (11)

For the noise model in this case, there are no free parame-
ters since the noise profile is known, and the evidence is
given for Gaussian noise by

PðdjHN; IÞ ¼
YN
k¼1

ð2��2
kÞ�1 exp

�
�j~dkj2

2�2
k

�
; (12)

where the index k is a short-hand representation for those
quantities dependent on frequency fk, and N is the total
number of data points. Each point k has a real and imagi-
nary observation, the variance of each part will be equal in
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any realistic data, �2
k ¼ �2

kR ¼ �2
kI , although in principle

they could differ. Evaluating the evidence for this case
requires no integration.

For the signal model however, the evaluation requires
integration over the prior domain (denoted �) of all pa-

rameters, codified in a vector ~� and is given by

PðdjHS; IÞ ¼
Z
�
d ~�pð ~�jHS; IÞ

YN
k¼1

ð2��2
kÞ�1

� exp

�
� j~hkð ~�Þ � ~dkj2

2�2
k

�
: (13)

The prior probability density function pð ~�jHS; IÞ is for
this proof of concept case uniform on all four parameters,
within the domain defined below. It should be noted that
the prior must be normalized to one when computing the
Bayes factor, and that increasing the range of the prior will
decrease the Bayes factor, as the model becomes less
predictive and is penalized in automatic accordance with
Occam’s razor.

In the case of the Newtonian inspiral model, the com-
putation of the marginal likelihood (13) requires the evalu-
ation of a 4-dimensional integral which could be calculated
using a grid-based approach. However, we are interested in
developing a general and flexible approach, and for inspiral
binaries we will need to expand the evidence calculation to
include more realistic waveforms for the analysis of real
data with post-Newtonian effects and spins, which have
many more parameters: the integral in Eq. (13) rapidly
becomes unfeasible to integrate exhaustively. To avoid this
problem, we have used a probabilistic algorithm called
nested sampling [29–31], which has been used before in
the context of Bayesian hypothesis testing in cosmology
[32], but not considered so far in gravitational wave data
analysis. The application of this technique has required
significant development and tuning of the algorithm; the
details of this work are beyond the scope of this paper and
will be documented in a separate publication [33]. Here we
shall focus on the advantages of using the evidence in the
context of inspiral analyses, which in the next section will
be presented with discussion of results from some fiducial
data analysis problems.

III. RESULTS

In this section, we will document the results of four
particular problems of interest on which the algorithm
has been tested: (i) A test on pure Gaussian noise, (ii) the
same noise with added signals of different strengths intro-
duced in order to explore the sensitivity of the algorithm to
different signal-to-noise ratios. In addition to these cases of
obvious relevance, we have also considered the situation
where some noise artifacts—not included into the model
for the computation of the marginal likelihood and the

Bayes factor—were added to the data (that is to the simple
Gaussian and stationary noise contribution). In particular,
(iii) a decaying sinusoid waveform which might approxi-
mate an instrumental ringdown, and (iv) a Poissonian noise
component. The two latter cases, in particular, are intended
to look at the situation where the models to be tested do not
fit the data well at all, in other words they are not exhaus-
tive. This is of interest because in reality there will be more
types of interference with the data than we could possibly
hope to model, so robustness against such artifacts is an
essential characteristic of a search algorithm. This is di-
rectly related to the false-alarm rate of existing searches.
In this paper, we have used synthetic data sets in the

frequency band 40–500 Hz, and used 30 s of data. The
priors defining the range of the model were such that A 2
½0; 2� 106�,M 2 ½7:7; 8:3�M�, tc 2 ½19:9; 20:1� s,�c 2
½0; 2�Þ. The large amplitude reflects the conversion of
mass into seconds in Eq. (7). The injected value M ¼
8:0M� was chosen purely to speed up the analysis, as its
highest frequency fLSOðM ¼ 8:0M�Þ ¼ 478:45 Hz al-
lowed frequency components above this value to be elim-
inated from the innermost loop of the calculation. These
prior ranges were chosen to approximate the size of the
parameter space that would have to be searched in a real
application, which we suggest would be run on candidates
triggered by a higher stage in a pipeline, providing some
information about the possible characteristics of the signal,
namely M and tc. On these data sets and with such prior
ranges, the calculation of the evidence took between sev-
eral minutes and several hours on a single 2 GHz CPU; the
efficiency of the algorithm varies however with the specific
tuning in a complicated fashion which will be described in
a future paper [33]. The speed of the computation makes
this approach amenable to extension to waveforms charac-
terized by a much larger number of parameters, and to full
lists of triggers generated by an inspiral search pipelines,
see e.g. Refs. [10–13].

A. Sources of uncertainties

Before presenting the results of the example trials, we
shall emphasize that there are two contributions to the
distribution of results which are obtained when using this
method on any data set. These are the inherent uncertain-
ties from the probabilistic nature of the algorithm itself,
and the variations in results due to different noise realiza-
tions, produced by the random nature of the noise.
The contribution from the noise is an inherent part of any

search and the results will naturally vary from data set to
data set depending on the particular observations made.
This cannot be averted, nor should it be. The uncertainty
inherent in the algorithm itself however, is a true ‘‘error’’ in
the result, since there is some particular number which
represents the odds ratio, and any deviation from this is
undesired. Fortunately, by increasing the running time of
the algorithm, these errors can be minimized to a level
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similar to, or below the variation due to different noise
realizations. The inherent uncertainty can in principle be
made arbitrarily small, but in the interest of keeping a low
run-time, in this paper we have chosen a level roughly
similar to the changes caused by the random fluctuations of
the noise; this is appropriate for the issues discussed here,
and none of our conclusions are affected by the approxi-
mation in the evaluation of the integral in Eq. (13).

We have run two simple test cases to illustrate the differ-
ent sources of uncertainties that affect the results; in both
cases we have run the algorithm a number of times on
signal-free data sets; in the first instance, data sets were
generated to contain different realizations of Gaussian and
stationary noise; in the second, the evidence evaluation was
performed multiple times on the same noise realization;
Figs. 1 and 2 summarize the results. Figure 1 shows the
distribution of log10 Bayes factors recovered from the
analysis of 100 different noise realizations, and represents
the background level of changes in the odds which is
caused by random fluctuations in the noise. Figure 2 shows
the inherent uncertainty caused by the algorithm when
repeatedly running on a single noise realization of the
same characteristics. The distribution is shown for 200
runs, and the accuracy level has been chosen such that
the errors from this effect are not greater than those in
Fig. 1.

B. Stationary Gaussian noise with no signal

The most basic test of whether the evidence-based ap-
proach can be helpful in a follow-up analysis is to find how
it responds in the absence of a signal. At the present time,
this is still the routine situation in gravitational wave data
analysis. The results shown in Fig. 2 are the values of the
Bayes factor, cf. Equations (3) and (11), between the signal
hypothesis and the noise hypothesis, as calculated by per-
forming 200 runs on identical noise realizations.
The recovered Bayes factors for the hypotheses favor, as

expected, the noise-only hypothesis, but are (relatively)
close to unity. This number is then multiplied by a prior
odds ratio, see Eq. (11), to get a total posterior odds ratio. A
reasonable prior would give much larger credence to the
hypothesis that no signal is present (i.e. have a value� 1),
in order to reflect the fact that at present sensitivity, we
expect inspiral binaries to be rare events. The magnitude of
this prior ratio is a factor which quantifies the skepticism of
the analysis toward the signal hypothesis, in effect creating
a threshold Bayes factor above which the observed signal
dominates the prior disbelief. This number can also be
chosen from a procedural point of view, so as to obtain a
desired ‘‘false-alarm rate,’’ by performing simulations
where known GW signals are added to the data either in
hardware or in software.
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FIG. 1. The distribution of log10 Bayes factors recovered from
running the algorithm on 100 different Gaussian and stationary
noise realizations, each of length 13 800 complex samples as
described in the text. The distribution in values arises from
random fluctuations of the noise, which is contrasted with
Fig. 2, where the inherent uncertainty in the algorithm is shown.
In both cases, the variation in Bayes factors found in data sets
with no signal is extremely small compared to the change in
Bayes factor that the presence of a signal produces, which is
shown in Fig. 3 for a range of signal-to-noise ratios.
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FIG. 2. The distribution of log10 Bayes factors recovered from
running the algorithm 200 times on the same data set which
contained no signal. The noise is modeled as a Gaussian and
stationary random process. The distribution of results is caused
by the probabilistic nature of the algorithm, and the range of this
distribution can be reduced to have an arbitrarily small range at
the expense of increased computation time. In this example and
throughout the rest of the paper, the distribution width is chosen
to be the same order as the uncertainty caused by different noise
realizations, shown in Fig. 1.

BAYESIAN APPROACH TO THE FOLLOW-UP OF . . . PHYSICAL REVIEW D 78, 022001 (2008)

022001-5

LIGO-P080005-P



In the next section we test the response of the algorithm
to a GW inspiral signal added to noise, using signal-to-
noise ratios ranging from 1 to 7. From this we shall see that
the evidence is an extremely sensitive indicator of the
presence of a signal, indeed it is provably the optimal
inference for model comparison [25].

C. Signal injected into stationary Gaussian noise

In this section we discuss the results obtained by adding
GW inspiral signals, with signal-to-noise ratio (SNR) vary-
ing between 1 and 7, to stationary and Gaussian noise, of
the same statistical properties as in Sec. III B. The three
nonamplitude parameters were kept the same for all of the
injections, and had the values M ¼ 8:0M�, tc ¼ 20:0 s,
�c ¼ 0:0. The algorithm was run on each of these data sets
20 times, and the results are summarized in Fig. 3. The
optimal signal-to-noise ratio [27] is given by

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

j~hkj2
�2
k

vuut : (14)

It is very clear from Fig. 3 that the Bayes factor BSN

rapidly increases with SNR, hence the logarithmic scale on
the vertical axis. This shows that the odds ratio between the
two candidate models in this case climbs very rapidly to
favor the signal model HS once sufficient evidence is
present.

We can now see the effect that the prior odds ratio has on
the posterior odds ratio: it acts as a threshold value, above
which the overall odds are in favor of the signal model. The
value of the prior odds effectively sets a limit on SNR
above which the odds favor the signal model, but once this
threshold has been reached, the increasing Bayes factor
will rapidly climb by many orders of magnitude.
In the cases discussed above, the SNR is chosen by

changing the overall amplitude of the injection, while
holding the injected chirp mass constant between each
case. It should be noted that there is an additional change
in the odds ratio which comes about when the injected
mass changes. This is due to the fact that the noise evidence
PðdjHN; IÞ is dependent on the specific shape of the wave-
form that is present in the data and its inner product with
the individual noise realization. Writing the evidence for
the noise model when the data is composed of noise and

signal, ~dk ¼ ~nk þ ~hk, shows the origin of the effect

PðdjHN; IÞ /
Y
k

exp

�
� 1

2

�j~nkj2
�2
k

þ j~hkj2
�2
k

þ ~n	k ~hk þ ~nk ~h
	
k

�2
k

��
: (15)

The first term in brackets is a measure of the fit of the noise
to the estimated background noise spectrum f�kg indepen-
dent of the signal. The second term is the signal-to-noise
ratio squared, which is independent of the noise realiza-
tion. The third term is the important one in this effect: it
measures the contrast between the signal waveform and the
noise realization. It is possible to have a constant SNR
while the Bayes factor changes if this term varies, although

because the noise and signal are uncorrelated (h~n	k ~hki ¼
h~nk ~h	ki ¼ 0), it should be small in comparison to the other
terms in this equation. This term can change through either
differing noise realizations, or a change in the waveform’s
shape, the phase, or the overall amplitude of the signal.
Since we have used the same value of M in these simula-
tions, this effect should be further reduced.
The choice of the prior odds is an interesting question

which we do not attempt to answer conclusively here, but
at least two possibilities seem reasonable. Since the prior
hypothesis probability PðHSjIÞ on the signal model reflects
our knowledge before we examine the data set, we could
consider our knowledge of the rate of inspiral events which
would be visible to the interferometer in question (see e.g.
[34] and references therein), and the length of the prior
window on tc. Multiplying these would give us an estimate
of the number of inspirals we would expect to see in that
time period and mass range, which could be used as the
prior odds on seeing an inspiral event in that time.
Alternatively, one could perform a large number of trials

on different data realizations and find the distribution of
Bayes factors for ‘‘false-alarm’’ signals with their fre-
quency. A desired false-alarm rate could then be set by
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FIG. 3 (color online). The mean recovered log10 Bayes factors
from adding an inspiral signal of increasing signal-to-noise ratio,
shown on the x-axis, to Gaussian and stationary noise. The
algorithm was run on each data set (identical noise realization)
20 times: each point on the plot corresponds to the mean of the
Bayes factor. Note that the Bayes factor grows exponentially
with increasing SNR, such that it is an extremely sensitive
indication of the presence of a signal. The signal and data
parameters were chosen as described in the text.
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choosing the prior odds ratio to be the inverse of the Bayes
factor for that false-alarm rate, see e.g. [35]. In real data
where it is not known a priori if a signal is present, were
the search algorithm extended to coherent multiple inter-
ferometer models, this could easily be accomplished by
offsetting the data from two or more interferometers, so
that any real signal would not appear with phase coher-
ence. This is similar to the approach taken in the existing
inspiral analysis pipeline to perform background rate esti-
mation, see e.g. Refs. [10–14]. This choice also has appeal
as it would automatically include the effect of noise arti-
facts present in real data which might cause the odds ratio
to increase even in the case where there is no astrophysical
signal, partially matching the inspiral model.

A more Bayesian treatment of spurious artifacts might
attempt to model them too, and then compare their model
evidences to those for the GW signal and noise models to
test each hypothesis against the others. However, it is
unlikely to be possible to model every single noise artifact
that appears in a real interferometer, so it is desirable that
the basic algorithm functions well even in the presence of
such disturbances. In the following sections we report
results of tests of the performance of the algorithm in the
presence of some typical (though simulated here) devia-
tions of the noise from the simple Gaussian and stationary
behavior. As we will see, the algorithm is less sensitive to
these noise artifacts than the true signal, though the Bayes
factor decreases as it should. This result indeed supports
the usefulness of evidence-based algorithms as part of the
tools for follow-up analyses in searches for GWs in the
data of current interferometers.

D. Stationary Gaussian noise with ringdown injected

One type of artifact which is often encountered in real
data is the instrumental ringdown, where some component
of the detector is excited and produces damped oscillations
in the gravitational wave channel, gradually decaying. We
have modeled the resulting signal for the purposes of add-
ing it to the synthetic data set as a generic decaying
sinusoid waveform in the frequency domain,

~Rðf;AR; fR; t0; �Þ ¼ ARe
�2�iðfR�fÞt0

��1 þ 2�iðf� fRÞ
: (16)

The parameters of this signal are amplitude AR, frequency
fR, starting time t0, and decay time � after which the
envelope amplitude falls to e�1 of its original value.
Using this waveform is equivalent to setting the initial
phase of the wave to be 0, but this does not affect the
generality of the results. In the simulations presented here,
a central frequency fR ¼ 150 Hz was chosen, so that the
peak of the ringdown would lie in the sensitive region of
the frequency domain range. Ringdowns with � ¼ 1 s and
10 s were both added to the data set, and the algorithm was
run as before to search for the presence of a Newtonian
inspiral. We stress again that the instrumental ringdown

was not part of the models considered for the computation
of the Bayes factor.
The results of this test are reported in Fig. 4; the signal-

to-noise ratio of the instrumental ringdown shown on the
x-axis is calculated in the same way as for the GW inspiral

signal, using Eq. (16), but replacing ~h with ~R. The figure
shows the response of the Bayes factor BSN of the inspiral
model vs noise model (for both of which the noise compo-
nent is modeled as exactly Gaussian and stationary) to a
data set containing Gaussian noise and an instrumental
ringdown signal, which is much more subdued than that
to an injected inspiral signal. The vertical axis of the plot of
Fig. 4 is therefore the same quantity represented on the
corresponding axis of Fig. 3. A ringdown SNR of 1000 is
necessary to produce a Bayes factor comparable to that for
an inspiral SNR of 4.5 (cf. Fig. 3), when a ringdown with
decay constant � ¼ 10 s is used (for � ¼ 1 s the effect is
even smaller, and hardly noticeable on the scale of the
plot).

E. Stationary and Gaussian noise with additional
Poissonian component

We now explore a different case in which the model’s
assumption that the noise follows a Gaussian probability
distribution is not fully accurate, by injecting an additional
Poissonian noise component into the simulated data. To
accomplish this, a time-series stretch of noise with ampli-
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FIG. 4 (color online). The Bayes factors BSN for inspiral
model vs noise model in the presence of an injected ringdown
to simulate such events in instrumental noise. Shown here are the
results from two ringdowns, with decay times � ¼ 1 s (dashed
line) and 10 s (solid line), and varying signal-to-noise ratios
plotted on the x axis. From these results it is clear that the
algorithm is robust against interference from this source, as only
the � ¼ 10 s caused an increase in the Bayes factor, and then
only at very high SNR.
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tude drawn from a Poisson distribution in the time domain,
scaled by a factor 100 to increase its amplitude, and
uniform random phase in the interval ½0; 2�Þ is generated
and Fourier transformed, before being added to the stan-
dard Gaussian stationary noise generated in the frequency
domain. The root mean square of the Gaussian and Poisson
components are 4.6 and 0.3, respectively. The spectrum of
the Poisson noise showed an approximately uniform power
across frequency in contrast with the shaped power spec-
trum of the Gaussian noise. The amplitude spectrum of the
two noise contributions is shown in Fig. 5.

The intention of this procedure is to simulate the effects
of outliers from the Gaussian noise distribution, which we
know occur in the real interferometer data, and which we
will be very unlikely to be able to model, making them in
effect random. In this test we have chosen a Poisson
distribution Pð�Þ with a mean � of one point for every
ten time stamps, i.e. � ¼ 0:1. We have explored both the
signal-free case and the situation in which a GW signal is
added to the (Gaussianþ Poissonian) noise, analogous of
the studies presented in Secs. III B and III C, respectively.

Figure 6 shows the results of analyzing simply the
combination of Gaussian and Poisson noise, without a
GW signal present. We can see that the change in Bayes
factor due to this additional noise component is minimal
(cf. Fig. 2), and does not trigger the signal model at all,
conversely it depresses the odds. The estimated probability
of a signal being present remains low.

Figure 7 shows the results of tests similar to those in
Sec. III C (GW signal and noise). In comparison to Fig. 3,
the recovered Bayes factors are reduced for the same
signal-to-noise ratio—as an example, log10BSN � 10 is
reached for SNR � 4:6 instead of � 3:6 as in the pure
Gaussian and stationary noise case—although the value of
SNR for the Poisson data set does not include the Poisson
noise component in its noise estimate, as it is supposed to
be a deviation from the noise model.

The results from this test indicate that the presence of an
unmodeled yet stochastic noise source will hinder the
detection of an inspiral signal, but that the signal model
would still be selected, although at a somewhat higher
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FIG. 5. The amplitude spectra of the Gaussian (upper black)
and Poisson (lower gray) contributions to the data used in
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FIG. 6. The results from injecting a Poissonian component
with distribution Pð0:1Þ into a segment of Gaussian noise
(and no GW signal) and running the algorithm 100 times. The
presence of Poisson noise does not increase the Bayes factor for
an inspiral signal, as the Poissonian noise does not match the
template for this waveform. The results of plot should be
compared with those obtained on pure Gaussian and stationary
noise reported in Fig. 2.
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FIG. 7 (color online). The results from adding GW signals of
varying signal-to-noise ratio onto the combined noise data from
a Poissonian and Gaussian distribution, as described in the text.
The resulting Bayes factors are lowered in comparison to Fig. 3.
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SNR. Such noise will decrease the probability of detection,
but it will also decrease the probability of a false alarm
with this algorithm as the Bayes factor is always decreased.
The exact quantitative consequences for the change of
SNR level at which the GW signal model becomes pre-
ferred over the noise-only model will depend on the actual
character of the deviation from the Gaussian and stationary
stochastic process. This can however be rigorously quanti-
fied by performing Monte Carlo simulations on real data.

Since we do not expect the algorithm to perform better
when assumptions of the models are violated, it is desirable
that it would degrade in the least harmful manner. The
results of the tests presented here are therefore reassuring:
the Bayes factor will not spuriously generate false alarms
in the presence of this type of noise, but instead will simply
not perform as well at detecting actual signals. It is worth
mentioning again that ideally one would also compute the
evidence for this noise model, and that if this was done
some of the sensitivity would be restored.

IV. CONCLUSIONS

Bayesian inference using evidence and odds ratios
evaluations provides a clear and justifiable means of de-
termining the probability of a signal being present in the
data: it is the optimal inference and, as we have shown
(although only in simple cases), is also robust against
interference from nongravitational wave signals present
in the data, and against deviations in the noise profile.
Through the method used in this paper the calculation of
odds ratios between hypotheses is made feasible within
useful time scales. The run-time of the code that we have
developed can vary depending on factors such as the
desired accuracy, whether or not a signal is present, the
actual GW waveform, and relevant number of parameters
that describe the model; however, to perform a single run
of one of the analyses typical in this paper takes (much)
less than one day on a single 2 GHz CPU. This is signifi-
cantly more efficient than other approaches considered so
far for Bayesian model selection, e.g. [22,36]. This speed

makes it possible to perform thousands of odds ratios
calculations per day on Beowulf-type clusters: this gives
the method a very good combination of sensitivity and
speed which we hope will allow the method to be used as
one of the techniques for follow-up studies in the analysis
of real data.
It is our intention now to further develop this method

towards the evaluation of odds ratios in real interferometer
data, and integrate it with the existing analyses to provide a
robust Bayesian follow-up capable of determining the odds
of a signal being present. In order to achieve this, we need
primarily to include additional models of GW signals (such
as post-Newtonian waveforms) and possibly of instrumen-
tal artifacts, which will allow the analysis to distinguish
between different types of sources and to eliminate or
detect contamination of the noise from unwanted sources.
Another important feature of the method introduced in

this paper which has not been discussed here but may be
useful in a combined Bayesian analysis is its ability to find
the maximum likelihood values of the parameters, which
would integrate well with a Markov chain Monte Carlo
approach [24] to full parameter estimation, see e.g. [37–40]
and references therein. We intend to include such an inter-
face with MCMC estimation to provide a combined
Bayesian follow-up package for inspiral analysis.
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