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In searches for gravitational-wave bursts, a standard technique used to reject noise is to discard
burst event candidates that are not seen in coincidence in multiple detectors. Presented here is
a coincidence test in which Bayesian inference is used to measure how noise-like a tuple of events
appears. This technique is shown to yield higher detection efficiencies for a given false alarm rate
than do techniques based on per-parameter thresholds when applied to a toy model covering a broad
class of event candidate populations. Also presented is the real-world example of a the use of the
technique for noise rejection in a time-frequency burst search conducted on LIGO data. Besides
achieving a higher detection efficiency, the technique is significantly less challenging to implement
well than is a per-parameter threshold method.
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I. INTRODUCTION

In searches for gravitational-wave bursts in the out-
put of gravitational-wave antennas like LIGO, and also
in searches for other discrete gravitational-wave signals
like black hole ring-downs, compact binary inspirals, etc.,
a standard technique used to reject noise is to discard
burst events that are not seen in coincidence in multiple
detectors. Each event found in the output of a detec-
tor is analyzed, and some number of physical properties
measured and recorded. Coincidence tests typically in-
volve demanding some level of agreement in the physical
properties of events collected from several instruments.
For example, one might ask that the times at which the
events were observed to occur all fall within some win-
dow, and so on. The rationale behind this procedure is
that the physical properties of events that are the result
of noise in the environment or in the instrument are ex-
pected to be uncorrelated between instruments, while the
physical properties of events resulting from genuine grav-
itational waves will be correlated between instruments.
See, for example, the searches for gravitational waves de-
scribed in [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13].

The details of a coincidence test lie in how a “match”
is defined. We can state the problem of how to select the
coincidence criteria in the following way. Let us consider
that we have before us a tuple of events, collected from
some number of instruments. How many events, and
how many instruments, is not important, but we assume
we are able to measure the physical properties of the
events in the tuple, and from those properties we assign
to the tuple the n parameter values x1 through xn. Let
us consider these n parameters to describe a point in an
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n-dimensional space,

~x = (x1, x2, . . . , xn). (1)

There need not be a norm defined for this space, but if it
is continuous then in what follows there must be a volume
element, dnx. The question we wish a coincidence test
to answer for us is “Is the tuple of events described by
the parameters ~x the result of a gravitational wave?”

II. BAYESIAN COINCIDENCE TEST

If we can collect examples of tuples of events that we
know for certain to be the results of noise, and also ex-
amples of tuples of events that we know for certain to be
gravitational waves, then we can make use of statistical
inference techniques to estimate the probability that the
tuple of events whose properties are described by ~x be-
longs to one set or the other. We can use Bayes’ theorem
to do this. If we denote the tuple of events as T , the set
of tuples that are the results of gravitational-wave bursts
as S, and the set of tuples that are the results of noise as
N , then Bayes’ theorem [14] states that

P (T ∈ S|~x) =
P (~x|T ∈ S)P (T ∈ S)

P (~x)
. (2)

To be clear about the notation, on the left-hand side we
have the probability that the tuple T is in the set S of real
gravitational-wave events given the measured parameters
of the tuple ~x. On the right-hand side, in the numerator,
we have the probability of observing the parameters ~x in
a tuple of events known to be the result of a gravitational
wave multiplying the probability that any tuple chosen at
random is a gravitational wave. In the denominator, we
have the probability of observing the parameters ~x at all,
in any kind of event. If the parameters are continuous,
then P (~x|T ∈ S) and P (~x) are both distribution densities
but the same equation holds.
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Because each tuple of events is either the result of noise
or of a gravitational wave,

P (T ∈ N) = 1− P (T ∈ S), (3)

and also

P (~x) = P (~x|T ∈ S)P (T ∈ S) + P (~x|T ∈ N)P (T ∈ N)

= P (~x|T ∈ N)
+ [P (~x|T ∈ S)− P (~x|T ∈ N)]P (T ∈ S).

(4)

Therefore,

P (T ∈ S|~x) =
P (~x|T ∈ S)P (T ∈ S)

P (~x|T ∈ N) + [P (~x|T ∈ S)− P (~x|T ∈ N)]P (T ∈ S)
.

(5)

From this expression, it can be shown that P (T ∈ S|~x)
is a monotonically increasing function of

Λ(~x) =
P (~x|T ∈ S)
P (~x|T ∈ N)

, (6)

known as the likelihood ratio. Evaluation of the likeli-
hood ratio Λ(~x) does not require knowledge of P (T ∈ S),
the a priori probability that a tuple chosen at random is
the result of a gravitational wave, something equivalent
to knowing how many of the tuples (just not which ones)
are gravitational waves, which is information we do not
have.

Computing the likelihood ratio for each tuple allows us
to rank them from the tuple most likely to be the result
of a gravitational wave to the tuple that is least likely to
be a gravitational wave, and this forms the basis of the
Bayesian coincidence test.

The procedure is the following. We begin by choos-
ing a parameter space with which to describe a multi-
instrument tuple of events. How to do so for a particular
gravitational-wave burst search algorithm is beyond the
scope of this paper. We then need two populations of
event tuples: a population of tuples known to be the re-
sult of gravitational waves, and a population of tuples
known to be the result of noise. We cannot obtain such
populations, indeed if we possessed the ability to do so
then there would be no point to this current exercise.
Instead, if we apply to the events from each instrument
a large, random, per-instrument time offset, we can use
the event tuples collected from this “time shifted” data
set as a surrogate for tuples we know to be the result
of noise. Then, we can use software simulations to in-
ject synthetic gravitational-wave signals into real instru-
ment data streams, and use the tuples that are collected
from these injections as surrogates for those resulting
from genuine gravitational waves. Software injections
and time shifts are standard techniques in trigger-based
searches for gravitational-wave signals. See, for example,
the searches cited in the Introduction.

For each tuple we measure its parameters ~x. From the
parameters of the tuples obtained from software injec-
tions we measure the distribution density P (~x|T ∈ S),
and from the parameters of the tuples obtained from
time-shifted data we measure the distribution density
P (~x|T ∈ N). We now assign a likelihood ratio, Λ(~x),
to every tuple of events by measuring its parameters ~x
and computing the ratio in (6) using the two distribu-
tions we have just measured. We can do this for all of
the injection tuples, and all of the time slide tuples. We
can also, now, proceed to collect tuples of events from the
“foreground”, or the data with no time offsets applied,
and compute and record the likelihood ratio for each of
these tuples as well.

The value of the likelihood ratio assigned to each tuple
is a measure of how injection-like the tuple appears to
be, and there are a number of possible coincidence tests
that can be implemented with this information. One easy
possibility is to sort the foreground tuples from highest
to lowest value of their likelihood ratios, choose the num-
ber of them we wish to retain, keep that many from the
high end of the list and discard the rest. This is easy to
implement, but has the disadvantage that it is a relative
measure of quality: how much like a software injection a
foreground event needs to appear in order to survive the
cut depends on what other foreground events are in the
list.

An absolute quality scale can be established using the
time slide, or “background”, tuples. To do so, the total
observation time analyzed in the background, tb, is com-
puted, as is the observation time analyzed in the fore-
ground, tf. The desired number of foreground events,
〈Nf〉, is multiplied by the ratio of the background to fore-
ground observation times, and the likelihood ratio thresh-
old is found for which that many time slide tuples is re-
tained. Discarding any foreground tuple whose likelihood
ratio is below this threshold will leave some unknown
number of survivors. If the foreground consists exclu-
sively of noise events then on average there will be 〈Nf〉
events surviving this coincidence cut, but there could be
any number at all more than this if the foreground tu-
ples contain a population of genuine gravitational-wave
events.

III. JUSTIFICATION

The justification for the use of Bayesian inference as a
coincidence test for noise rejection follows from the anal-
ysis of the behaviour of the method as the number of
parameters used for event comparison increases. Let us
consider a simple model in which we have n dimensionless
parameters xi, all restricted to the same domain

|xi| ≤ X, (7)

where X � 1. In this model, let the xi from injection
tuples be found to be n independently-distributed Gaus-
sian (within their domains) random variables with means
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of 0 and unit variance so that

P (~x|T ∈ S) ≈ 1
√

2π
n e−

1
2~x · ~x/n2

, (8)

(assume X is sufficiently large that the normalization
error is irrelevant). From the noise tuples, let the xi

be found to be n independently-distributed random vari-
ables with uniform density over their domains so that

P (~x|T ∈ N) =
1

(2X)n
. (9)

The assumption that the xi are confined to finite do-
mains is almost certain to be true in any real application
since the mechanism by which potential gravitational-
wave tuples are identified for consideration by the co-
incidence test must involve the requirement of at least
some sort of loose agreement among the constituent
events, for otherwise the combinatorics become pro-
hibitive. The assumption that the parameters are
independently-distributed is justified because if this was
not the case, if one of the parameters was strongly cor-
related with another then including it in the coincidence
test would not be adding additional information about
the tuple. It is reasonable to assume the researcher has
sought out parameters for use in the coincidence that are
independent of one another. The assumption of Gaus-
sianity in the injection tuples can presumably be made
approximately true in any real application through a
straight-forward transformation, although this is unlikely
to leave the noise tuples with uniformly-distributed pa-
rameters. In the end, however, the coincidence test will
reject all but the “best” tuples which tend to lie near
~x = 0, where it is probably the case that the distribu-
tions are approximately Gaussian and flat respectively
anyway. Note that I am only asserting the relevance of
this simplified model that has been introduced to per-
form the analysis below. It is not necessary for these
assumptions to hold in order to use the technique in a
real application.

Let us now compare the Bayesian coincidence test to
a coincidence test in which a set of thresholds,

|xi| ≤ ∆xi, (10)

is imposed on the parameters. Imposing per-parameter
thresholds is typical of the coincidence tests in use in
many searches for gravitational waves. Let the up-stream
event generator yield tuples in noise at a rate R, and we
wish our coincidence test to sieve the tuples down to the
final false alarm rate r < R. For the noise tuples with
their independent uniformly-distributed parameters, the
probability that all n parameters are within the allowed
ranges is

P (noise survives) = X−n
n∏

i=1

∆xi. (11)

To achieve the target false alarm rate, the probability
that a tuple survives coincidence must be r/R, so

n∏
i=1

∆xi =
r

R
Xn. (12)

The probability of a software injection surviving the same
coincidence test, the coincidence test’s efficiency, is

ε =
n∏

i=1

erf
∆xi√

2
, (13)

which is maximized (the search is given the highest de-
tection efficiency) by choosing the same threshold for all
parameters,

∆xi = ∆x = X
( r
R

) 1
n

. (14)

Therefore, for fixed false alarm rate r, the detection effi-
ciency achieved using per-parameter thresholds is

ε =
[
erf

X√
2

( r
R

) 1
n

]n

. (15)

The X that yields a detection efficiency of ε is

X =
√

2
( r
R

)− 1
n

erf−1 εn. (16)

Ignoring an irrelevant proportionality constant, the
likelihood ratio function can be written as

Λ(~x) = e−
1
2~x · ~x/n2

. (17)

In the ~x space, the surfaces of constant Λ(~x) are (n− 1)-
spheres centred on the origin whose enclosed volumes are
[15]

πn/2

Γ(n/2 + 1)
(~x · ~x)n/2. (18)

The values of ~x from noise tuples are uniformly-
distributed over their domain, the volume of which is
(2X)n. Therefore, the radius squared that encloses a
fraction r/R of the noise tuples is

~x · ~x =
4X2

π

[ r
R

Γ(n/2 + 1)
]2/n

. (19)

In the injection tuples, ~x · ~x is the sum of the squares of
n independent Gaussian-distributed random variables of
unit variance, and so is a χ2-distributed random variable
with n degrees of freedom whose cumulative distribution
function is

F (~x · ~x;n) =
γ(n/2, 1

2~x · ~x)
Γ(n/2)

, (20)

where γ is the lower incomplete Gamma function.
Therefore, the probability of an injection surviving the
Bayesian coincidence test is

εΛ =
1

Γ(n/2)
γ

(
n

2
,

2X2

π

[ r
R

Γ(n/2 + 1)
]2/n

)
. (21)
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FIG. 1: Comparison of the detection efficiencies of the likeli-
hood ratio based and parameter threshold based coincidence
tests. The plot is of εΛ, the probability that an injection sur-
vives the likelihood-based coincidence test, as a function of
the number of parameters used in the coincidence compari-
son for a variety of values of ε, the probability of the same
injection surviving the parameter threshold based coincidence
test.

We can use (16) to express this in terms of the efficiency
that is achieved by thresholding on each parameter indi-
vidually,

εΛ =
1

Γ(n/2)
γ

(
n

2
,

4
π

[
erf−1 εn

]2
Γ

2
n (n/2 + 1)

)
. (22)

Notice that the false alarm rate does not appear in this
relationship. In this toy model, the number of parameters
used in comparing events is the only free parameter in the
relationship between the efficiencies that are achieved by
thresholding on individual parameters and those achieved
by thresholding on the likelihood ratio.

A comparison of the performance of the likelihood ratio
based coincidence test to the parameter threshold based
coincidence test is shown in Figure 1. This figure is a plot
of εΛ, the detection efficiency achieved by the likelihood
ratio based coincidence test in (21), as a function of the
number of parameters used in the test for several values
of ε, the detection efficiency achieved by the parameter
threshold coincidence test. When a small number of pa-
rameters is used for event comparison the two techniques
are essentially equivalent, but as the number of parame-
ters is increased thresholding on the likelihood becomes
an increasingly more significant improvement over single-
parameter thresholds.

Despite the evidence this toy model provides in support
of the likelihood based coincidence test’s greater sensi-
tivity over a parameter threshold based coincidence test,
it should be remarked that this toy model is, in many
ways, actually favouring the parameter threshold based

approach. Assuming the software injections result in pa-
rameters ~x that are nicely clustered around the origin,
as this toy model does, makes setting simple thresholds
on those parameters a sensible approach to coincidence
analysis. In practise, it can be found that the software in-
jections are not so nicely clustered around a single point
in parameter space, indeed it can be found that software
injections are found in disjoint regions of the parameter
space. As the software injection parameter distribution
becomes more complex, and in particular as it becomes
multi-modal, one should expect that the likelihood ra-
tio approach to event tuple selection will become a yet
greater improvement over a set of per-parameter thresh-
olds. The next section illustrates a more realistic exam-
ple.

IV. A PRACTICAL EXAMPLE

To illustrate the method of noise rejection via Bayesian
coincidence filtering described above, an example imple-
mentation has been constructed and applied to the event
tuples recorded by a time-frequency “excess power” burst
search [16], [17] run on simulated strain data from the
three LIGO instruments. The strain noise was modelled
as a stationary white Gaussian process. The excess power
burst search was able to measure a number of physical
properties of each of the events it identified in the strain
data. These include: t and f , estimates of the time
and frequency at which the greatest part of the event’s
strain energy could be found; ∆t and ∆f , estimates of
the event’s duration and bandwidth; and hrss, an esti-
mate of the square root of the time integral of the event’s
strain-squared time series (a quantity related to the en-
ergy in the gravitational wave). The search was used to
collect event triples for consideration by the Bayesian co-
incidence test. Each triple contained exactly one event
from each of the three simulated LIGO instruments (H1,
H2, and L1), and it was required that in these triples the
time-frequency tiles representing the events all mutually
intersect.

A population of software injections consisting of
214485 linearly-polarized sine-Gaussian waveforms all
with Q = 8.89 was used as a surrogate for real
gravitational-wave bursts. The injections had ran-
dom centre frequencies uniformly distributed in log f ,
and random amplitudes uniformly distributed in log h
(log strain). The range for each parameter was selected
to be appropriate for the search, in particular the am-
plitudes extended to values too small to be detected and
sufficiently large as to be nearly guaranteed to be de-
tected. For the time slides, the data from the simulated
H1 and H2 instruments which in reality are co-located at
the LIGO Hanford Observatory in Hanford, Washington,
had no time offsets applied but the data from the simu-
lated L1 instrument at the LIGO Livingston Observatory
in Livingston, Louisiana, was shifted with respect to the
simulated H1 and H2 data by 200 different (non-zero)
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time offsets to synthesize a population of approximately
2 × 108 noise triple surrogates. The time offsets were
integer multiples of

√
80 s.

In each event triple, the three events were taken pair-
wise, and five parameters extracted from each pair:

1. the difference in their durations as a fraction of the
average of the two durations,

2. the difference in their bandwidths as a fraction of
the average of the two bandwidths,

3. the difference in their hrss as a fraction of the aver-
age of the two,

4. the difference in their peak frequencies as a fraction
of the average of the two, and

5. the difference in their peak times.

This resulted in a total of 15 physical quantities being ex-
tracted from each tuple of three events. In this example,
it is important that the parameters all be “differences”,
because the object is to turn this information into a co-
incidence test to reject triples whose constituent events
differ too much from one another. Mechanically, how-
ever, nothing in the procedure requires the parameters
to be differences. The particular choice of parameters
given above was made empirically through observation
of the output of the excess power burst search code.

That the parameter space has 15 dimensions creates
a number of practical implementation problems. The
first is that if the distribution densities are measured by
binning the parameter space and counting the number
of noise and software injection triples that are found in
each bin, the number of bins required for this is very
large. For example, placing just 20 bins along each co-
ordinate axis requires a total of 3.3 × 1019 bins to span
the entire volume of the parameter space, a number be-
yond the storage capabilities of present-day computers.
Even if a computer could be found that could store that
many numbers in memory or on disk, given the speed of
present day computers it would not be possible to collect
enough noise events or perform enough software injec-
tions to measure the probability density in each bin with
acceptable accuracy.

Luckily, investigation shows that the correlation ma-
trix for the 15 parameters described above is nearly di-
agonal, meaning the parameters are nearly uncorrelated.
The ratio of each of the off-diagonal elements in the nor-
malized covariance matrix to the diagonal elements is
∼ 10%. Being uncorrelated is necessary but not suffi-
cient to prove statistical independence, but since testing
for statistical independence is difficult with so many pa-
rameters, let’s treat the parameters as though they are
statistically independent. This allows us to approximate
the 15-dimensional likelihood ratio as

Λ(~x) ≈
n∏

i=1

Λ(xi),=
n∏

i=1

P (xi|T ∈ S)
P (xi|T ∈ N)

, (23)

where Λ(xi) are the likelihood ratio functions measured
for each of the n = 15 parameters individually (for nota-
tional simplicity, the different functions are identified by
their arguments). It should be remarked that, mechani-
cally, the replacement in (23) can be performed whether
or not it is a good approximation. The quality of the
coincidence test will be improved if this substitution is a
good approximation, but machine limitations can require
this substitution to be made regardless. In the event
that the desired parameters are found to be significantly
correlated, and machine limitations prevent the measure-
ment of the parameter distributions throughout the full
volume of parameter space, it might be possible to (at
least approximately) diagonalize the correlation matrix
through the construction of a co-ordinate transformation
to a basis whose co-ordinates are not as correlated. Since
a straight-forward approximation scheme was available in
this example application the problem has not been inves-
tigated further.

The probability densities appearing the numerator and
denominator of (23) are shown in Figure 2. Some inter-
esting features are visible in these plots. Firstly, several
show families of spikes of high event density, especially
in the event triples associated with noise. These have
their origin in internal discreteness in the search algo-
rithm used to identify burst events in the time series.
The algorithm tests the time series against a collection of
time-frequency “templates”, and the discreteness of the
“template bank” appears in the distribution of parame-
ters seen in the final event candidates. The suppression
of event triples whose parameters occur at these special,
bad, values is a characteristic of thresholding on the like-
lihood ratio that is not easily reproduced by thresholding
on individual parameters.

A second feature of note in these distributions is that
the hrss differences for the H1–L1 and H2–L1 pairs show
that there are volumes of the parameter space in which
injections can be found but no noise at all. The likelihood
ratio assigned to injections in these regions of parameter
space is ∞, and no threshold will ever cut them — they
could be interpreted as guaranteed detections of gravi-
tational waves. Unfortunately, this arises here from the
simple noise model used in this demonstration, and is un-
likely to be seen in a real application. Real instruments
exhibit glitches in their outputs that will likely result in
the black curves filling the parameter space.

Finally, note the non-linear binning used for the peak
time differences. The other 12 parameters are alge-
braically confined to the intervals [−2,+2], but the peak
time differences really have no natural maxima. A bin-
ning was used that is uniform in tan−1[(t1−t2)/T∗]. This
results in a binning that is approximately linear for time
differences near 0, with the bin density dropping asymp-
totically to 0 as the time difference becomes large. The
parameter T∗ controls the transition from linearly-spaced
bins to asymptotic bin spacing.

Having measured the 15 likelihood ratio functions, (23)
can now be evaluated for any event triple. In particular,
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FIG. 2: Distribution densities for each of the 15 parameters used for coincidence testing in event triples recorded by an excess
power burst search analyzing simulated versions of the outputs of the three LIGO instruments, H1, H2 and L1. The black
curves show the distribution densities as observed in noise, and the red show them as observed in software injections. In all
plots the vertical axis is probability density. The 15 parameters are found to be approximately uncorrelated, and using that
to justify treating them as statistically independent the full joint distributions are given by the products of these 15 functions.
The symbols have the following meanings. ∆t is the duration of an event, ∆f is the bandwidth of an event, hrss is the square
root of its integrated strain squared (a quantity related to the energy of the event), f is the event’s peak frequency, and t its
peak time. Visible in these plots is the entire volume of the parameter space (note in particular the non-linear binning used
for the peak time differences).
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FIG. 3: ROC curve for the example application. The left edge
of the graph corresponds to the highest threshold, the strictest
cut which only the best of the best noise and injections can
survive. See the text for discussion.

we can collect more noise event triples and do more soft-
ware injections, and rank the two sets from the highest
to the lowest value of their likelihood ratios. We can then
apply a likelihood ratio cut to each of the two sets, and
ask with what probability a noise triple and an injection
triple survive the cut. By plotting the one probability
against the other as the likelihood ratio threshold is var-
ied we obtain the ROC curve. This is shown in Figure
3. Because some injections are found in regions of pa-
rameter space where there are no noise event triples, the
curve becomes horizontal at the left edge: there are in-
jections that survive any cut, no matter how high the
threshold is set. Similarly, some noise triples are found
in regions of parameter space where there are no injec-
tion triples or arbitrarily few, so there are noise triples

assigned likelihood ratios lower than that assigned to any
injection triple. Therefore, the curve becomes vertical at
high probabilities (although the logarithmic horizontal
scale compresses the feature, making it difficult to see on
this graph).

The step feature at the left of the graph is likely mean-
ingless. At r/R = 10−7 only ∼ 10 of the highest-ranked
noise triples remain following the cut, which is likely too
small a sample to conclude anything meaningful about
the distribution of likelihood ratios assigned to events in
this extreme end of the tail.

V. CONCLUSIONS

An approach to noise rejection in a multi-instrument
gravitational-wave burst search has been presented. The
technique is a multi-event coincidence test based on
Bayesian inference. The technique has the advantages
over standard per-parameter threshold based coincidence
tests of achieving higher sensitivity, being easier to im-
plement, and also self-tuning. A toy model has been
introduced to understand the technique’s behaviour, and
an actual implementation has been tested using popula-
tions of noise and software injection events seen in a real
gravitational-wave burst search run on stationary white
Gaussian noise.
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