
IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 25 (2008) 114044 (8pp) doi:10.1088/0264-9381/25/11/114044

Using generalized PowerFlux methods to estimate the
parameters of periodic gravitational waves

Gregory Mendell1 and Karl Wette2

1 LIGO Hanford Observatory, Richland, WA, USA
2 The Australian National University, Canberra, ACT, Australia

E-mail: gmendell@ligo-wa.caltech.edu

Received 24 October 2007, in final form 28 November 2007
Published 15 May 2008
Online at stacks.iop.org/CQG/25/114044

Abstract
We investigate methods to estimate the parameters of the gravitational-wave
signal from a spinning neutron star using Fourier-transformed segments of the
strain response from an interferometric detector. Estimating the parameters
from the power, we find generalizations of the PowerFlux method. Using
simulated elliptically polarized signals injected into Gaussian noise, we apply
the generalized methods to estimate the squared amplitudes of the plus and
cross polarizations (and, in the most general case, the polarization angle), and
test the relative detection efficiencies of the various methods.

PACS numbers: 04.80.Nn, 95.75.−z, 07.05.Kf

1. Introduction: parameter estimation using power

A periodic gravitational wave incident on an interferometric detector will produce a strain
response of the form

h(t) = A+F+(ψ, t) cos �(t) + A×F×(ψ, t) sin �(t), (1)

where h(t) is the strain, A+ and A× are the amplitudes of the plus and cross polarizations of the
gravitational wave, F+ and F× are the respective sky-position-dependent response functions
(or antenna patterns) of the detector, ψ is the polarization angle, and � is the gravitational wave
phase, which contains modulations from Doppler shifts due to the relative motion between
the source and the detector and the frequency evolution of the source [1]. (The response of a
bar detector can be written in a similar form, but with antenna patterns differing from those
in [1].)

The LIGO Scientific Collaboration (LSC) has used fully-coherent and semi-coherent
methods to search for unknown sources of these waves, while also developing hierarchical
schemes that use a combination of these methods (see [2, 3] and references therein). The
starting procedure for these methods is to divide the strain data into short segments and take
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the discrete Fourier transform of each, to create short Fourier transforms (SFTs) of the data.
The time baseline used to generate the SFTs is designated TSFT. This is typically chosen to
be 30 min, so that signals with frequencies less than approximately 1000 Hz from an isolated
source will not, within this time period, shift in frequency by more than half the width of an
SFT frequency bin. (The method can also be applied to sources in binary systems, by using a
shorter time baseline dependent on the size of the expected orbital Doppler shifts.)

The PowerFlux method [4] is a semi-coherent method for detecting periodic gravitational
waves using a weighted average of the power from SFTs. Compared with the StackSlide
and weighted Hough methods that also combine power from SFTs, in general the PowerFlux
method has the highest sensitivity [3]. Hierarchical and fully coherent searches that use a
coherent time-baseline longer that 30 min are more sensitive, but also more computationally
costly. Thus, PowerFlux remains a vital search method for periodic gravitational waves.

PowerFlux is able to estimate the squared amplitude (either A2
+ or A2

×) of a linearly
polarized signal (A× = 0 or A+ = 0) or a circularly polarized signal

(
A2

+ = A2
×
)
, which can

also be used as a detection statistic. However, it does not directly estimate the parameters
of elliptically polarized signals (A2

+ �= A2
× �= 0 in general), nor does it directly recover the

polarization angle ψ . In this paper, we investigate whether it is possible to extract this extra
information from a potential signal present in the SFTs and, if so, whether we can find a method
using power from SFTs that is more efficient at detecting signals than standard PowerFlux.

We have previously (in [5]) investigated using the real and imaginary parts of the SFTs
to estimate A+, A× and ψ using the method in [1]; the method worked well for searches
with long coherent time baselines, but failed to be robust on time-baselines of 30 min, for a
number of reasons, as detailed in [5]. Here, we show instead how to estimate the parameters
of elliptically polarized signals using the power in SFTs, thus generalizing the PowerFlux
method. As a first step, we present a new derivation of the PowerFlux method in the following
section. The subsequent sections give two generalizations, and then a comparison of the
detection efficiencies of the methods (and the distributions of the estimated parameters). The
last section gives another way to form a detection statistic using SFT power, analogous to
finding a maximum likelihood statistic, and suggests future work.

2. Derivation of the PowerFlux method

By definition of TSFT, we can treat F+, F× and the frequency of the signal at the detector
as constant over the duration of an SFT. Ignoring losses due to the difference between this
frequency and the closest SFT bin frequency, the normalized power in the signal is

2|h̃|2
TSFT

= 0.5
(
A2

+F
2
+ + A2

×F 2
×
)
TSFT, (2)

where h̃ is the discrete Fourier transform of h(t) divided by the sample rate of the data and it is
understood that F+ and F× are evaluated at the midpoint of each SFT. Equation (2) represents
the expected signal power for an elliptically polarized signal from one SFT. We label the SFTs
using index α, and consider searching for a linearly polarized signal (with A× = 0) which is
present in the sequence of SFTs. Given the SFT data, x̃α , we define

Pα = 2|x̃α|2
TSFT

(3)

to be the power taken from the SFT bin closest to the expected signal frequency, and

g =
∑

α

[
Pα − 0.5A2

+F
2
+αTSFT

]2

S2
α

, (4)
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to be the noise-weighted sum of the square deviations in power between the signal and the
data; Sα are the one-sided power spectral densities of the noise for the frequency bins used in
each corresponding SFT.

A natural way to estimate A2
+, analogous to χ2 minimization, is to find the value of A2

+
that minimizes g. We therefore solve

∂g

∂A2
+

= −
∑

α

(
Pα − 0.5A2

+F
2
+αTSFT

)
F 2

+αTSFT

S2
α

= 0 (5)

for A2
+, and obtain

A2
+ = 4

∑
α

F 2
+α

S2
α

|x̃α|2
T 2

SFT

/∑
α

F 4
+α

S2
α

. (6)

Equation (6) is the detection statistic for the PowerFlux method given in [3, 4], although
the derivation given here is different. We refer to this as the linear PowerFlux method. To
instead apply this approach to circularly polarized signals, we replace F 2

+α with F 2
+α + F 2

×α in
equation (4); this gives what we refer to as the circular PowerFlux method. The implementation
of PowerFlux described in [3, 4] uses the linear PowerFlux method with a search over discrete
values of the polarization ψ , together with the circular PowerFlux method, to search for
elliptically polarized signals.

3. Generalization to estimate A2
+ and A2×

We now investigate generalizing the above derivation to estimate A2
+ and A2

× simultaneously.
The natural generalization of equation (4) is to redefine g as

g =
∑

α

[
Pα − 0.5

(
A2

+F
2
+α + A2

×F 2
×α

)
TSFT

]2

S2
α

. (7)

Following the same minimization procedure, we obtain the equations

∂g

∂A2
+

= −
∑

α

[
Pα − 0.5

(
A2

+F
2
+α + A2

×F 2
×α

)
TSFT

]
F 2

+αTSFT

S2
α

= 0, (8)

∂g

∂A2×
= −

∑
α

[
Pα − 0.5

(
A2

+F
2
+α + A2

×F 2
×α

)
TSFT

]
F 2

×αTSFT

S2
α

= 0, (9)

which we solve for A2
+ and A2

× to give

A2
+ = 4

D

[∑
α

F 4
×α

S2
α

∑
α

F 2
+α

S2
α

|x̃α|2
T 2

SFT

−
∑

α

F 2
+αF 2

×α

S2
α

∑
α

F 2
×α

S2
α

|x̃α|2
T 2

SFT

]
, (10)

A2
× = 4

D

[∑
α

F 4
+α

S2
α

∑
α

F 2
×α

S2
α

|x̃α|2
T 2

SFT

−
∑

α

F 2
+αF 2

×α

S2
α

∑
α

F 2
+α

S2
α

|x̃α|2
T 2

SFT

]
, (11)

where

D =
∑

α

F 4
+α

S2
α

∑
α

F 4
×α

S2
α

−
(∑

α

F 2
+αF 2

×α

S2
α

)2

. (12)

We refer to this method as generalized PowerFlux I. A natural detection statistic would be
A2

+ +A2
×; to evaluate it, we must compute 5/2 as many summations as for the linear PowerFlux

method. We must also, as for linear PowerFlux, still include a search over discrete values
of ψ .

3
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4. Generalization to estimate A2
+↪ A

2× and ψ

To further generalize the PowerFlux method to directly estimate ψ , we note that the antenna
patterns F+ and F× can be written in terms of two functions a and b, given in [1], which are
independent of ψ :

F+(ψ, t) = sin ζ [a(t) cos 2ψ + b(t) sin 2ψ], (13)

F×(ψ, t) = sin ζ [b(t) cos 2ψ − a(t) sin 2ψ], (14)

where ζ is the angle between the arms of the interferometer. The normalized signal power can
therefore be written as,

2|h̃α|2
TSFT

= 0.5
(
Aa2

α + Bb2
α + Caαbα

)
TSFT, (15)

where the amplitudes A,B and C are defined to be

A = sin2 ζ
(
A2

+ cos2 2ψ + A2
× sin2 2ψ

)
, (16)

B = sin2 ζ
(
A2

+ sin2 2ψ + A2
× cos2 2ψ

)
, (17)

C = sin2 ζ
(
A2

+ − A2
×
)
2 cos 2ψ sin 2ψ. (18)

Following the minimization procedure again, we redefine g to be

g =
∑

α

[
Pα − 0.5

(
Aa2

α + Bb2
α + Caαbα

)
TSFT

]2

S2
α

; (19)

minimizing g with respect to A,B and C gives

∂g

∂A
= −

∑
α

[
Pα − 0.5

(
Aa2

α + Bb2
α + Caαbα

)
TSFT

]
a2

αTSFT

S2
α

= 0, (20)

∂g

∂B
= −

∑
α

[
Pα − 0.5

(
Aa2

α + Bb2
α + Caαbα

)
TSFT

]
b2

αTSFT

S2
α

= 0, (21)

∂g

∂C
= −

∑
α

[
Pα − 0.5

(
Aa2

α + Bb2
α + Caαbα

)
TSFT

]
aαbαTSFT

S2
α

= 0. (22)

Thus, the amplitudes A,B and C can be found by inverting equations (20)–(22); the amplitudes
A2

+ and A2
× and polarization angle ψ are then found by inverting equations (16)–(18). This

method is referred to as generalized PowerFlux II. It involves computing 8/2 = 4 as many
sums as the linear PowerFlux method; however because we no longer need to search over
discrete values of ψ , the total computational cost of this method may overall be lower than the
implementation of PowerFlux described in [3, 4]. An alternate method of estimating A2

+, A
2
×

and ψ , which uses the output of the linear PowerFlux method evaluated at several fixed values
of ψ , is given in appendix A of [3].

5. Comparison of detection efficiencies

We have determined the relative detection efficiencies (defined below) of the standard
PowerFlux methods and the generalizations presented above. The detection statistic used
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for each method is A2
+ + A2

×, with A2
× = 0 in the case of the linear PowerFlux method. For

simplicity, we did not restrict the estimations of A2
+ and A2

× to the physical region A2
+ � 0 and

A2
× � 0, or check if the actual minimum value of g was on the boundary of this region. An

implementation of the StackSlide method described in [3], which uses a sum of the power as
the detection statistic, was also included.

We first performed searches on 10 000 sets of SFTs containing only randomly generated
Gaussian noise and obtained, for each method, a distribution of their detection statistic in the
absence of a signal. From this distribution we determined the threshold for a 1% false alarm
rate. We then performed searches on 3000 sets of SFTs, each containing noise plus a simulated
signal from an isolated spinning source. In this case, the strength of the signal can be given
by the normalized injected amplitude h0(TSFT/S)1/2, where h0 is defined by [1]

A+ = 0.5h0(1 + cos2 ι), (23)

A× = h0 cos ι, (24)

and where ι is the inclination angle between the spin axis of the source and the direction from
the source to the detector, and S is the one-sided power spectral density of the Gaussian noise.
For each of the 3000 simulated signals, cos ι was chosen at random from the range [−1, 1],
resulting in elliptically polarized signals; the polarization angle ψ was also chosen at random
from the range [−π/4, π/4].

Other parameters of the signal are its sky position (right ascension and declination) and its
frequency at the Solar System Barycenter (SSB), taken as constant here. Since right ascension
has minimal effect on the results this was set to zero and results were found for several values
of the declination. For the detector configuration we used that of LIGO Hanford, as given in
[1]. We also varied the number of SFTs.

A real search requires a template bank of sky positions, frequencies (and frequency time
derivatives, which we set to zero) at the SSB, and in some cases polarization angles. Here,
for each simulated signal a single template was created with no mismatch in sky position.
However, we included a random mismatch between the frequencies of the template and the
signal at the SSB of up to half an SFT bin width and, for searches requiring a value for ψ , a
random mismatch in ψ between the template and the signal of up to π/16. For each simulated
source, the detection statistic was computed using the template sky position, SSB frequency
and ψ (if needed); thus included in the results are losses due to mismatch between the template
and the signal.

After searching the 3000 sets of SFTs we obtained, for each method, a distribution of
their detection statistic in the presence of a signal of normalized amplitude h0(TSFT/S)1/2.
The detection efficiency is then calculated as the fraction of the distribution of the detection
statistic which falls above the 1% false alarm rate threshold. We then repeated the process of
generating and searching 3000 sets of SFTs for increasing values of the normalized amplitude;
this gives the detection efficiency as a function of h0(TSFT/S)1/2.

To verify our results, the authors independently wrote MATLAB scripts to perform the
above procedure. The scripts produced identical detection efficiency curves for the same input
parameters, within the expected uncertainties based on the number of searches performed; this
gives us confidence that our implementations are correct.

Figures 1 and 2 show the detection efficiencies of the methods versus h0(TSFT/S)1/2, for a
selection of values for the number of SFTs and declinations. As the source moves away from
zero declination, the detection efficiency increases, and the differences between the methods
become smaller. Also, the relative efficiencies of StackSlide, the generalized PowerFlux and
the linear PowerFlux methods can change with respect to each other, but note that circular

5

LIGO-P070110-P



Class. Quantum Grav. 25 (2008) 114044 G Mendell and K Wette

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.2

0.4

0.6

0.8

1

Injected h
0
(T

SFT
/S)1/2

D
et

ec
tio

n 
ef

fic
ie

nc
y

StackSlide
Linear PowerFlux
Circular PowerFlux
Gen. PowerFlux I
Gen. PowerFlux II

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.2

0.4

0.6

0.8

1

Injected h
0
(T

SFT
/S)1/2

D
et

ec
tio

n 
ef

fic
ie

nc
y

StackSlide
Linear PowerFlux
Circular PowerFlux
Gen. PowerFlux I
Gen. PowerFlux II

Figure 1. Detection efficiency, determined to within 3% by simulated searches, versus the
normalized injected amplitude, for 336 SFTs and signal declinations of zero (left) and 90◦ (right).
The marked points are the results of the simulated searches and the solid lines are spline fits to
these.
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Figure 2. Same as figure 1, for 336 (left) and 672 SFTs (right), and a signal declination of 45◦.

PowerFlux remains typically the most efficient method. This is good news, since this method
is already being used by the LSC. It also may not be surprising, since we note that the weights
used in the Hough transform search in [3] were proportional to F 2

+ + F 2
×. These weights were

shown to be optimal in an average sense in [6, 7], from which we see that A2
+F

2
+ + A2

×F 2
×

averaged over ψ can be factored as 0.5
(
F 2

+ + F 2
×
)(

A2
+ + A2

×
)
, i.e. as the antenna pattern for

circular polarization times the sum of the squared amplitudes, even for an elliptically polarized
signal. Since our simulations perform a Monte Carlo average over ψ , this may explain why
circular PowerFlux does so well. Finally, note that the detection efficiencies increase with
the number of SFTs, as expected, but the relative efficiencies of the methods do not change
significantly.

Figure 3 shows, for a search of 3000 sets of SFTs injected with h0(TSFT/S)1/2 = 4
signals, the distribution of the injected versus the detected amplitudes estimated by the various
methods. The mean value of the squared amplitudes estimated for noise alone was subtracted
from the detected squared amplitudes; the injected and detected squared amplitudes are then
normalized by TSFT/S. The detected squared amplitudes are typically smaller than that injected
due to loss of power due to mismatch between the signal and the template used to find it, while
the widths of the distributions are due to noise. The generalized PowerFlux II method has
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Figure 3. Injected versus detected (after removing the noise only mean) normalized squared
amplitudes estimated by (from left to right, top to bottom) linear PowerFlux (A+), circular
PowerFlux (A+ = A×), generalized PowerFlux I (A+ and A×) and generalized PowerFlux II
(A+ and A×), for h0(TSFT/S)1/2 = 4.
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Figure 4. Injected versus detected polarization angle (in units of π ) estimated by generalized
PowerFlux II, for h0(TSFT/S)1/2 = 4.

marginally the narrowest such distribution. Figure 4 shows the injected versus the detected
polarization angle estimated by generalized PowerFlux II; the estimation can be quite poor,
for example when noise causes the detected ψ to show up in the wrong quadrant.

6. A PowerFlux maximum likelihood statistic and future work

In section 3, we gave equation (7) for g, in analogy to the χ2 statistic. A direct comparison
fails because Pα is not a Gaussian distributed variable. However, if we expand the square in the
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numerator, and retain only the terms that depend on A+ and A×, we can define a ‘PowerFlux
maximum likelihood statistic’, G, by

G =
∑

α

[(
A2

+F
2
+α + A2

×F 2
×α

)
TSFTPα − 0.25

(
A2

+F
2
+α + A2

×F 2
×α

)2
T 2

SFT

]
S2

α

, (25)

where it is understood that A2
+ and A2

× are chosen to minimize g. For example, we can
substitute equation (6) for A2

+ and set A2
× = 0, which gives

G = 4T 2
SFT

(∑
α

F 2
+α

S2
α

|x̃α|2
T 2

SFT

)2/∑
α

F 4
+α

S2
α

. (26)

Here, G represents our definition of the ‘maximum likelihood statistic’ for linear PowerFlux.
It is similar to the standard linear PowerFlux statistic given in equation (6); note, however,
that the sum in the numerator is squared. Similar expressions for the circular and generalized
PowerFlux methods, and indeed any method that computes either A2

+ or A2
×, can be found

using equation (25).
For future work we plan to investigate whether using the PowerFlux maximum likelihood

statistic, G, gives a better detection efficiency than the sum of the squared amplitudes, A2
+ +A2

×,
used in this paper. It would also be interesting to further understand why circular PowerFlux is
so efficient (and under precisely which conditions this is so), and study whether this method or
another one is mathematically the optimal filter of SFT power in the Neyman–Pearson sense,
i.e. that maximizes the detection efficiency for a fixed false alarm rate.
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