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Abstract. The loudest event statistic, a method by which the rate at which events occur
can be deduced from the significance of the most significant event (or loudest event), has
been employed in several papers describing the search for gravitational waves produced by
coalescing compact binaries in data from the LIGO and Virgo observatories. The paper
“The loudest event statistic: general formulation, properties and applications” 2009 Class.
Quantum Grav. 26 175009 [1] presents a general formulation of the loudest event statistic and
addresses topics on the estimation of rate intervals, on combining multiple experiments, and on
marginalizing over uncertainties in parameters. A conceptual error in Sec. 5 of [1] led to invalid
results regarding the marginalization over uncertainties in the averaged detection efficiency;
specifically its Eqs. (23) and (24) are incorrect, as are its Eqs. (25) and (27). This Corrigendum
presents a correct treatment of the marginalization of uncertainties in the estimated detection
efficiency.
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During the internal collaboration review of the search for gravitational waves from low mass
compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3
[2], an inconsistency in results obtained from two different methods of marginalization over
uncertainties in the measured value of the search’s detection efficiency revealed there was an
error in Sec. 5.1, Eqs. (23) and (24), of Ref. [1]. Here we provide a correct version of Sec. 5.1
of Ref. [1]. At the end we give the trivial correction to Sec. 5.2.

Our discussion begins with Eq. (11) of Ref. [1], which expresses the posterior distribution
for the mean number of events µwith a ranking statistic above some largest observed loudness
parameter x̂ (the “loudest event”) as

p(µ | ε̂, Λ̂) =
p(µ)(1 + µε̂Λ̂)e−µε̂∫
dµ p(µ)(1 + µε̂Λ̂)e−µε̂

(1)
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where ε̂ = ε(x̂) is the average detection efficiency function evaluated at the ranking statistic
value of the loudest event observed, and Λ̂ = Λ(x̂) is a measure of the relative probability
of the loudest event arising from a foreground signal versus such an event occurring due to
the experimental background; a value Λ̂ = 0 results if the loudest event is definitely from the
background, and Λ̂→∞ in the limit that the loudest event is definitely from the foreground.
The function Λ(x) is defined by Eq. (12) of Ref. [1]. A Poisson-distributed foreground rate
with mean number of events µ is assumed, while p(µ) is the prior unconditional probability
distribution for this quantity. The detection efficiency ε(x) is a monotonic function of the
ranking statistic x that describes the probability that a single foreground event provided by
nature will have a ranking statistic at least as significant as the value x; therefore, it is natural
to describe events in terms of the detection efficiency variable ε, and, in particular, the loudest
event will have the value ε̂, which is the smallest value of ε that occurs during the experiment.

Equation (1) is obtained from the likelihood function,

p(x | µ,B) = p0(x)[1 + µε(x)Λ(x)]e−µε(x), (2)

via the application of Bayes’s theorem,

p(µ | ε̂, Λ̂) =
p(µ)p(x̂ | µ,B)∫
dµ p(µ)p(x̂ | µ,B)

, (3)

whereB indicates dependence of the probability distribution on the background. The function
p0(x) is the unconditional probability distribution of the experimental background producing
an event having a loudest event x, while the function p(x | µ,B) is the probability distribution
for x in an experiment having both a background and a foreground as described above. All
dependence of the posterior distribution on the background is contained in the value Λ̂.

Section 5.1 of Ref. [1] was concerned with the situation in which the value of ε̂ is not
known exactly‡. Suppose that the true value of efficiency is related to the measured value via
a factor α so that

ε(x) = αεmeas(x). (4)

Given an observed loudest event, and consequently a value of ε̂meas = εmeas(x̂), we wish
to infer the value of the efficiency and also the posterior distribution on for µ. We suppose
that, for a given ε̂meas, the probability distribution for the true (but unknown) efficiency ε̂ is
p(ε̂ | ε̂meas). For simplicity, and in keeping with Ref. [1], we choose the gamma-distribution,

p(ε̂; k, θ) =
1

θkΓ(k)
ε̂k−1e−ε̂/θ, (5)

where the two parameters θ and k determine the mean, kθ, and the variance, kθ2 [cf. Eq. (22)
of Ref. [1]]. If we assume that the mean of this distribution is equal to the measured
value of the efficiency ε̂meas, then we fix the scale parameter to be θ = ε̂meas/k to obtain
p(ε̂ | ε̂meas, k) = p(ε̂; k, θ = ε̂meas/k); the shape parameter k then specifies the width of the
distribution. When k is large, the gamma-distribution will be sharply-peaked about its mean
value. Equation (5) can be re-expressed as a probability distribution for the scale factor α in
Eq. (4) as

p(α; k) =
1

Γ(k)
kkαk−1e−kα. (6)

‡ In the context of gravitational wave searches, such as the one described in [2], the search efficiency is estimated
using Monte Carlo methods in which simulated signals from a hypothetical distribution are added to the detector
noise, and the fraction of such signals with ranking statistics greater than loudest event is the measured value of ε̂;
this value has a measurement uncertainty due to the finite number of trials performed.
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The scale factor α is a random variable describing the uncertainty in the measurement of the
efficiency. We must now derive a modified version of Eq. (1) that accounts for this additional
random variable. We may either (i) construct a marginal likelihood by marginalizing over this
uncertainty in the likelihood function and then proceed to use Bayes’s theorem to obtain a
posterior distribution for µ, or (ii) treat α as a nuisance parameter in the posterior distribution
(see, e.g., Sec. 36.1.4.2 of Ref. [3]). These should yield the same result, but it is instructive to
derive the result using both methods.

We employ method (i) first. We use Eqs. (2) and (4) to write the likelihood function

p(x | µ, α,B) = p0(x)[1 + µαεmeas(x)Λ(x)]e−µαεmeas(x). (7)

We now construct a marginal likelihood, p(x | µ, k,B), by marginalizing over α,

p(x | µ, k,B) =

∫ ∞
0

dα p(α; k)p(x | µ, α,B), (8)

and using our gamma-distribution for α we find

p(x | µ, k,B) = p0(x)
kk

Γ(k)

×
∫ ∞
0

dααk−1[1 + µαεmeas(x)Λ(x)]e−α[k+µεmeas(x)]

= p0(x)
1 + µεmeas(x)[Λ(x) + 1/k]

(1 + µεmeas(x)/k)k+1
. (9)

Note that in the limit k → ∞ we recover Eq. (2) with ε(x) replaced with εmeas(x). We now
obtain a posterior distribution for µ from Bayes’s theorem,

p(µ | k, ε̂meas, Λ̂) =
p(µ)p(x̂ | µ, k,B)

p(x̂ | k,B)
, (10)

where the marginal probability for x is

p(x | k,B) =

∫ ∞
0

dµ p(µ)p(x | µ, k,B). (11)

For illustration we take a uniform prior, p(µ) = const, cf. Eq. (13) of Ref. [1]. We have

p(x | k,B) =

∫ ∞
0

dµ p0(x)
1 + µεmeas(x)[Λ(x) + 1/k]

[1 + µεmeas(x)/k]k+1

= p0(x)
k

k − 1

1 + Λ(x)

εmeas(x)
(12)

and therefore the posterior distribution is

p(µ | k, ε̂meas, Λ̂) =
k − 1

k

ε̂meas

1 + Λ̂

1 + µε̂meas(Λ̂ + 1/k)

(1 + µε̂meas/k)k+1
. (13)

Equation (13) is the correct version of Eq. (24) of Ref. [1].
An alternative, but equivalent, method of handling the parameter α is to treat it as a

nuisance parameter in a posterior distribution p(µ, α | k, ε̂meas, Λ̂) and to integrate it out:

p(µ | k, ε̂meas, Λ̂) =

∫ ∞
0

dα p(µ, α | k, ε̂meas, Λ̂). (14)

From Bayes’s theorem, we see that the posterior with the nuisance parameter is given by

p(µ, α | k, ε̂meas, Λ̂) =
p(µ)p(α; k)p(x̂ | µ, α,B)

p(x̂ | k,B)
, (15)
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where

p(x | k,B) =

∫ ∞
0

dµ p(µ)

∫ ∞
0

dα p(α; k)p(x | µ, α,B) (16)

is exactly the marginal probability for x given earlier, as can be seen by substituting Eq. (8)
into Eq. (11). Finally, inserting Eq. (15) into Eq. (14) gives us

p(µ | k, ε̂meas, Λ̂) =
p(µ)

p(x̂ | k,B)

∫ ∞
0

dα p(α; k)p(x̂ | µ, α,B)

=
p(µ)p(x̂ | µ, k,B)

p(x̂ | k,B)
(17)

which is the same as Eq. (10). As expected we obtain the same final result for the posterior
distribution if we consider α to be a nuisance parameter that we integrate out or if we
marginalize the likelihood over the parameter α.

We can now explain the mistake in Ref. [1]. Note that we had to modify Eq. (1) to
account for the addition of the random variable α, while Ref. [1] used its Eq. (11) without
modification. Thus the substitution of Eq. (11) into Eq. (23) in Ref. [1] is not equivalent to
the fundamental definition of the marginalized posterior, given by Eq. (10) or (14) here.

The same mistake was made in Sec. 5.2 of Ref. [1]. Its Eq. (25) is the incorrect
starting point. Instead, if we suppose Λ(x) = βΛmeas(x) where β is a random variable with
expectation value of unity, then it is straightforward to get the correct result following the
methods explained here. The easiest approach is to first compute the marginal likelihood,
which in this case is obtained by substituting Λ(x) = βΛmeas(x) in Eq. (2), multiplying by
p(β), and integrating over β. The result has the exact same form with Λ(x) → Λmeas(x).
It then follows that the correct version of Eq. (27) in Ref. [1] is its Eq. (14) with this same
substitution. Thus, the posterior marginalized over uncertainties in Λ̂meas does not depend on
the variance of this uncertainty at all, and Eqs. (26) and (28) in Ref. [1] are superfluous. This
also means marginalizing over uncertainties in Λ̂meas will not change upper limits on the rate
at all. The conclusion of Sec. 5.2 of Ref. [1] is still correct: marginalization over uncertainties
in Λ̂meas can be neglected.
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