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R. Route,30 S. Rowan,40 A. Rüdiger,2 L. Ruet,17 P. Russell,14 K. Ryan,15 S. Sakata,23 M. Samidi,14 L. Sancho de la Jordana,35

V. Sandberg,15 V. Sannibale,14 S. Saraf,25 P. Sarin,17 B. S. Sathyaprakash,7 S. Sato,23 P. R. Saulson,31 R. Savage,15

P. Savov,6 S. Schediwy,50 R. Schilling,2 R. Schnabel,2 R. Schofield,43 B. F. Schutz,1, 7 P. Schwinberg,15 S. M. Scott,4

A. C. Searle,4 B. Sears,14 F. Seifert,2 D. Sellers,16 A. S. Sengupta,7 P. Shawhan,41 D. H. Shoemaker,17 A. Sibley,16

J. A. Sidles,49 X. Siemens,14, 6 D. Sigg,15 S. Sinha,30 A. M. Sintes,35, 1 B. J. J. Slagmolen,4 J. Slutsky,18 J. R. Smith,2

M. R. Smith,14 K. Somiya,2, 1 K. A. Strain,40 D. M. Strom,43 A. Stuver,32 T. Z. Summerscales,3 K.-X. Sun,30 M. Sung,18

P. J. Sutton,14 H. Takahashi,1 D. B. Tanner,39 R. Taylor,14 R. Taylor,40 J. Thacker,16 K. A. Thorne,32 K. S. Thorne,6
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We report on the first dedicated search for gravitational waves emitted during the inspiral of compact
binaries with spinning component bodies. We analyze 788 hours of data collected during the third science
run (S3) of the LIGO detectors. We searched for binary systems using a detection template family designed
specially to capture the effects of spin-induced precession. The template bank we employed was found to
yield high matches with our spin-modulated target waveform for binaries with masses in the asymmetric range
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1.0 M� < m1 < 3.0 M� and 12.0 M� < m2 < 20.0 M� which is where we would expect the spin of the
binary’s components to have significant effect. We find that our search of S3 LIGO data had good sensitivity
to binaries in the Milky Way and the near parts of Andromeda with masses in the range 1.0 M� < m1,m2 <
20.0 M�. No gravitational wave signals were identified during this search. Assuming a binary population
with a Gaussian distribution of component body masses of a prototypical neutron star - black hole system with
m1 ' 1.35M� and m2 ' 5M�, we calculate the 90%−confidence upper limit on the rate of coalescence of
these systems to be 15.9 yr−1L−1

10 , where L10 is 1010 times the blue light luminosity of the Sun.

PACS numbers: 95.85.Sz, 04.80.Nn, 07.05.Kf, 97.80.–d

I. INTRODUCTION

Currently, there is a world-wide network of kilometer
scale interferometric gravitational wave detectors that are ei-
ther at or approaching their respective design sensitivities.
The network includes the American Laser Interferometer
Gravitational-wave Observatory (LIGO) [1, 2], the British-
German GEO600 [3] and the French-Italian Virgo [4]. The
radiation emitted during the inspiral stage of a stellar mass
compact binary system is thought to be a likely candidate for
the first direct detection of gravitational waves using these in-
terferometers [5, 6]. The initial interferometers will be able
to search for such systems well beyond the Virgo superclus-
ter with an expected detectable rate of one inspiral event ev-
ery few years [6]. The LIGO Scientific Collaboration (LSC)
has searched for compact binaries with non-spinning stellar
mass components in data collected during the first, second,
third and fourth science runs (henceforth S1, S2, S3 and S4,
respectively) [7, 8], by employing optimal matched filtering
techniques [9] wherein detector data is cross-correlated with
a bank of “templates” which represent the best current knowl-
edge of the emitted waveforms.

Studies of compact binaries with spinning components [10–
15] have revealed that interactions between the spin and or-
bital angular momenta can lead to precession of the binary’s
orbital plane which in turn causes a modulation of the ob-
served gravitational waves’ amplitude and phase. The sta-
tistical distribution of the spins of black holes in inspiral-
ing binaries is not well known [16, 17] and until recently
the efforts have focused upon developing techniques for the
detection of binary systems with non-spinning components
(for recent reviews see Refs. [18, 19] and references therein).
The presence of amplitude and phase modulations in the ob-
served waveforms will reduce our detection efficiency when
using matched filter templates which do not include spin ef-
fects [12–15]. These effects are small for low mass binaries or
binaries with roughly equal component masses, but can be sig-
nificant for high mass or asymmetric systems such as neutron
star - black hole binaries. Figure 1 compares the gravitational
waveforms we would expect to observe from two different bi-
nary systems, one consisting of non-spinning bodies and the
other consisting of spinning bodies.

The gravitational waves emitted by stellar mass compact bi-
naries are expected to be at frequencies detectable by LIGO
during the final few seconds of the inspiral as well as the
merger and ringdown stages of their evolution. This paper
reports the methods and results of a search for gravitational
waves emitted during the inspiral of binaries consisting of

FIG. 1: The gravitational waveforms predicted from the late inspiral
phase of two different neutron star - black hole systems, one consist-
ing of non-spinning bodies (upper plot) and the other consisting of
maximally spinning bodies (lower plot). Both systems are identical
apart from the spin of their component bodies. Spin-induced preces-
sion of the binary’s orbital plane causes modulation of the gravita-
tional wave signal and can be clearly seen in the lower plot.

spinning compact objects. We analyze S3 LIGO data using a
detection template family [14] which efficiently captures the
amplitude and phase modulations of the signal. LIGO con-
sists of three detectors located at two sites across the US. The
LIGO Hanford Observatory (LHO) in Washington state con-
sists of two co-located interferometers of arm length 4km and
2km and are known as H1 and H2 respectively. The LIGO
Livingston Observatory (LLO) in Louisiana consists of a sin-
gle 4km interferometer known as L1. All three detectors were
operated throughout S3 which spanned 70 days (1680 hours)
between October 31, 2003 and January 9, 2004. This is the
first time gravitational wave data has been searched for in-
spiral signals from binary systems with spinning component
bodies.

In Sec. II we discuss the evolution of spinning binary sys-
tems. In Sec. III we describe the waveforms that are used to
model the emission of the target sources we are seeking to
detect. These target waveforms include modulations to their
amplitude and phase in order to simulate the effects of spin-
induced precession of the source. In Sec. IV we describe the
detection template family that we use to search for these target
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waveforms and in Sec. V we describe the design and testing
of the template bank used. In Sec. VI we describe the S3 data
set and summarize the data analysis pipeline. In Sec. VII we
describe various vetoes which were identified as beneficial to
this search. In Sec. VIII we detail results from this search. In
the absence of a detection we will calculate an upper limit on
the rate of coalescences using the measured efficiency of our
search and an estimated population model of the distribution
of binary systems in the Universe. In Sec. IX we perform an
upper limit calculation based upon the loudest event candidate
found in our search. Finally, in Sec. X we draw conclusions.
Throughout we shall assume G = c = 1.

II. EVOLUTION OF SPINNING BINARY SYSTEMS

We briefly review the current literature regarding the forma-
tion and evolution of spinning binary systems. The literature
available focuses mainly on neutron star - black hole (NS-BH)
binaries (rather than BH-BH binaries). Later we shall show
that the template bank used in this search is most sensitive to
binaries with unequal masses such as NS-BH binaries. It is
likely that the formation of BH-BH and NS-BH (and indeed
NS-NS) systems are qualitatively similar and that the discus-
sion here will be relevant to all cases.

A typical NS-BH evolution would involve two main se-
quence stars in binary orbit. As it evolved away from the
main sequence, the more massive star would expand until it
fills its Roche lobe before transferring mass to its compan-
ion. The more massive body would eventually undergo core-
collapse to form a BH, and the system as a whole would be-
come a high-mass X-ray binary. As the second body expands
and evolves it would eventually fill its own Roche lobe and
the binary would then go through a common-envelope phase.
This common-envelope phase, characterized by unstable mass
transfer, would be highly dissipative and would probably lead
to both contraction and circularization of the binary’s orbit.
Accretion of mass can allow the BH to spin-up. It has been ar-
gued that the common-envelope phase, and associated orbital
contraction, is essential in the formation of a binary which
will coalesce within the Hubble time [16]. Finally the sec-
ondary body would undergo core-collapse to form a NS (or if
massive enough, a BH). Prior to the supernova associated with
the core-collapse of the secondary body we would expect the
spin of the BH to be aligned with the binary’s orbital angular
momentum [16]. However, the “kick” associated with the su-
pernova of the secondary body could cause the orbital angular
momentum of the post-supernova binary to become tilted with
respect to the orbital angular momentum of the pre-supernova
binary. Since the BH would have a small cross-section with
respect to the supernova kick we expect any change to the
direction of its spin angular momentum to be negligible and
that the BH spin would be misaligned with respect to the post-
supernova orbital angular momentum [20]. The misalignment
between the spin and orbital angular momentum is expected
to be preserved until the system becomes detectable to ground
based interferometers.

The magnitude of a compact object’s spin is dependent

upon both its spin at formation (i.e., birth-spin) and the spin
it attains through subsequent accretion episodes. The dimen-
sionless spin parameter χ is given by J/M2 where J is the
total angular momentum of the compact object and M is its
mass. For a maximally spinning compact object we would
have χ = 1 and for a non-spinning object χ = 0. Although
the estimated birth-spins of NS and BHs are small, simula-
tions have shown that accretion during a common-envelope
phase can allow objects to achieve considerable or even near
maximal spins [17]. Due to uncertainties in both the estima-
tion of birth-spins and modelling of accretion induced spin-
up predictions of binary’s spin population are fairly uncertain.
The upper bound on a BH’s spin is expected to be χ ∼ 0.998.
Torque caused by radiation emitted from the accretion disk
getting swallowed by the BH counteracts the increase of spin
caused as the BH accretes mass [21]. The upper bound of a
NS’s spin is estimated by calculating the spin which would
cause it to break up using variety of models for its equation-
of-state. The upper limit is estimated to be χ ∼ 0.7 [22].

For the detection of gravitational waves using matched-
filter techniques we must construct templates that represent
our best predictions of the signal. These templates must
model the spin-induced modulations to the waveform’s am-
plitude and phase as accurately as possible while still result-
ing in a computationally manageable number of templates
covering the detectable parameter space. It has been shown
previously [12–15] that if spin effects are neglected when
constructing our templates that our detection efficiency will
decrease and some spinning binary systems will be missed.
Spin effects are more pronounced when the system’s spin an-
gular momentum is larger than its orbital angular momen-
tum. The orbital angular momentum of a binary system is ap-
proximately proportional to its mass ratio, meaning that spin
will have more effect on systems with unequal masses (i.e.,
asymmetric systems such as NS-BH binaries, see Fig. 3 of
Ref. [11]). For schemes that fail to take into account spin
effects, detection efficiency will be worse for binaries with
i) unequal mass components, ii) components with large spin
magnitude and iii) when there is significant misalignment be-
tween the spins and the orbital angular momentum.

III. TARGET WAVEFORMS

In this section we describe the fiducial target waveforms
used to represent the gravitational wave signals expected from
binary systems of spinning compact objects. We adopt the
post-Newtonian (PN) equations given out in Ref. [14] and
based upon Refs. [10, 11, 23–28] (see Ref. [14] for a com-
plete list of references to all original derivations), which
model the inspiral of the binary in the adiabatic limit. In this
limit the binary’s components follow a sequence of shrinking
instantaneously-circular orbits in a precessing orbital plane.

The instantaneous orbital frequency ω evolves according to
Eq. (1) of Ref. [14], which has the structure

ω̇(t)
ω(t)2

= Fω̇
(
ω(t), L̂N (t) · Ŝ1,2(t), Ŝ1(t) · Ŝ2(t);M,η, χ1,2

)
,

(1)



5

with the total mass of the systemM = m1 +m2, the symmet-
ric mass ratio η = m1m2/M

2, the magnitudes of the binary’s
dimensionless spin parameters χ1,2, the direction of the New-
tonian angular momentum L̂N (t) (∝ r × v, perpendicular to
the bodies velocity and the vector joining them), and the direc-
tions of the two spins Ŝ1,2(t). Orbital PN effects are included
up to 3.5PN order, while spin effects are included up to 2PN
order.

The two spins and the orbital angular momentum evolve ac-
cording to standard general-relativistic precession equations,
which are truncated consistently at the relevant PN order, and
which have the structure

˙̂S1 = F ˙̂
S1

(
ω, L̂N , Ŝ2;M,η, χ2

)
× Ŝ1,

˙̂S2 = F ˙̂
S2

(
ω, L̂N , Ŝ1;M,η, χ1

)
× Ŝ2, (2)

˙̂LN = F ˙̂
LN

(
ω, L̂N ·Ŝ1, L̂N ·Ŝ2, Ŝ1, Ŝ2;M,η, χ1, χ2

)
× L̂N

(see Eqs. (2), (3), and (9) of Ref. [14]).
The gravitational strain perturbation hij is computed from

the leading-order mass-quadrupole term specialized to circu-
lar orbits, following Finn and Chernoff [29] (see also Sec. II
C of Ref. [14]). Since Finn and Chernoff use a fixed source
coordinate system, the twice-differentiated mass-quadrupole
tensor Qijc is a function of the orbital phase

∫
ω dt and of

L̂N (t). The response of a ground-based interferometric detec-
tor is obtained by projecting Qijc onto a combination of unit
vectors along the interferometer arms, which introduces a de-
pendence on five angles that describe the relative direction (Θ
and ϕ, which subsumes the initial orbital phase of the binary)
and orientation (θ, φ, and ψ) between the detector and the
Finn–Chernoff source frame.

Equations (1) and (2) are integrated numerically in the
time domain until the minimum of the PN orbital energy
E3PN (ω, L̂N , Ŝ1, Ŝ2,M, η, χ1, χ2) (see Eqs. (11) and (12)
of Ref. [14]) is reached or until ω̇ becomes negative. No at-
tempt is made to describe the waveform beyond this stopping
point, where it is assumed that the adiabatic approximation
must break down. Altogether, the waveforms are functions of
four mass and spin constants (M , η, χ1, and χ2), of six angles
describing the orientations of L̂N , Ŝ1, and Ŝ2 at a fiducial
time and frequency, the five direction and orientation angles
and the distance of the detector from the source. We note that
the angles Θ and ϕ are degenerate with the angles given im-
plicitly when we define L̂N . In this analysis we assume that
the binary’s orbits have become circularized (see brief discus-
sion in Sec. II) and that the orbital eccentricity is zero. Given
this assumption we are able to describe the binary using 15
independent parameters.

IV. DETECTION TEMPLATE FAMILY

As discussed in Sec. II, when the binary components carry
significant spins which are not aligned with the orbital angular
momentum, spin-orbit and spin-spin couplings can induce a
strong precession of the orbital plane, thus causing substantial

modulation of the gravitational waves’ amplitude and phase
(see Fig. 1). Detection-efficient search templates must ac-
count for these effects of spin. A straightforward parametriza-
tion of search templates by the physical parameters that af-
fect precession results in very large template banks, which is
computationally prohibitive. It is then necessary to reduce the
number of waveform parameters while still efficiently cover-
ing the parameter space of target waveforms.

We shall denote “detection template families” (DTF) the
families of signals that capture the essential features of the
true waveforms, but depend on a smaller number of parame-
ters, either physical or phenomenological. At their best, DTFs
can reduce computational requirements while achieving es-
sentially the same detection performance as true templates.
However, DTFs can include non-physical signal shapes that
may increase the number of noise-induced triggers, affecting
the upper-limit studies. Moreover, DTFs are also less ade-
quate for parameter estimation, because the mapping between
template and binary parameters is not one-to-one.

In recent years several DTFs for precessing compact bina-
ries have been proposed [10, 12–15, 20, 30, 31]. A DTF based
on the so-called Apostolatos ansatz [10, 12] for the evolu-
tion of precession frequency was thoroughly investigated in
Refs. [15, 30]. It was found that the computational require-
ments of the Apostolatos-type families are very high, and its
signal-matching performances are not very satisfactory. An
improved version using spiky templates was then proposed in
Ref. [20].

After analyzing the physics of spinning-binary precession
and waveform generation, the authors of Ref. [14] showed
that the modulational effects can be isolated in the evolution
of the two gravitational wave polarizations (i.e., h+ and h×),
which combined with the detector’s antenna patterns yield its
response. As a result, the detector’s response can be written
as the product of a carrier signal and a complex modulation
factor, which can be handled using an extension of the Apos-
tolatos ansatz. More explicitly, the modulated DTF in the fre-
quency domain proposed in Ref. [14] reads:

h(ψNM, t0, αj ; f) =

 3∑
j=1

(αj + iαj+3)hj(f)

×
e2πift0θ(fcut − f) (for f > 0) (3)

with h(f) = h∗(−f) for f < 0. The coefficients αj in Eq. (3)
are six real coefficients encoding the global phase, the strength
of the amplitude modulation, its relative phase with respect to
the leading order amplitude, and the internal (complex) phase
of the modulations. The coefficient t0 is the time of arrival
and θ(...) is the Heaviside step function which is zero for all
frequencies f > fcut. We use the parameter fcut to termi-
nate the template waveform once we believe it is no longer
an accurate representation of the true gravitational waveform
(generally due to deviation away from the adiabatic approxi-
mation).

In Eq. (3) the functions hj(f) = Aj(f)eiψNM(f) are the
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basis-templates whereAj(f) are the real amplitude functions:

A1(f) = f−7/6, (4)

A2(f) = f−7/6 cos(B), (5)

A3(f) = f−7/6 sin(B), (6)

where B = βf−2/3 and β is related to the frequency of pre-
cession [31] and is used to capture the spin-induced mod-
ulation of the waveform. The function ψNM(f) represents
the phase of the non-modulated carrier signal; it depends on
the masses and spins of the binary’s components and it can
be computed in post-Newtonian (PN) theory. Here, as in
Ref. [14], we express ψNM in terms of only two phenomeno-
logical parameters ψ0 and ψ3 [50], i.e.,

ψNM(f) = f−5/3 (ψ0 + ψ3f) . (7)

In the case of single-spin binaries (i.e., only one of the bodies
has spin), it is possible to (analytically) relate the three phe-
nomenological parametersψ0, ψ3 and β with the four physical
parameters M , η, κ1 and χ1 [31]. The physical parameter κ
is the cosine of the angle between the direction of the (total)
spin and the orbital angular momentum and in this case would
be κ1 ≡ L̂N · Ŝ1. However, for double-spin binaries — which
is the case investigated in this paper — the mapping is not an-
alytical and the number of physical parameters is greater than
four, resulting in an intractably large template bank. Within
the spirit of DTF and, as a first step in implementing search
templates for spinning, precessing binaries, we proceed here
with the three phenomenological parameters ψ0, ψ3 and β.

The DTF described by Eq. (3) generalizes the Apostolatos
ansatz in two ways: it allows a complex phase offset between
i) the leading order f−7/6 amplitude term (Eq. 4) and the sinu-
soidal amplitude terms (Eqs. 5 and 6) and ii) between the co-
sine and sine modulation terms. Quite interestingly, as shown
in Ref. [31], by an appropriate choice of the phenomenologi-
cal coefficients α1···6, the DTF also has the ability to generate
higher harmonics which arise in the target signal discussed in
Sec. III. Those higher harmonics are caused by oscillations in
the components of the gravitational wave polarization tensor
and not directly by the precession of the orbital angular mo-
mentum and spins, and should be reproduced by the search
templates in order not to lose efficiency.

Henceforth, we will treat ψ0, ψ3 and β as intrinsic param-
eters and the α1···6 and t0 as extrinsic parameters. Intrinsic
parameters describe the source itself (e.g., masses, spins). To
maximize the SNR with respect to the intrinsic parameters
we must construct templates corresponding to different val-
ues of the intrinsic parameters and measure the SNR obtained
by each of these templates with our detector data. On the
other hand, extrinsic parameters describe the observer’s rela-
tion to the source (e.g., distance of the source from the ob-
server, the amplitude and time of arrival of the gravitational
wave at the observer). Maximization of the SNR with respect
to extrinsic parameters can be performed automatically (e.g.,
measurement of a signal’s time of arrival using an FFT) and is
computationally cheaper than maximization of the SNR with
respect to the intrinsic parameters.

In practise we set fcut to the frequency of the gravitational
wave emission at the last stable orbit (LSO) which we estimate
using

fcut ≈ fLSO =
M1/2

πr
3/2
LSO

(8)

where rLSO = 6M is the separation of the binary’s com-
ponents and the total mass M is estimated from ψ0 and ψ3

using approximate relationships between phenomenological
and physical parameters we introduce in the next section, see
Eqs. (13,14).

To assess whether a stretch of detector data contains a grav-
itational wave signal we calculate the signal-to-noise ratio
(SNR) which is the cross-correlation of our templates with
the data. The full process of deciding whether a detection has
been made is described in Sec. VI of this paper and more fully
in the companion papers [8, 19]. We can simplify the calcula-
tion of SNR by orthonormalization of the amplitude functions
Ak. We obtain the orthonormalized amplitude functions, de-
noted Âk, using the Gram-Schmidt procedure which leads to
the transformations:

A1 → Â1 =
A1

||A1||1/2

A2 → Â2 =
A2 −

〈
A2, Â1

〉
Â1

||A2 −
〈
A2, Â1

〉
Â1||1/2

(9)

A3 → Â3 =
A3 −

〈
A3, Â1

〉
Â1 −

〈
A3, Â2

〉
Â2

||A3 −
〈
A3, Â1

〉
Â1 −

〈
A3, Â2

〉
Â2||

where we use ||a|| to represent the inner product of a function
with itself: ||a|| = 〈a, a〉. Throughout we will use the real-
valued inner product:

〈a, b〉 = 4<
∫ ∞

0

df
ã∗(f)b̃(f)
Sh(f)

(10)

where Sh(f) is an estimate of the noise power spectral density
of the data. The final form of the orthonormalized amplitude
functions are very long and for that reason not reproduced
here. The DTF in terms of the orthonormalized amplitude
functions has the exact same form as that shown in Eq. (3)
with h, hj and αj replaced by ĥ, ĥj and α̂j respectively. De-

manding templates normalized so that 〈h, h〉 =
〈
ĥ, ĥ

〉
= 1

leads to the constraint
∑6
j=1 α̂

2
j = 1. Having defined the or-

thonormalized amplitude functions Âk we can calculate the
SNR, ρ:

ρ = max
t0,αj

〈x, h(t0, αj)〉 = max
t0

√√√√ 6∑
j=1

〈
x, ĥj(t0)

〉2

, (11)

where x is the detector data and the orthonormalized basis-
templates are given by

ĥj = Âj(f)eiψNM(f) for j = 1, 2, 3 and

ĥj = iÂj−3(f)eiψNM(f) for j = 4, 5, 6. (12)



7

Note that we do not explicitly need to calculate α1···6 in or-
der to calculate the SNR but that they can be found simply if
required: α̂j =

〈
x, ĥj(t0)

〉
/ρ.

For Gaussian white noise, ρ2 will, in general, have a χ2

distribution with 6 degrees of freedom. In the case where the
spin parameter β = 0 we find that Â2 and Â3 both vanish
and that ρ2 is described by a χ2 distribution with 2 degrees of
freedom. To reflect the increased freedom we choose a higher
SNR threshold, ρ∗ = 12 when β 6= 0 and a lower value of
ρ∗ ≈ 11.2 when β = 0. These values were chosen to give
approximately the same number of triggers when analyzing
Gaussian white noise and to ensure that the number of triggers
produced during the real search was manageable.

V. TEMPLATE BANK

Since we will not know the parameters describing an inci-
dent gravitational waveform a priori, we must filter our de-
tector data with a set of templates known as a template bank.
Neglecting the effects of noise, we would expect that the tem-
plate yielding the largest SNR to be the best representation
of an incoming signal. Due to the discrete nature of the tem-
plate bank (it must be discrete since it can only contain a finite
number of templates) we will lose SNR due to mismatches be-
tween the intrinsic parameters of any gravitational wave signal
and the best template. By placing templates with an appro-
priate density, we can limit the maximum mismatch between
signal and template intrinsic parameters and hence limit the
loss of SNR caused by the discreteness of the bank. The spac-
ing of templates in the intrinsic parameter space required to
limit this mismatch can be found using the metric on the sig-
nal manifold [32, 33]. In this section we describe the cal-
culation of the metric, the template placement algorithm and
comparisons with other banks before discussing the testing of
the bank using software-injected simulated signals.

A. Metric calculation

In this search we used a simple metric based on the strong
modulation approximation described below. The rationale is
that systems with waveforms only weakly modulated by spin-
induced precession should be detectable with high efficiency
by a non-spinning binary search, e.g., [8]. Thus we concen-
trate on designing a bank that will capture systems whose
waveforms will be strongly modulated. The metric calculation
and template placement (or tiling) algorithms become much
simpler in the strong modulation limit. More recently, more
precise treatments of the full metric on the DTF parameter
space have become available [31, 34] and work is in progress
to incorporate them into future searches.

In the strong modulation approximation, the orbital plane
is assumed to precess many times as the gravitational wave
sweeps through the LIGO band of good sensitivity. Also the
opening angle between the orbital and spin angular momen-
tum is assumed to be large, corresponding to large ampli-

tude modulations of the signal. Mathematically this corre-
sponds to the statement that the precession phase B sweeps
through many times 2π and thus that the basis-templates hj
are nearly orthonormal (without need for the Gram-Schmidt
procedure). Below we shall see that this assumption places a
condition on the precession parameter β, which for the initial
LIGO design noise power spectral density [35] corresponds to
β & 200 Hz2/3.

We can relate this condition for validity of the strong mod-
ulation approximation to the astrophysical parameters of sys-
tem. Naı̈vely we can put the phenomenological parameters in
terms of astrophysical parameters using:

ψ0 =
3

128
[π(m1 +m2)]−5/3 (m1 +m2)2

m1m2
, (13)

ψ3 = −3π
8

[π(m1 +m2)]−2/3 (m1 +m2)2

m1m2
, (14)

β = 258 Hz2/3

(
1 +

3m2

4m1

)
m1

m2
χ

(
M�

m1 +m2

)2/3

(15)

acknowledging that, in reality, the true signal manifold and
phenomenological template manifold do not map this simply.
The equations for ψ0 and ψ3 can be found by considering
the expansion for the gravitational wave phase ψ(f) given in
terms of masses (e.g., Eqs. (3.3) and (3.4) of [36]) and equat-
ing the dominant terms of this expansion to those with the
same frequency exponent in the expansion for gravitational
wave phase given in terms of ψ0,1,... in [14, 37]. The effects
of spin are neglected in these approximations of ψ0 and ψ3.
The equation for β arises by recognizing that β is related to
the evolution of the rate of precession, see Eq. (45) of [10] and
[31] for further discussion [51].

The constraint for validity of the strong modulation approx-
imation is that the mass ratio must satisfy m2/m1 & 2. Also,
we specify that the total mass be less than some value (here
∼ 15 M�) so that the waveforms do not begin far enough
into the non-linear region to require extra phenomenological
parameters. Thus the parameter space region of such a search
may be expressed solely in terms of the range of masses for the
lower-mass body. In this search the range used was 1.0M� <
m1 < 3.0M�, a likely range of masses for neutron stars, cor-
responding formally to a 6.0M� < m2 < 12.0M� range for
the more massive body. Thus, astrophysically this search is
directed at NS-BH systems or BH-BH systems with unequal
masses. As we shall see below, this search is efficient for non-
spinning systems as well as for spinning ones.

We derive the metric components in the manner of
Ref. [32]. Starting from the detection statistic ρ2 (the square
of Eq. (11)), let us take our data x to have the form of a tem-
plate with parameters slightly perturbed from those of the tem-
plate h we filter it with:

x̃(f) = (α1 + iα2)ei(ψNM+dψNM)

+(α3 + iα4) cos(B + dB)ei(ψNM+dψNM)

+(α5 + iα6) sin(B + dB)ei(ψNM+dψNM) (16)

Note that only the intrinsic parameters are perturbed, as the
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maximization takes care of the extrinsic parameters. Expand-
ing to second order in the perturbation, we have

x̃(f) ≈
(

1 + i dψNM − 1
2
dψ2

NM

) {
(α1 + iα2)h1

+(α3 + iα4)
[(

1− 1
2
dB2

)
h2 − dBh3

]
+(α5 + iα6)

[(
1− 1

2
dB2

)
h3 + dBh2

]}
.(17)

Under the approximation that the hj are orthonormal, we get

〈x, h1〉 = α1

[
1− 1

2
F

(
dψ2

NM

)]
− α2F (dψNM),

〈x, h4〉 = α2

[
1− 1

2
F

(
dψ2

NM

)]
+ α1F (dψNM),

〈x, h2〉 = α3

[
1− 1

2
F

(
dψ2

NM

)
− 1

2
F

(
dB2

)]
−α4F (dψNM) + α5F (dB)− α6F (dψNM dB),

〈x, h5〉 = α4

[
1− 1

2
F

(
dψ2

NM

)
− 1

2
F

(
dB2

)]
+ α3F (dψNM)

+α6F (dB) + α5F (dψNM dB),

〈x, h3〉 = α5

[
1− 1

2
F

(
dψ2

NM

)
− 1

2
F

(
dB2

)]
− α6F (dψNM)

−α3F (dB) + α4F (dψNM dB),

〈x, h6〉 = α6

[
1− 1

2
F

(
dψ2

NM

)
− 1

2
F

(
dB2

)]
+ α5F (dψNM)

−α4F (dB)− α3F (dψNM dB), (18)

where F is a functional (originally defined in Ref. [32] as J )
given by

F (a) =
1
I7

∫ fmax/f0

fmin/f0

dx
x−7/3

Sh(xf0)
a(x) (19)

and the noise moment I is itself defined as

Iq ≡
∫ fmax/f0

fmin/f0

dx
x−q/3

Sh(xf0)
(20)

where fmin and fmax define the range of frequencies we inte-
grate over. In S3 we used a lower cutoff frequency of 70 Hz,
chosen to exclude lower frequencies for which the detector’s
power spectral density was significantly non-stationary, and
an upper frequency corresponding to the Nyquist frequency,
in this case 1024 Hz. Inserting the relations from Eq. (18)
into Eq. (11) and keeping up to second order perturbations,

we obtain

6∑
j=1

〈x, hj〉2 =
6∑
j=1

α2
j

[
1− F (dψ2

NM) + F (dψNM)2
]

−
6∑
j=3

α2
j

[
F (dB2)− F (dB)2

]
−

[
2 (α3α6 − α4α5)

× [F (dψNM dB)− F (dψNM)F (dB)]
]
.(21)

To finish computing the perturbed ρ2 we must maximize
Eq. (21) over the coalescence time and αj (subject to the con-
straint

∑6
j=1 α

2
j = 1 since we are dealing with normalized

waveforms). Maximization over αj is performed straightfor-
wardly using Lagrange multipliers. We find α1 = α2 = 0,
α3 = −α6, and α4 = α5, which leads to

max
αj

〈x, hj〉2 = 1− F (dψ2
NM) + F (dψNM)2 − F (dB2)

+F (dB)2 + F (dψNM dB)− F (dψNM)F (dB). (22)

We incorporate the time-dependence of ρ2 into the template’s
phasing and expand the phase functions in terms of the phe-
nomenological parameters and coalescence time tc

dψNM = dψ0 f
−5/3 + dψ3 f

−2/3 + 2πfdtc, (23)
dB = dβ f−2/3. (24)

Using the definition of the metric [32] to write

ρ2 = 1− 2gabdλadλb, (25)

we obtain the metric components

2gtctc = 4π2
(
J1 − J2

4

)
,

2gtcψ0 = 2π (J9 − J4J12) ,
2gtcψ3 = 2π (J6 − J4J9) ,
2gtcβ = (−π/2) (J6 − J4J9) ,

2gψ0ψ0 = J17 − J2
12,

2gψ0ψ3 = J14 − J9J12,

2gψ0β = (−1/2) (J14 − J9J12) ,

2gψ3ψ3 = J11 − J2
9 ,

2gψ3β = (−1/2)
(
J11 − J2

9

)
,

2gββ = J11 − J2
9 (26)

before projecting out the coalescence time tc. Here we have
used Jq to represent the normalized noise moments given
by [38]

Jq ≡ Iq/I7 (27)

where the noise moment I was defined in Eq. (20). These mo-
ments give us a way of checking when the strong modulation
approximation is valid.
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FIG. 2: Moment functions C7(β) (solid line) and S7(β) (dashed
line) for the initial LIGO design noise power spectral density. For
values of β & 200 Hz2/3 we see that these moments become small
and can be neglected - this is what we call the strong modulation
approximation.

If we had not made the strong modulation approximation,
we would also need the functions

Cp(β) =
∫ ∞

0

df
[
fp/3Sh(f)

]−1

cosB(f)/I7, (28)

Sp(β) =
∫ ∞

0

df
[
fp/3Sh(f)

]−1

sinB(f)/I7, (29)

which we call the cosine and sine moment functions. The in-
ner products of the basis templates hj with each other (prior
to the Gram-Schmidt procedure) are proportional to these mo-
ment functions, and thus the strong modulation approximation
corresponds to assuming that C7 and S7 are small compared
to unity. For the initial LIGO design noise power spectral den-
sity curve [39] the moment functions are plotted in Fig. 2. We
see that the strong modulation approximation should hold (to
about the 10% level) for β & 200 Hz2/3. See also Fig. 15 of
Ref. [31], discussed more below, which shows approximately
the same behavior.

After projecting the coalescence time out of Eq. (26) and
dropping ψβ cross terms (which simplifies the template place-
ment and changes the volume per template by less than 3%),
we obtain

2gψ0ψ0 = J17 − J2
12 − (J9 − J4J12)

2
/

(
J1 − J2

4

)
,

2gψ0ψ3 = J14 − J9J12 − (J6 − J4J9)(J9 − J4J12)

/
(
J1 − J2

4

)
,

2gψ0β = 0,

2gψ3ψ3 = J11 − J2
9 − (J6 − J4J9)2/

(
J1 − J2

4

)
,

2gψ3β = 0,

2gββ = J11 − J2
9 − (J6 − J4J9)2/4

(
J1 − J2

4

)
. (30)

B. Template placement algorithm

We set the density of our template bank in terms of the min-
imal match (MM ), defined to be the lowest match that can be
obtained between a signal and the nearest template [32]. A
template bank designed to have minimal match MM = 0.95
would therefore suffer no more than a 1 −MM = 5% loss
in SNR due to mismatch between the parameters of a signal
and the best possible template in the bank (assuming that the
signal and templates are from the same family).

The metric components shown in Eq. (30) are constant in
the strong modulation approximation, which enables us to
use a simple template placement algorithm. We use a body-
centred cubic (BCC) lattice which is the most efficient tem-
plate placement in three dimensions. We first diagonalize the
metric, which leaves the β parameter unchanged but gives us
new “horizontal” parameters ψ′0 and ψ′3. Starting on the plane
β = 0, we draw a box in the primed coordinates which en-
closes the part of that plane to be searched. Beginning at one
corner of this box, we step in the primed “horizontal” coor-
dinates by amounts (4/3)

√
2(1−MM)/E, where E is the

corresponding eigenvalue of the metric, i.e., gψ′
0ψ

′
0

or gψ′
3ψ

′
3
.

At each point we transform to the mass parameters using
Eqs. (13) and (14) and check if we are in the targeted region of
physical mass space. If the point is within that region, we add
a template to the list. Once a plane of constant β is filled, we
move “up” a distance in β equal to (2/3)

√
2(1−MM)/gββ ,

and lay a “horizontal” grid which is staggered half a cell (in
both primed directions) from the previous one. Thus a BCC
lattice is formed.

Such a simple template placement algorithm is susceptible
to the “ragged edges” problem. That is, there will be some
areas near the edge of the targeted region of parameter space
that will match the nearest template at a level less than MM .
The problem appears in other template placement algorithms
such as those of Refs. [18, 33], and sometimes is addressed
in a complicated way. Our solution is simple and practical.
In stepping around the (ψ′0, ψ

′
3) plane, we check to see if we

have crossed the edge of the targeted region. If we find our-
selves at a point outside of the targeted region, we check to
see whether the point halfway between the current position
and the previously laid template is itself within the targeted
region. If so, we add a template there. Although the edges of
the targeted region are curved, the radius of curvature is many
template spacings meaning that we can treat the edges as fairly
straight. This simple method solves the ragged edges problem
while resulting in a small number of additional templates.

As mentioned earlier, we choose fcut, the frequency at
which we end our template, to be the frequency of gravita-
tional wave emission at the last stable orbit. However, we
compute metric components by effectively taking fcut to in-
finity, which gains us simplicity at the cost of a small over-
coverage.

We can compare the simplified template bank used here to
those proposed in the literature, particularly in Refs. [31, 34].
Although neither of those articles actually constructs a tem-
plate bank or gives explicit metric components, we can find a
point of comparison. Figure 15 of Ref. [31] plots the coordi-
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nate volume per template as a function of β, assuming a sim-
ple cubic lattice with MM = 0.97 and an analytical approxi-
mation to the initial LIGO noise curve. In the high-β (strong
modulation) limit, their volume tends to ∼ 5 × 106 Hz3. For
the same MM , lattice, and noise curve, our volume per tem-
plate is∼ 6.4×106 Hz3. Thus, our grid is slightly sparser than
that of Ref. [31]. Most of the difference is because they define
their final metric (on the space of intrinsic parameters only) in
terms of a “minimax” overlap, which is more restrictive than
the metric described here. The issue is that the spacing on the
intrinsic parameter space in general depends on the extrinsic
parameters, and there are multiple ways to remove this depen-
dence. The minimax criterion of Ref. [31] assumes the worst
case (in terms of extrinsic parameters) or tightest spacing for
each point in parameter space, and thus is tighter (lower tem-
plate volume) than it needs to be. Spin-induced precession of
the orbital plane will cause sidebands either side of the carrier
frequency. The metric we describe is constructed implicitly
assuming that there is always non-zero power at the carrier
frequency and both precession sidebands, which eliminates a
set of measure zero of worst-case points in the extrinsic pa-
rameter space. The template bank tests described below ver-
ify that the loss of efficiency due to neglecting the worst-case
extrinsic parameters is no more than a few percent.

For the real S3 noise spectra which were used to construct
the template banks in this search, template numbers were typ-
ically 2 − 6 × 103 in H1 and L1 when prescribing a minimal
match of 0.95. The number of templates was larger in H2
compared to the other detectors and also increased with time
to∼ 1.6× 104 towards the end of S3 due to a flattening of the
noise power spectrum in H2. Although a minimal match of
0.95 was prescribed the effective minimal match of the tem-
plate banks generated was reduced to ∼ 0.93 due to a small
calculation error. Figure 3 shows a template bank generated
using 2048 seconds of H1 data and with a prescribed minimal
match of 0.95.

C. Testing the template bank

The template bank was tested using a series of simulated
signals constructed using the equations of the target wave-
forms described in Sec. III. We considered a variety of spin
configurations including systems where neither, one or both
bodies were spinning. We also considered masses outside
the range we expected the template bank to have good cov-
erage in order to fully evaluate the range of masses for which
it could be used. For each spin configuration we created a
series of signals corresponding to every mass combination:
1.0 M� < m1,m2 < 20.0 M�. Using the initial LIGO de-
sign sensitivity we then measured the best match that could
be obtained for every signal using our template bank. Fig-
ure 4 shows a sample of the results from the tests of the tem-
plate bank. As expected we found that our template bank
achieved the highest matches for non-spinning (and there-
fore non-precessing) binaries. Performance degrades as spin-
precessional effects become more pronounced i.e., when both
bodies are spinning maximally with spins misaligned from

FIG. 3: A template bank generated with minimal match = 0.95 us-
ing 2048 seconds of H1 data taken during S3. The crosses show
the positions of individual templates in the (ψ0, ψ3, β) parameter
space. For each template a value for the cutoff frequency fcut is es-
timated using Eq. 8. This bank requires a 3-dimensional template
placement scheme in order to place templates in the (ψ0, ψ3, β) pa-
rameter space. Previous searches for non-spinning systems have used
2-dimensional placement schemes.

the orbital angular momenta. The template achieved matches
> 0.9 for a mass range 1.0 M� < m1 < 3.0 M� and
12.0M� < m2 < 20.0M� (and equivalent systems with m1

and m2 swapped). The detection template family (described
in Sec. IV) is capable of obtaining high matches for compara-
ble mass systems, the lower matches obtained for comparable
mass systems are a result of targeting our template bank on
asymmetric mass ratio systems (which are more susceptible
to spin effects and conform to the strong modulation approxi-
mation).

Matches below the specified minimal match of 0.95 in the
bank’s region of good coverage are a consequence of (small)
differences between the DTF and the target waveforms mean-
ing that the DTF cannot perfectly match the target waveforms.
The fitting factor (FF) measures the reduction of SNR due to
differences between the DTF and the target waveform [12]
(and should not be confused with the minimal match which
measures the loss of SNR due to discreteness of the template
bank [32]). The DTF performance is evaluated and its fitting
factor is measured in Sec. VI of Ref. [14], for NS-BH systems
an average FF of ≈ 0.93 was measured [52].

VI. SEARCH PIPELINE

The pipeline used for this search is the same as used in the
other S3 searches for binary inspirals [8] and is described fully
in a set of companion papers [19, 40]. This pipeline has been
significantly updated since the S2 analysis and a brief sum-
mary is now given.
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FIG. 4: Plots showing the best match achieved by filtering a series
of simulated signals through the template bank described in this sec-
tion. The values on the x and y axes correspond to the component
masses of the binary source to which the simulated signal corre-
sponds. The colour of the plots shows the best match achieved for
a given simulated signal. The four subplots correspond to four dif-
ferent spin-configurations of the binary source. The top-left subplot
shows results for a non-spinning binary system. The top-right sub-
plot shows results for a system consisting of one non-spinning ob-
ject and one maximally spinning object with its spin slightly mis-
aligned with the orbital angular momentum. We would expect this
system to precess. The bottow two subplots show results for two
generic precessing systems consisting of two maximally spinning
bodies with spins and orbital angular momentum all misaligned from
each other. We see that the region of the mass plane for which we ob-
tain matches > 0.9 is largest for the non-spinning system and tends
to be concentrated in the asymmetric mass region loosely bounded
by 1.0M� < m1 < 3.0M� and 12.0M� < m2 < 20.0M�.

In Sec. VI A we discuss the S3 data set. In Sec. VI B we de-
scribe how we decide whether triggers measured in different
detectors could be associated with the same gravitational wave
event. In Sec. VI C we introduce the statistic which we use to
assign SNRs to the events found in coincidence between two
or more detectors. In Sec. VI D we describe how we estimate
the expected rate of accidental coincidences.

A. Data sample

To begin with we construct a list of times for which two or
more of the detectors are operating nominally, in what is re-
ferred to as science mode. By demanding that a gravitational
wave be detected in coincidence between two or more detec-
tors we simultaneously decrease the probability of inferring
a detection when no true signal was present (a false alarm)
and improve the confidence we have in a detection of a true
signal. Data collected by the LHO detectors was only ana-
lyzed when both detectors were in science mode. This was
due to concerns that since both of these detectors share the
same vacuum system, the laser beam of a detector in anything

but science mode might interfere with the other detector.
We denote periods of time when all three detectors are in

science mode as H1-H2-L1 times and periods when only the
Hanford detectors are on as H1-H2 times. A coincident trigger
consisting of a trigger in the H1 detector and the L1 detector
will be referred to as an H1-L1 coincident trigger and simi-
larly for other combinations of detectors.

In this search we analyzed 184 hours of H1-H2-L1 data and
604 hours of H1-H2 data (see Table I). During these times we
construct template banks for each detector and subsequently
produce a list of triggers whose SNR exceeded our threshold.

Around 9% of the data is specified as playground data and
is used to tune the various parameters (e.g., SNR thresholds
and coincidence windows) used in the full search. We also
construct lists of veto times during which the data we analyze
had poor data quality due to short stretches of instrumental or
environmental noise [40, 41]. All coincident data is analyzed
but gravitational wave candidates found during veto times will
be subjected to greater scrutiny than those found during other
times.

TABLE I: Summary of the amount of data analyzed in our various
data sets. In S3 we only analyze data from the LHO detectors when
both H1 and H2 are in science mode. Around 9% of the data is
classified as playground data and is used to tune the parameters of the
search. Playground data is not included in the upper limit calculation
but is still searched for possible detections.

Data type Total analyzed (hours) Non-playground (hours)
H1-H2 604 548

H1-H2-L1 184 167

We can compare the sensitivities of the LIGO detectors by
measuring the horizon distance of a particular source — this
is the distance to which an optimally oriented source can be
observed with SNR = 8. In Fig. 5 we plot the horizon dis-
tance of a (2, 16)M� binary. This choice of component mass
reflects that the template bank used for this search (see Sec-
tion V) achieves highest matches for asymmetric binaries. In
Fig. 1 of [8] the horizon distance for a range of symmetric bi-
naries is shown. The improvement in sensitivity of the LIGO
detectors is indicated by the increase in the horizon distance
obtained for a given source by each successive science run.

B. Coincident analysis

To minimize the false alarm probability we demand that a
gravitational wave signal be observed by two or more detec-
tors with similar parameters. In order to determine whether a
trigger measured by one particular detector should be consid-
ered as coincident with a trigger in another detector we define
a set of coincidence windows. In this search we demand that
for triggers from different detectors to be considered as coin-
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FIG. 5: Distance to which an optimally oriented non-spinning
(2, 16)M� binary can be detected with SNR = 8 throughout S3.
For systems with spinning components, the horizon distance would
be equal or less than what is shown in this figure since any spin-
induced precession would cause the system to become less than op-
timally oriented and therefore reduce the measured amplitude of its
emission. We see a large improvement in the sensitivity of H1 during
this science run.

cident they must satisfy the following conditions:

|t1 − t2| < ∆t1 + ∆t2 + T1,2, (31)
|ψ0,1 − ψ0,2| < ∆ψ0,1 + ∆ψ0,2 (32)
|ψ3,1 − ψ3,2| < ∆ψ3,1 + ∆ψ3,2 (33)

where ti, ψ0,i and ψ3,i are the measured time of coalescence
and phenomenological mass parameters measured using our
template bank in detector i; ∆ti, ∆ψ0,i and ∆ψ3,i are our
coincidence windows in detector i and Ti,j is the light travel
time between detector locations i and j. The light travel time
between LHO and LLO is ∼ 10 ms.

We tune our coincidence windows on the playground data
in order to recover as many of our simulated signals as possi-
ble whilst trying to minimize the false alarm rate. The use of
playground data allows us to tune our search parameters with-
out biasing the results of our full analysis. The tuning method
used for this and the non-spinning search on S3/S4 data is
described fully in [40]. Using this tuning method we find our
coincidence windows to be equal for each detector with values
∆t = 100 ms, ∆ψ0 = 40, 000 Hz5/3 and ∆ψ3 = 600 Hz2/3.
The value of ∆t used in this search is four times larger than
the 25 ms value used in the S3 search for non-spinning binary
black holes [8] indicating that the estimation of arrival time of
a gravitational waveform is less well determined in this search
than in the non-spinning search.

C. Combined SNR

For coincident triggers we use a combined signal-to-noise
ratio ρc statistic based upon the individual signal-to-noise ra-

tios ρi measured by each detector:

ρ2
c = min

{∑
i

ρ2
i , (aρi − b)2

}
. (34)

In practise the parameters a and b are tuned so that the con-
tours of false alarm generated using Eq. (34) separate trig-
gers generated by software injection of simulated signals and
background triggers as cleanly as possible [40](see the next
subsection for details of how we estimate the background). In
this search we used values a = b = 3 for all detectors. For
coincident triggers found in all three detectors we use:

ρ2
c =

∑
i

ρ2
i . (35)

D. Background Estimation

We estimate the rate of accidental coincidences, otherwise
known as the background or false alarm rate, for this search
through analysis of time-shifted data. We time-shift the trig-
gers obtained from each detector relative to each other and
then repeat our analysis, searching for triggers that occur in
coincidence between 2 or more of the detectors. By choos-
ing our time-shifts to be suitably large (� 10 ms light travel
time between LHO and LLO) we ensure that none of the co-
incident triggers identified in our time-shift analysis could be
caused by a true gravitational wave signal and can therefore
be used as an estimate of the rate of accidental coincidences.
In practise we leave H1 data unshifted and time-shift H2 and
L1 by increments of 10 and 5 s respectively. In this search, we
analyzed 100 sets of time-shifted data (50 forward shifts and
50 backward shifts). For clarity we will use the term in-time
to mean triggers which have not been time-shifted.

VII. VETOES

A. Instrument based vetoes

We are able to veto some background triggers by observing
correlation between the gravitational wave channel (AS Q) of
a particular detector and one or more of its auxiliary chan-
nels which monitor the local physical environment. Since we
would not expect a true gravitational wave signal to excite the
auxiliary channels, we will treat as suspicious any excitation
in the gravitational wave channel that is coincident in time
with excitations in the auxiliary channels. A list of auxiliary
channels found to effectively veto spurious (non-gravitational
wave coincident triggers) were identified and used for all S3
searches [41]. Additional vetoes based upon other auxiliary
channels were considered but were subsequently abandoned
because the total amount of data these channels would have
discounted, known as the dead-time, was unacceptably large.
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B. Signal based vetoes

We can use the fact that the Hanford detectors are co-
located to veto coincident triggers whose measured amplitude
is not consistent between H1 and H2. We check for consis-
tency between the SNR values measured using H1 and H2
data for triggers found in coincidence. Since H1 is the more
sensitive instrument we simply required that the SNR mea-
sured in H1 be greater than that measured in H2 for an event to
survive this veto. Since H1 and H2 were only operated when
both were in science mode during S3, this veto means that
there will be no H2-L1 coincident triggers since this would
indicate that H2 had detected a trigger which H1 was unable
to detect.

The χ2 veto used for the primordial black hole and binary
neutron star searches [8] has not not been investigated for use
in searches using detection template families (i.e., this search
and the S2-S4 searches for non-spinning binary black holes
[7, 8]).

VIII. RESULTS

In the search of the S3 LIGO data described in this pa-
per, no triple-coincident event candidates (exceeding our pre-
determined SNR threshold and satisfying the coincidence re-
quirements described in Sec. VI B) were found in triple-time
(H1-H2-L1) data. Many double-coincident event candidates
were found in both triple-time and double-time (H1-H2) data.

A cumulative histogram of combined SNR for in-time and
background coincident triggers is shown in Fig. 6. We see
that, at the SNR threshold (i.e., the leftmost points on this
figure), the number of in-time double-coincident triggers is
consistent with the number of coincident triggers yielded by
the time-shift analysis. The small excess in the number of in-
time H1-H2 coincident triggers at higher SNRs indicates that
there is some correlation between the LHO detectors. The
coincident triggers contributing to this excess have been in-
vestigated and are not believed to be caused by gravitational
waves. Seismic activity at the Hanford site has been recorded
throughout S3 and can cause data to become noisy simulta-
neously in H1 and H2. Coincident triggers caused by seismic
noise will predominantly cause only in-time coincidences (al-
though time-shift coincidences caused by two seismic events
separated in time but shifted together can occur) leading to
an excess of in-time coincident triggers as we have observed
in Fig. 6. As mentioned previously, there were no coincident
triggers observed by all three detectors.

A scatter plot of the SNRs measured for coincident triggers
in H1-H2 times is shown in Fig. 7. The distribution of our
in-time triggers is consistent with our estimation of the back-
ground. This is also true for the double-coincident triggers
measured in H1-H2-L1 times.

The loudest in-time coincident trigger was observed in H1-
H2 when only the Hanford detectors were in science mode.
This event candidate is measured to have SNRs of 119.3 in
H1, 20.4 in H2 and a combined SNR of 58.3. The loudest co-
incident triggers are subjected to systematic follow-up inves-

tigations in which a variety of information (e.g., data quality
at time of triggers, correlation between the detector’s auxil-
iary channels and the gravitational wave channel) is used to
assess whether the coincident triggers could be confidently
claimed as detection of gravitational wave events. This event
is found at a time flagged for “conditional” vetoing. This
means that during these times some of the detectors auxil-
iary channels exhibited correlation with the gravitational wave
channel (AS Q ) and that we should be careful in how we
treat event candidates found in these times. For this partic-
ular coincident trigger an auxiliary channel indicated an in-
creased numbers of dust particles passing through the dark
port beam of the interferometer [41]. Upon further investiga-
tion it was found that this coincident trigger occurred during
a period of seismic activity at the Hanford site and we subse-
quently discounted this candidate as a potential gravitational
wave event. Time-frequency images of the gravitational wave
channel around the time of this candidate were inconsistent
with expectations of what an inspiral signal should look like
further reducing the plausibility of this candidate being a true
gravitational wave event. It is interesting, but unsurprising,
to note that during the search for non-spinning binary black
holes that also used S3 LIGO data, high-SNR triggers associ-
ated with this seismic activity were also detected [8]. Further-
more, the 20 next loudest event candidates were also investi-
gated and none were found to be plausible gravitational wave
event candidates. Work is in progress to automate the follow-
up investigative procedure and to include new techniques in-
cluding null-stream and Markov chain Monte Carlo analysis
for assessing the plausibility of coincident triggers as gravita-
tional wave events.

IX. UPPER LIMITS

Given the absence of plausible detection candidates within
the search described above, we have calculated an upper limit
on the rate of spinning compact object coalescence in the uni-
verse. We quote the upper limit rate in units of yr−1L−1

10

where L10 = 1010 L�,B is 1010 times the blue light lumi-
nosity of the sun.

The absorption-corrected blue light luminosity of a galaxy
infers its massive star formation rate which we assume scales
with the rate of compact binary coalescence within it [42].
This assumption is well justified when the galaxies reached by
the detector are dominated by spiral galaxies with ongoing star
formation (e.g., the Milky Way). Results papers reporting on
S1 and S2 [7, 43, 44] have quoted the upper limit in units of
Milky Way Equivalent Galaxy (MWEG) which is equivalent
to about 1.7 L10. Upper limits on the rate of coalescences
calculated during other searches using S3 and S4 LIGO are
given in units of L10 [8].

The upper limit calculations are based on the loudest event
statistic [45, 46], which uses both the detection efficiency at
the combined SNR of the loudest event candidate and the as-
sociated background probability. The in-time non-playground
dataset (which we use to set the upper limit) is blinded in the
sense that all analysis parameters are tuned (as described in
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FIG. 6: Cumulative histograms of the combined SNR, ρc for in-time
coincident triggers (triangles) and our background (crosses with one-
sigma deviation shown) for all H1-H2 and H1-H2-L1 times within
S3. We see a small excess in the number of in-time coincident trig-
gers with combined SNR ∼ 45. This excess was investigated and
was caused by an excess of H1-H2 coincident triggers. Since H1
and H2 are co-located, both detectors are affected by the same local
disturbances (e.g., seismic activity) which contributes to the number
of in-time coincidences but which is under-represented in time-shift
estimates of the background.

FIG. 7: Scatter plot of SNR for coincident triggers in H1-H2 times.
The light colored crosses represent in-time coincident triggers and
the black pluses represent time-shift coincident triggers that we use
to estimate the background. Note that due to our signal based veto
on H1/H2 SNR we see no coincident triggers with ρH1 < ρH2.

Secs. VI) prior to its analysis.

The Bayesian upper limit at a confidence level α, assuming

FIG. 8: Upper limits on the spinning binary coalescence rate per L10

as a function of the total mass of the binary. For this calculation,
we have evaluated the efficiency of the search using a population of
binary systems with m1 = 1.35M� and m2 uniformly distributed
between 2 and 20M�. The darker area on the plot shows the region
excluded after marginalization over the estimated systematic errors
whereas the lighter region shows the region excluded if these sys-
tematic errors are ignored. The effect of marginalization is typically
small (< 1%). The initial decrease in the upper limit corresponds to
the increasing amplitude of the signals as total mass increases. The
subsequent increase in upper limit is due to the counter effect that
as total mass increases the signals become shorter and have fewer
cycles in LIGO’s frequency band of good sensitivity.

a uniform prior on the rate R, is given by [46]

1− α = e−RT CL(ρc,max)

[
1 +

(
Λ

1 + Λ

)
RT CL(ρc,max)

]
(36)

where CL(ρc,max) is the cumulative blue light luminosity to
which we are sensitive at a given value of combined SNR
ρc,max, T is the observation time, and Λ is a measure of the
likelihood that the loudest event is consistent with being a
signal and inconsistent with background (as estimated using
time-shifts). We evaluate the cumulative luminosity CL at the
combined SNR of the loudest coincident trigger seen in this
search, ρc,max = 58.3 (see Sec. VIII for discussion of this
coincident trigger). The expression for Λ is

Λ =
|C′L(ρc,max)|
P ′B(ρc,max)

[
CL(ρc,max)
PB(ρc,max)

]−1

, (37)

where the derivatives are with respect to ρc. PB(ρ) is the prob-
ability that all background coincident triggers (as estimated
using time-shifts) have a combined SNR less than ρ. For the
loudest event candidate in this search we find PB = 0.23 and
Λ = 0.05. In the case where the loudest event candidate is
most likely due to the background Λ → 0 and the upper limit
becomes

R90% =
2.3

T CL(ρc,max)
. (38)
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In the limit of zero background, i.e., the event is definitely not
background, Λ → ∞ and the numerator in Eq. (38) becomes
3.9. The observation time T is taken from Table I, where we
use the analyzed time not in the playground. This is consistent
with our blind analysis strategy.

In searches for systems consisting of non-spinning bodies
efficiency is typically found as a function of its effective dis-
tance and chirp mass [47]. For a system consisting of non-
spinning bodies effective distance can be calculated using the
distance to the source, its inclination with respect to the detec-
tor and the detector’s antenna response functions (see Eq. (2)
of [8] and [5]). For a system consisting of spinning bodies,
its inclination with respect to a detector will evolve during the
course of the inspiral making the calculation of effective dis-
tance complicated. Instead, in this search we find efficiency
and predicted source luminosity as a function of the inverse of
the expected SNR of a source. The expected SNR is defined as
the SNR that would be obtained for a given simulated source
assuming we use a template that perfectly matches the emit-
ted gravitational waveform and a detector whose noise power
spectrum we can estimate accurately. By taking the inverse of
the expected SNR we obtain a quantity which behaves simi-
larly to the effective distance by taking larger values for sig-
nals which are nearer and/or optimally oriented to the detector
and thus more easily detectable and by taking smaller values
as the signals become less detectable.

Following the tests of the template bank (Sec. V C) we
also know that the efficiency at which we are able to detect
sources will depend on their spins as well as their effective dis-
tance and component masses. In this upper limit calculation
we assess the efficiency of the search using software injec-

tion of simulated signals representing a population of sources
with spins randomized so that i) the spin magnitude of each
of the compact objects is distributed uniformly in the range
0 < χ < 1 and ii) the direction of compact object’s spin is uni-
formly distributed on the surface of a sphere. The distances of
the simulated sources are chosen uniformly on a logarithmic
scale. The sky-positions and initial polarization and inclina-
tion angles of the simulated sources are all chosen randomly
and to be uniformly distributed on the surface of a sphere.
We evaluated the efficiency of this search for masses in the
range 1.0 M� < m1,m2 < 20.0 M�. During S3, LIGO’s
efficiency to binaries in this range was dominated by sources
within the Milky Way for which detection efficiency was high
across the entire mass range investigated due to the proximity
of these sources Earth.

The cumulative luminosity CL(ρc) can be obtained by gen-
erating a population of simulated signals using information on
the observed distribution of sources from standard astronomy
catalogs. We use a model based on [48] for the distribution of
blue light luminosity throughout the nearby Universe. We use
software injection of simulated signals (the target waveforms
described in Sec. III) to evaluate the efficiency E for observing
an event with combined SNR greater than ρc, as a function of
the source’s expected SNR. We then integrate E times the pre-
dicted source luminosity L as a function of expected SNR and
mass. Since a binary system will generally have slightly dif-
ferent orientations with respect to the two LIGO observatory
sites, the detectors at the two sites will both measure slightly
different expected SNRs. The source’s luminosity and the effi-
ciency with which it is detected are functions of both expected
SNRs, and the integration needed is two-dimensional:

CL(ρc) =
∫ ∞

0

∫ ∞

0

E(Dρ,H, Dρ,L, ρ)L(Dρ,H, dDρ,L) dDρ,L dDρ,H (39)

where Dρ is the distance measure equal to the inverse of the
expected SNR, at LHO (H) or LLO (L). As mentioned earlier,
we evaluate CL at ρc,max = 58.3.

We calculate the upper limit on the rate of coalescence for
proto-typical NS-BH binaries with masses m1 ∼ 1.35 M�
and m2 ∼ 5 M�. These values correspond to a population
of NS-BH binaries with component masses similar to those
used to assess the NS-NS and BH-BH upper limits in [8].
To calculate this upper limit we evaluate the efficiency of our
search using binaries with a Gaussian mass distribution with
means, m1 = 1.35 M� and m2 = 5 M� with standard de-
viations σ1 = 0.04 M� and σ2 = 1 M�. These efficiencies
are measured with simulated injected signals, using the same
pipeline we used to find our candidates, counting the number
of injections detected with SNR above ρc,max, and the num-
ber missed. Assuming a Gaussian distribution of masses, we
obtain an upper limit of R90% = 15.8 yr−1 L10

−1. The up-
per limit calculation takes into account the possible systematic

uncertainties which arise in this search, which are described
in some detail in [47], and we will follow the analysis pre-
sented there to calculate the systematic errors for the above
result. The most significant effects are due to the possible cal-
ibration inaccuracies of the detectors (estimated using hard-
ware injections of simulated signals) and the finite number of
Monte Carlo injections performed.

We must also evaluate the systematic errors associated with
the chosen astrophysical model of potential sources within the
galaxy. We obtain upper limits on the rate after marginal-
ization over the estimated systematic errors, as described
in [46, 47]. After marginalization over these errors we obtain
an upper limit of R90% = 15.9 yr−1 L10

−1.

We also calculate upper limits for a range of binary sys-
tems with m1 = 1.35M� and m2 uniformly distributed be-
tween 2 and 20M�. These upper limits, both before and after
marginalization are shown in Fig. 8.
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X. CONCLUSIONS

In this paper we have described the first search for gravita-
tional waves emitted during the inspiral of compact binaries
with spinning component bodies, which was carried out us-
ing data taken during the third LIGO science run. This search
uses a detection template family designed to capture the spin-
induced modulations of the gravitational waveform which
could have resulted in them being missed by other searches
targeted at non-spinning systems. The search pipeline used
to carry out this and the other recent inspiral searches [8] has
been significantly improved since S2 and is fully described in
a companion paper [8].

There were no plausible gravitational wave event candi-
dates detected within the 788 hours of S3 data analyzed. The
upper limit on the rate of coalescence for prototypical NS-BH
binaries with spinning component bodies was calculated to be
R90% = 15.9 yr−1 L10

−1 once errors had been marginalized
over.

Preliminary work is underway on an improved search for
binaries with spinning component bodies that will use S5 data
which is greater in sensitivity and observation time than pre-
vious datasets. We now have an improved parameter-space
metric which does not depend on the strong modulation ap-
proximation and we will also be able to search a larger region
of parameter space, including more comparable mass ratios.

Preparation for another search for binaries with spinning com-
ponent bodies using a template family described by physical
(rather than phenomenological) parameters [34] is also under-
way.
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