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Abstract
In searches for gravitational-wave bursts, a standard technique used to reject
noise is to discard burst event candidates that are not seen in coincidence in
multiple detectors. A coincidence test in which Bayesian inference is used
to measure how noise-like a tuple of events appears is presented here. This
technique is shown to yield higher detection efficiencies for a given false alarm
rate than do techniques based on per-parameter thresholds when applied to
a toy model covering a broad class of event candidate populations. Also
presented is the real-world example of a use of the technique for noise rejection
in a time–frequency burst search conducted on simulated gravitational-wave
detector data. Besides achieving a higher detection efficiency, the technique
is significantly less challenging to implement well than is a per-parameter
threshold method.

PACS numbers: 95.75.Pq, 95.85.Sz

1. Introduction

In searches for gravitational-wave bursts in the output of gravitational-wave antennae like those
in LIGO [1], and also in searches for other discrete gravitational-wave signals like black hole
ring downs, compact binary inspirals, etc, a standard technique used to reject noise is to discard
events that are not seen in coincidence in multiple detectors. See, for example, the searches
for gravitational waves described in [2–14], which all employ multi-instrument coincidence
tests to suppress the false alarm rate. In coincidence tests such as those used in the searches
listed above, each event found in the output of a detector is analyzed and some number of its
physical properties measured and recorded. The coincidence criterion is to demand agreement
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in the physical properties of the events collected from different instruments. For example, in
the procedures used in the searches listed above it was demanded that the times of the events
not differ from one another by more than some amount. The rationale behind the use of a
coincidence test to reduce the false alarm rate is the expectation that the physical properties of
events that are the result of noise in the environment or in the instrument will be uncorrelated
across instruments, while the physical properties of events resulting from genuine gravitational
waves will be correlated across instruments.

The details of a coincidence test lie in how a ‘match’ is defined. We can state the problem
of how to select the coincidence criteria in the following way. Let us consider that we have
before us a tuple of events, collected from some number of instruments. For example, from
a three-detector network we might have a triple comprised of one event from each detector.
How many instruments and how many events from each instrument is not important, but we
assume we are able to measure the physical properties of the events in the tuple, and from
those properties we assign to the tuple the n parameter values x1 through xn. Let us consider
these n parameters to describe a point in an n-dimensional space,

�x = (x1, x2, . . . , xn). (1)

The question we wish a coincidence test to answer for us is ‘is the tuple of events described by
the parameters �x the result of a gravitational wave?’ In the gravitational-wave searches listed
above, this question was answered by thresholding on parameter differences, for example
thresholding on the difference in the arrival times estimated from multiple instruments, or
thresholding on the difference in the estimated waveform energies and so on.

This paper presents an alternative technique, introduced in section 2, based on statistical
inference. Instead of defining thresholds on various parameters, the parameters’ distribution
densities will be measured and used to rank tuples from most to least like a gravitational wave.
In section 3, a toy model of a gravitational-wave search is introduced and used to analyze
the statistical-inference-based coincidence test, comparing its performance to the traditional
process of setting thresholds on the parameters used in the test. This is followed in section 4
with an example of the technique in a real burst search pipeline.

2. A Bayesian coincidence test

If we can collect examples of tuples of events that we know for certain to be the results of
noise, and also examples of tuples of events that we know for certain to be gravitational waves,
then we can make use of statistical inference techniques to estimate the probability that the
tuple of events whose properties are described by �x belongs to one set or the other. We can
use Bayes’ theorem to do this. If we denote the tuple of events as T, the set of tuples that are
the results of gravitational-wave bursts as S, and the set of tuples that are the results of noise
as N, then Bayes’ theorem [15] states that

P(T ∈ S|�x) = P(�x|T ∈ S)P (T ∈ S)

P (�x)
. (2)

To be clear about the notation, on the left-hand side we have the probability that the tuple T is
in the set S of real gravitational-wave events given the measured parameters of the tuple �x. On
the right-hand side, in the numerator, we have the probability of observing the parameters �x
in a tuple of events known to be the result of a gravitational wave multiplying the probability
that any tuple chosen at random is a gravitational wave. In the denominator, we have the
probability of observing the parameters �x at all, in any kind of event. If the parameters are
continuous, then both P(�x|T ∈ S) and P(�x) are distribution densities but the same equation
holds.
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Because each tuple of events is either the result of noise or of a gravitational wave,

P(T ∈ N) = 1 − P(T ∈ S), (3)

and also

P(�x) = P(�x|T ∈ S)P (T ∈ S) + P(�x|T ∈ N)P (T ∈ N)

= P(�x|T ∈ N) + [P(�x|T ∈ S) − P(�x|T ∈ N)]P(T ∈ S). (4)

Therefore,

P(T ∈ S|�x) = P(�x|T ∈ S)P (T ∈ S)

P (�x|T ∈ N) + [P(�x|T ∈ S) − P(�x|T ∈ N)]P(T ∈ S)
. (5)

From this expression, it can be shown that P(T ∈ S|�x) is a monotonically increasing function
of

�(�x) = P(�x|T ∈ S)

P (�x|T ∈ N)
, (6)

known as the likelihood ratio. Evaluation of the likelihood ratio �(�x) does not require
knowledge of P(T ∈ S), the a priori probability that a tuple chosen at random is the result of
a gravitational wave, something equivalent to knowing how many of the tuples (just not which
ones) are gravitational waves, which is information we do not have.

Computing the likelihood ratio for each tuple allows us to rank them from the tuple most
likely to be the result of a gravitational wave to the tuple that is least likely to be a gravitational
wave, and this forms the basis of the Bayesian coincidence test.

The procedure is the following. We begin by choosing a parameter space with which to
describe a multi-instrument tuple of events. How to do so for a particular gravitational-wave
burst search algorithm is beyond the scope of this paper. We then need two populations of
event tuples: a population of tuples known to be the result of gravitational waves, and a
population of tuples known to be the result of noise. We cannot obtain such populations,
indeed if we possessed the ability to do so then there would be no point to this current exercise.
Instead, if we apply to the events from each instrument a large, random, per-instrument time
offset, we can use the event tuples collected from this ‘time-shifted’ data set as a surrogate
for tuples we know to be the result of noise. Then, we can use software simulations to inject
synthetic gravitational-wave signals into real instrument data streams, and use the tuples that
are collected from these injections as surrogates for those resulting from genuine gravitational
waves. Software injections and time shifts are standard techniques in trigger-based searches
for gravitational-wave signals. See, for example, the searches cited in the introduction.

For each tuple we measure its parameters �x. From the parameters of the tuples obtained
from software injections we measure the distribution density P(�x|T ∈ S), and from the
parameters of the tuples obtained from time-shifted data we measure the distribution density
P(�x|T ∈ N). We now assign a likelihood ratio, �(�x), to every tuple of events by measuring its
parameters �x and computing the ratio in (6) using the two distributions we have just measured.
We can do this for all of the injection tuples, and all of the time slide tuples. We can also,
now, proceed to collect tuples of events from the ‘zero lag’, or the data with no time offsets
applied, and compute and record the likelihood ratio for each of these tuples as well.

The value of the likelihood ratio assigned to each tuple is a measure of how the injection-
like tuple appears to be, and there are a number of possible coincidence tests that can be
implemented with this information. One easy possibility is to sort the zero-lag tuples from
highest to lowest value of their likelihood ratios, choose the number of them we wish to retain,
keep that many from the high end of the list and discard the rest. This is easy to implement,
but has the disadvantage that it is a relative measure of quality: how much like a software
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injection a zero-lag event needs to appear in order to survive the cut depends on what other
zero-lag events are in the list.

An absolute quality scale can be established using the time slide, or ‘background’, tuples.
To do so, the total observation time analyzed in the background, tb, is computed, as is the
observation time analyzed at zero lag, tf . The desired number of zero-lag events, 〈Nf〉, is
multiplied by the ratio of the background-to-zero-lag observation times, and the likelihood
ratio threshold is found for which that many time slide tuples are retained. Discarding any
zero-lag tuple whose likelihood ratio is below this threshold will leave some unknown number
of survivors. If the zero lag consists exclusively of noise events then on average there will be
〈Nf〉 events surviving this coincidence cut, but there could be any number at all more than this
if the zero-lag tuples contain a population of genuine gravitational-wave events.

3. Justification

The justification for the use of Bayesian inference as a coincidence test for noise rejection
follows from the analysis of the behavior of the method as the number of parameters used for
event comparison increases. Let us consider a simple model in which we have n dimensionless
parameters xi , all restricted to the same domain

|xi | � X, (7)

where X � 1. In this model, let xi from injection tuples be found to be n independently-
distributed Gaussian (within their domains) random variables with means of 0 and unit variance
so that

P(�x|T ∈ S) ≈ 1

(2π)n/2
e− 1

2 �x·�x/n2
(8)

(assuming X is sufficiently large that the normalization error is irrelevant). From the noise
tuples, let xi be found to be n independently-distributed random variables with uniform density
over their domains so that

P(�x|T ∈ N) = 1

(2X)n
. (9)

The assumption that xi are confined to finite domains is almost certain to be true in any real
application since the mechanism by which potential gravitational-wave tuples are identified for
consideration by the coincidence test must involve the requirement of at least some sort of loose
agreement among the constituent events, for otherwise the combinatorics become prohibitive.
The assumption that the parameters are independently distributed is justified because if this
was not the case, if one of the parameters was strongly correlated with another then including
it in the coincidence test would not be adding additional information about the tuple. It is
reasonable to assume the researcher has sought out parameters for use in the coincidence
that are independent of one another. The assumption of Gaussianity in the injection tuples
can presumably be made approximately true in any real application through a straightforward
transformation, although this is unlikely to leave the noise tuples with uniformly-distributed
parameters. In the end, however, the coincidence test will reject all but the ‘best’ tuples which
tend to lie near �x = 0, where it is probably the case that the distributions are approximately
Gaussian and flat respectively anyway. Note that I am only asserting the relevance of this
simplified model that has been introduced to perform the analysis below. It is not necessary
for these assumptions to hold in order to use the technique in a real application.

Let us now compare the Bayesian coincidence test to a coincidence test in which a set of
thresholds

|xi | � �xi (10)
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is imposed on the parameters. Imposing per-parameter thresholds is typical of the coincidence
tests in use in many searches for gravitational waves. Let the up-stream event generator yield
tuples in noise at a rate R, and we wish our coincidence test to sieve the tuples down to the
final false alarm rate r < R. For the noise tuples with their independent uniformly-distributed
parameters, the probability that all n parameters are within the allowed ranges is

P(noise survives) = X−n

n∏
i=1

�xi. (11)

To achieve the target false alarm rate, the probability that a tuple survives coincidence must
be r/R, so

n∏
i=1

�xi = r

R
Xn. (12)

The probability of a software injection surviving the same coincidence test, the coincidence
test’s efficiency, is

ε =
n∏

i=1

erf
�xi√

2
, (13)

which is maximized (the search is given the highest detection efficiency) by choosing the same
threshold for all parameters

�xi = �x = X
( r

R

) 1
n

. (14)

Therefore, for fixed false alarm rate r, the detection efficiency achieved using per-parameter
thresholds is

ε =
[

erf
X√

2

( r

R

) 1
n

]n

. (15)

We can invert this to express the size of the parameter space X in terms of the detection
efficiency ε and the false alarm survival rate r/R,

X =
√

2
( r

R

)− 1
n

erf−1ε
1
n . (16)

This will be used below to relate the detection efficiency of the likelihood-ratio-based
coincidence test to that of the per-parameter-threshold-based test.

Ignoring an irrelevant proportionality constant, the likelihood ratio function can be written
as

�(�x) = e− 1
2 �x·�x/n2

. (17)

In the �x space, the surfaces of constant �(�x) are (n− 1)-spheres centered on the origin whose
enclosed volumes are [16]

πn/2

�(n/2 + 1)
(�x · �x)n/2. (18)

The values of �x from noise tuples are uniformly distributed over their domain, the volume of
which is (2X)n. Therefore, the radius squared that encloses a fraction r/R of the noise tuples
is

�x · �x = 4X2

π

[ r

R
�(n/2 + 1)

]2/n

. (19)
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Figure 1. Comparison of the detection efficiencies of the likelihood-ratio-based and parameter-
threshold-based coincidence tests. The plot is of ε�, the probability that an injection survives
the likelihood-based coincidence test, as a function of the number of parameters used in the
coincidence comparison for a variety of values of ε, the probability of the same injection surviving
the parameter-threshold-based coincidence test.

In the injection tuples, �x · �x is the sum of the squares of n-independent Gaussian-distributed
random variables of unit variance, and so is a χ2-distributed random variable with n degrees
of freedom whose cumulative distribution function is

F(�x · �x; n) = γ
(
n/2, 1

2 �x · �x)
�(n/2)

, (20)

where γ is the lower incomplete gamma function. Therefore, the probability of an injection
surviving the Bayesian coincidence test is

ε� = 1

�(n/2)
γ

(
n

2
,

2X2

π

[ r

R
�(n/2 + 1)

]2/n
)

. (21)

We can use (16) to relate this to the efficiency that is achieved by thresholding on each
parameter individually,

ε� = 1

�(n/2)
γ

(
n

2
,

4

π

[
erf−1ε

1
n

]2
�

2
n (n/2 + 1)

)
. (22)

Note that the false alarm rate does not appear in this relationship. In this toy model, the
number of parameters used in comparing events is the only free parameter in the relationship
between the efficiencies that are achieved by thresholding on individual parameters and those
achieved by thresholding on the likelihood ratio.

A comparison of the performance of the likelihood-ratio-based coincidence test to the
parameter-threshold-based coincidence test is shown in figure 1. This figure is a plot of ε�,
the detection efficiency achieved by the likelihood-ratio-based coincidence test in (21), as a
function of the number of parameters used in the test for several values of ε, the detection
efficiency achieved by the parameter threshold coincidence test. When a small number of
parameters is used for event comparison the two techniques are essentially equivalent, but as
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the number of parameters is increased thresholding on the likelihood becomes an increasingly
more significant improvement over single-parameter thresholds.

Despite the evidence this toy model provides in support of the likelihood-based
coincidence test’s greater sensitivity over a parameter-threshold-based coincidence test, it
should be remarked that this toy model is, in many ways, actually favoring the parameter-
threshold-based approach. Assuming the software injections result in parameters �x that are
nicely clustered around the origin, as this toy model does, makes setting simple thresholds on
those parameters a sensible approach to coincidence analysis. In practice, it can be found that
the software injections are not so nicely clustered around a single point in parameter space,
indeed it can be found that software injections are found in disjoint regions of the parameter
space. As the software injection parameter distribution becomes more complex, and in
particular as it becomes multi-modal, one should expect that the likelihood ratio approach
to event tuple selection will become a yet greater improvement over a set of per-parameter
thresholds. The following section illustrates a more realistic example.

4. A practical example

To illustrate the method of noise rejection via Bayesian coincidence filtering described above,
an example implementation has been constructed and applied to the event tuples recorded by
a time–frequency ‘excess power’ burst search [17, 18] run on simulated strain data from the
three LIGO instruments. The strain noise was modeled as a stationary white Gaussian process.
The excess power burst search was able to measure a number of physical properties of each
of the events it identified in the strain data. These include: t and f , estimates of the time
and frequency at which the greatest part of the event’s strain energy could be found; �t and
�f , estimates of the event’s duration and bandwidth; and hrss, an estimate of the square root
of the time integral of the event’s strain-squared time series (a quantity related to the energy
in the gravitational wave). The search was used to collect event triples for consideration by
the Bayesian coincidence test. Each triple contained exactly one event from each of the three
simulated LIGO instruments (H1, H2 and L1), and it was required that in these triples the
time–frequency tiles representing the events all mutually intersect.

A population of software injections consisting of 214 485 linearly-polarized sine-Gaussian
waveforms was used as a surrogate for real gravitational-wave bursts. These waveforms are
given by

h(t) = hmax sin(2πf t) exp

[
− (2πf t)2

2Q2

]
, (23)

where f is the injection’s center frequency, hmax is the peak strain amplitude of the Gaussian
envelope and Q sets the width of the envelope. The injections had Q held fixed at 8.89 to
reproduce the injections used in a number of burst searches, such as [14]. The injections
had random center frequencies uniformly distributed in log f/1 Hz, and random amplitudes
uniformly distributed in log hmax. The range for each parameter was selected to be appropriate
for the search, in particular the amplitudes extended to values too small to be detected and
sufficiently large as to be nearly guaranteed to be detected. For the time slides, the data from
the simulated H1 and H2 instruments which are co-located at the LIGO Hanford Observatory
in Hanford, Washington have no time offsets applied but the data from the simulated L1
instrument at the LIGO Livingston Observatory in Livingston, Louisiana were shifted with
respect to the simulated H1 and H2 data by 200 different (nonzero) time offsets to synthesize
a population of approximately 2 × 108 noise triple surrogates. The time offsets were integer
multiples of

√
80 s.
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In each event triple, the three events were taken pair-wise and five parameters extracted
from each pair:

(1) the difference in their durations as a fraction of the average of the two durations,
(2) the difference in their bandwidths as a fraction of the average of the two bandwidths,
(3) the difference in their hrss as a fraction of the average of the two,
(4) the difference in their peak frequencies as a fraction of the average of the two, and
(5) the difference in their peak times.

This resulted in a total of 15 physical quantities being extracted from each tuple of three
events. In this example, it is important that the parameters all be ‘differences’, because the
object is to turn this information into a coincidence test to reject triples whose constituent
events differ too much from one another. Mechanically, however, nothing in the procedure
requires the parameters to be differences. The particular choice of parameters given above was
made empirically through observation of the output of the excess power burst search code.

That the parameter space has 15 dimensions creates a number of practical implementation
problems. The first is that if the distribution densities are measured by binning the parameter
space and counting the number of noise and software injection triples that are found in each
bin, the number of bins required for this is very large. For example, placing just 20 bins
along each coordinate axis requires a total of 3.3 × 1019 bins to span the entire volume of the
parameter space, a number beyond the storage capabilities of present-day computers. Even if
a computer could be found that could store that many numbers in memory or on disk, given
the speed of present-day computers it would not be possible to collect enough noise events
or perform enough software injections to measure the probability density in each bin with
acceptable accuracy.

Luckily, investigation shows that the correlation matrix for the 15 parameters described
above is nearly diagonal, meaning the parameters are nearly uncorrelated. The ratio of each
of the off-diagonal elements in the normalized covariance matrix to the diagonal elements is
∼10%. Being uncorrelated is necessary but not sufficient to prove statistical independence,
but since testing for statistical independence is difficult with so many parameters, let us treat
the parameters as though they are statistically independent. This allows us to approximate the
15-dimensional likelihood ratio as

�(�x) ≈
n∏

i=1

�(xi) =
n∏

i=1

P(xi |T ∈ S)

P (xi |T ∈ N)
, (24)

where �(xi) are the likelihood ratio functions measured for each of the n = 15 parameters
individually (for notational simplicity, the different functions are identified by their arguments).
It should be remarked that, mechanically, the replacement in (24) can be performed whether
or not it is a good approximation. The quality of the coincidence test will be improved if
this substitution is a good approximation, but machine limitations can require this substitution
to be made regardless. In the event that the desired parameters are found to be significantly
correlated, and machine limitations prevent the measurement of the parameter distributions
throughout the full volume of parameter space, it might be possible to (at least approximately)
diagonalize the correlation matrix through the construction of a coordinate transformation to a
basis whose coordinates are not as correlated. Since a straightforward approximation scheme
was available in this example application the problem has not been investigated further.

The probability densities appearing in the numerator and denominator of (24) are shown
in figure 2. Some interesting features are visible in these plots. First, several show families of
spikes of high event density, especially in the event triples associated with noise. These have
their origin in internal discreteness in the search algorithm used to identify burst events in the
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Figure 2. Distribution densities for each of the 15 parameters used for coincidence testing in event triples recorded by an excess power burst search analyzing simulated versions of
the outputs of the three LIGO instruments, H1, H2 and L1. The dashed curves show the distribution densities as observed in noise, and the solid show them as observed in software
injections. In all plots the vertical axis is probability density. The 15 parameters are found to be approximately uncorrelated, and using that to justify treating them as statistically
independent the full joint distributions are given by the products of these 15 functions. The symbols have the following meanings. �t is the duration of an event, �f is the bandwidth
of an event, hrss is the square root of its integrated strain squared (a quantity related to the energy of the event), f is the event’s peak frequency, and t its peak time. Visible in these plots
is the entire volume of the parameter space (note in particular the non-linear binning used for the peak time differences).
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Figure 3. ROC curve for the example application. The left edge of the graph corresponds to the
highest threshold, the strictest cut which only the best of the best noise and injections can survive.
See the text for discussion.

time series. The algorithm tests the time series against a family of template waveforms, the
discreteness of the template bank appears in the distribution of parameters seen in the final
event candidates, and for a number of reasons this phenomenon is observed more strongly
in noise events than software injections. The suppression of event triples whose parameters
occur at these special, bad, values is a characteristic of thresholding on the likelihood ratio
that is not easily reproduced by thresholding on individual parameters.

A second feature of note in these distributions is that the hrss differences for the H1–L1
and H2–L1 pairs show that there are volumes of the parameter space in which injections can
be found but no noise at all. The likelihood ratio assigned to injections in these regions of
parameter space is ∞, and no threshold will ever cut them—they could be interpreted as
guaranteed detections of gravitational waves. Unfortunately, this arises here from the simple
noise model used in this demonstration, and is unlikely to be seen in a real application. Real
instruments exhibit glitches in their outputs that will likely result in the black curves filling
the parameter space.

Note also how the 15 parameters are not all equally useful in discriminating noise from
injections. For some parameters the distribution densities for the noise and injection tuples
are more similar to one another than they are for others. This is one of the strengths of this
technique, which it does not require all parameters used for event comparison to be equally
good at discriminating noise from injections. Weaker parameters, whose noise and injection
distributions are similar, will contribute factors close to 1 in (24) and so contribute less weight
to the final ranking of the tuples. In fact, even in the worst-case scenario in which one of the
parameters proves to be no better than a random number generator it will simply be disregarded
and not harm the fidelity of the ranking.

Having measured the 15 likelihood ratio functions, (24) can now be evaluated for any
event triple. In particular, we can collect more noise event triples and do more software
injections, and rank the two sets from the highest to the lowest value of their likelihood ratios.
We can then apply a likelihood ratio cut to each of the two sets, and ask with what probability
a noise triple and an injection triple survive the cut. By plotting the one probability against
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the other as the likelihood ratio threshold is varied we obtain the ROC curve. This is shown
in figure 3. Because some injections are found in regions of parameter space where there
are no noise event triples, the curve becomes horizontal at the left edge: there are injections
that survive any cut, no matter how high the threshold is set. Similarly, some noise triples
are found in regions of parameter space where there are no injection triples or arbitrarily few,
so there are noise triples assigned likelihood ratios lower than that assigned to any injection
triple. Therefore, the curve becomes vertical at high probabilities (although the logarithmic
horizontal scale compresses the feature, making it difficult to see on this graph).

The step feature at the left of the graph is likely meaningless. At r/R = 10−7 only ∼10
of the highest-ranked noise triples remain following the cut, which is likely too small a sample
to conclude anything meaningful about the distribution of likelihood ratios assigned to events
in this extreme end of the tail.

5. Concluding remarks

This paper has presented an approach to noise rejection in a multi-instrument gravitational-
wave burst search in the form of a multi-event coincidence test based on statistical inference.
The technique has the advantages over standard per-parameter threshold based coincidence
tests of achieving higher detection probability for a given false alarm rate, being easier to
implement, and also being self-tuning and thus less laborious. A toy model has been introduced
to understand the technique’s behavior, and a practical implementation has been tested using
populations of noise and software injection events recovered from a real gravitational-wave
burst search pipeline run on stationary white Gaussian noise.

Bayesian inference has been used previously in constructing burst search detection
statistics, for example in [19]. There the authors describe designing the waveform basis
onto which the data are projected at the event identification stage of a pipeline in a manner
that incorporates realistic priors on both the signals being searched for and the noise in the
detector network. The technique presented here is closely related to that technique. Instead of
using detailed noise and signal models to control the construction of a waveform basis for the
event identification stage of the pipeline, in the technique presented here a naive waveform
basis is used for event identification (typically having been derived from the assumption that
the noise is stationary and Gaussian) and afterwards realistic noise and signal priors are used
to re-rank the list of events generated by the pipeline.

The generation of the event lists, particularly the hundreds of time-shifted event lists
used as a noise surrogate, can require considerable computer time and disk resources. The
use of a naive waveform basis for initial event identification followed by a noise and signal
model-dependant re-ranking allows multiple signal models to be considered without the need
to regenerate the noise tuple list. Applying detailed noise and signal models at an earlier stage
of the pipeline might yield higher detection efficiencies for a given false alarm rate, but the
savings in computation time and storage from applying it later can be significant and might
produce different kinds of improvements such as the ability to collect higher number statistics
on injections and noise in order to measure rate upper limits more accurately.
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