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The use of the loudest observed event to generate stdtistitaments about rate and strength has been
standard in searches for gravitational waves from compaetries and pulsars. The Bayesian formulation of
the method is generalized in this paper to allow for unceti@s both in the background estimate and in the
properties of the population being constrained. The methatso extended to allow rate interval construction
in the event of a very significant loudest event. Finallysishown how to combine the results from multiple
experiments and a comparison is drawn between the upperbtgined in a single search and the upper limit
obtained by combining the results of two experiments eadhatifthe original duration. To illustrate this, we
look at an example case, motivated by the search for greontdtwaves from binary inspiral.

I. INTRODUCTION the chosen threshold and making a correction which allows fo
the background. Central to this method is the prescription b

In daily life, we often estimate the birth rate, the rate of au which the final list of events are identified.

tomobile fatalities, or the rate of hurricanes in the Gulf |  There are many different criteria that might be used to de-
these cases, it is reasonably easy to determine when onte evégrmine the sample of events in an experiment. We consider
has occurred and so the best estimate is usually taken tebe thsing the loudest event to estimate the rate. This method was
number of events divided by the observation time. As physifirstintroduced in gravitational-wave searches duringgie-
cists and astronomers, we know this is a good estimator ofsis data from a prototype instrument [1]; the method was
the rate of an underlying Poisson process. In these cases, thsed to determine an upper limit on the rate of binary neu-
ability to identify events with high confidence is centrathe  tron star mergers in the Galaxy. Since then, the method has
correctness of the rate estimate. been used in a number of searches for gravitational waves [2—
We can carry this method over to more complicated obser?]. More details of this method of determining an upper limit
vational situations by allowing for false positives in oden- ~ are available in [8]. Related methods have been discussed in
tification of events. Experiments are usually designed ab th the context of particle physics experiments by Cousinsiid] a
the rate of real (foreground) events is higher than the rate oYellin [10].

false positive (background) events. Hence a good estinfate 0 | Sec. 11, we present a general formulation of the loud-
the rate is obtained by counting the number of events per unst event statistic [1, 8]. We adopt the Bayesian approach
time, and making a small correction to allow for the false-pos \yhich gives a posterior distribution over physical paraeret
itives. This is the typical experimental method of estim@ti pased on the loudest event observed in an experiment. To
the rate. provide a concrete example, in Sec. Il we specialize to the
In both physics and astronomy, it is common to search focase of a single unknown rate amplitude multiplying a known
very rare events in large data sets and we rely heavily on statistribution of events. We discuss several properties ef th
tistical methods to interpret these searches. In this payeer statistic in more detail. In particular, we describe how the
discuss the problem of estimating the rate of these rareg®ven upper limit can be calculated in practice, appropriateky ta
When real events are very rare or very weak, it is importaning into account the estimated background distribution. In
to revisit the reasoning that underlies the standard appesa later sections, we discuss marginalization over unceiéein
to estimating rates (and indeed other parameters). In #is pa method by which the loudest event statistic could be used
per, we explore the effects of incorporating informationat  in detections — by producing a confidence interval bounded
quality of observed events into the estimate of eventrate O away from zero, a method of combining the results for sev-
measure of quality might be the signal to noise of the eventseral independent experiments and the effect of splittiniga s
the louder an event, the more likely it is to be signal. Ofgle experiment in two halves. Throughout, we illustratehwit
course, more complicated measures are also possible. Vém example where background events are Poisson distributed
simply require a rank ordering of the events such that largeyith a rate given by (z) = e=7°/2 and the foreground is dis-
quality implies less likely to be background. tributed atz—3. These choices are natural in the context of a
A popular method of incorporating quality information is search for gravitational waves from coalescing binariesreh
to fix a threshold, prior to looking at the data. The thresh-the background ig? distributed with two degrees of freedom,
old is often chosen to give an acceptable rate of backgroundhile the foreground is uniformly distributed in volume,dan
events in some qualitative sense. Then, the upper limitis dethe signal strength (and hence statistic vat)i@re inversely
termined by counting the number of events per unit time aboveroportional to the distance [11]. The main feature of these



distributions, however, is simply that they are both desrea will depend upon the sensitivity of the detector, the mas$es
ing functions ofz, and that the background decreases moréghe binary components, the sky location and orientatiohef t
rapidly than the foreground. binary and its distance from the detector. These will all be
encoded in the variabld.
In addition, we require the physical raf@ for sources
1. GENERAL FORMULATION OF LOUDEST EVENT with a given set of parametes$. We assume thaR can be
STATISTIC parametrized by one or more physical paramelasghich we
are interested in measuring or placing limits on. Thus, we ca
Consider a search of experimental data for a rare proceswirite the physical rate a&(.A|\). Combining the above, it
The output of this search is a set of candidate events whicfollows that
have survived all cuts applied during the analysis. Assume
that these events can be ranked according to a single parame- R(zA) = [ dAe(z, A) R(AA). ()
ter x where the chance of the event being due to instrument
noise decreases with increasing Suppose, further that we
can parametrize the rate of events which occur and produ
an event with a statistic value aboveas R(x). Then, if we
assume that events are Poisson distributed in time, theprob
bility of observing no events above a given valuera$

allhus, we see that the rate of events in a search can be
arametrized in terms of the model paramet&rand the

threshold value:. Furthermore, it is broken into two distinct

parts: the efficiency which depends upon the instrumental

sensitivity and the details of the search; the physical fate

which depends upon the physical model used. Note that if the
P(z) = e R@ 1) efficiency is independent of any of the physical parametgrs

then they can be trivially integrated out.

A real experiment will have a background of events due \We can substitute our expression for the rate (3) into Eq. (2)
to noise. We assume that this can be determined. We willo obtain the probability that there are zero events in thia da
denote the probability of obtaining zero background events With a statistic value greater thanas
or above a value: as P,(x). Then, taking into account the X
background, the probability of there being no events louder P(z|\,e,B) = Pb(a:)e_j dA e(@,A) R(AIA) (4)
thanz is

Furthermore, the probability of the loudest event occygrrin
P(z|B) = Pb(:c)e_R(:”) (2)  between: andx + du is given byp(z|\, €, B) dx where

where we have usefl to indicate that the probability depends p(z|A, e, B) = P'(x|\, ¢, B) (5)
upon the background.

In an observation, the rate of everfitéx) will depend upon  and the prime denotes a derivative with respeat.to
many quantities, for example the details of the apparated,us  After performing an experiment, we are interested in ob-
the methods used in performing the search, a physical or asaining a distribution for the rate. To do this, we calculate
trophysical model for the source strength and distributit® ~ Bayesian posterior distribution for the parameteigiven the
split these effects into two separate categories: thosehwhi observations. This is denoted\ |z, €, B), wherez,, is the
depend upon the details of the search, and those which debserved loudest event. This distribution can be derived, u
pend upon the physical or astrophysical process whose raieg Bayes’ law, from the prior probability distribution ohet
we are interested in measuring. The sensitivity of the $earcmodel parameterg(\) and the distribution in Eq. (5) as
is encoded in the efficiency, which is the probability of de-
tecting a given source with a value greater than or equal to
x. Clearly, it will depend upon the statistic valug as well PAfzm, €, B) = [ dX p(X) p(zm|A €, B) )
as a set of parameters, denotéddescribing the amplitude
of the signal emitted by the candidate source. Thus, we calhe denominator is required to ensure the probability idistr
write ¢ = ¢(z,.A). For example, in the case of a search forbution is normalized to unity.
gravitational waves from coalescing binaries, the efficyen More explicitly, we have

P, B) o) | () 4 [ 0 1€ A REAW)| eI @)

Here,p,(x) = P/(x) and, as before, the prime denotes deriva-«’ < 0. Looking at Eq. (7), notice that the probability dis-
tive with respect tac. We have made use of the fact that the tribution is governed by an exponential decay determined by
efficiency can only decrease as the value ofcreases so that the rate of events. The shape of the distribution is governed
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by two terms, the firsy (2., )/ Py (2 ) depends only uponthe ThenR(z) = puR,(z), and (at least in principleR,(x) is

background, while the second depends only upon the rate. known. In addition, we introduce the quantitfx), defined
In many circumstances, the parametarsnay be further as

divided into a set of particular intereaty and others of less

-1
interest\;. By integrating Eq. (6) over the unwanted param- Az) = | Ry ()] [Ro(x)} _ (12)
eters\, one obtains the posterior distribution Pl(z) | Py(x)
[ dA1 p(Xo, A1) p(zm|Xo, A1, €, B) The quantityA(z,,) encodes the likelihood that the loudest
p(Xolzm, €, B) = Tdx pON) p(zm X, c, B) . event is due to the foreground. In particular, in the limétth

A(xm) — 0, the event is definitely from the background. Al-
ternatively, in the limit that\(z,,) — oo, the loudest event
is definitely from the foreground. We note that it depends

To calculate an upper limit, or rate interval, at a given confi YPON the physical rate distributioR, (z.,) and its derivative

dence level, one integrates Eq. (8) over a regibiiA, ) such R! (x,). Similarly, it depends upon the background distribu-
that g a.®) gioitAo) tion throughP, (z,,) and it's derivative.

For an unknown rate amplitude, the above expressions can
be substituted into Eq. (7) to obtain the posterior distidiu

In Section IV we consider this process of marginalizatioarov
unwanted, or nuisance, parameters in more detail.

c= [ slam.cB). ©)
v P(lms oy B) o< p(1) [L+ o M) Rom)] €405

In general, the difficult part is selecting the regiii\ ), es- ) ] o (13)

pecially in more than one dimension. There are several way$ IS necessary to include the contribution from the back-

to do this: for example, one could marginalize over all but on ground; if it is ignored, ther\ — oo and the posterior dis-

of the parameters thus reducing the problem to a 1-d integralfibution will generically be peaked away from zero, and go

or select the smallest volunié(),) that gives the required t0 zero for a zero rate. Thus, even if there is no evidence for

probability. (This is sometimes called a highest postefar- & signal in the data, the posterior distribution for the vaile

sity interval [12].) In Sec. V, we investigate the propestaf ~ Pe inconsistent with zero events . In the next subsectioas, w

this type of rate interval based on the loudest event method. Will explicitly evaluate the posterior for various choiaefshe
prior p(x) and obtain rate limits.

The loudest event prescription can be applied to any form
I11. UNKNOWN RATE AMPLITUDE of background, provided the required quantities in Eq. (12)
can be measured or estimated. In many experiments, one
ight expect the background events above a statistic value
be Poisson distributed, with a rat€x) wherev is a non-
IiI[?creasing function of. Then, it follows directly that

We have obtained the general expression for the postericﬂ1
probability distribution of the parametehsgoverning an as- 0
trophysical model based on an observed loudest event.

practice, the details of obtaining either a rate upper lonia Py(z) = )

confidence interval on the model parameters will depend upon

the details of the astrophysical model and its dependerme up P = V(x)]e ™)

the variables\. In this section, we simplify to the situation po(2)/Po(z) = [V (2)]. (14)

where the rate is dependent upon a single parametdrich

acts as an overall unknown amplitude, so that We will make use of this to simplify examples. However, it
is important to note that the loudest event statistic doés no

R(Alp) = nRo(A). (10)  require the assumption of Poisson background.

There are many instances where this simplification is wel mo

tivated physically. For example, in the search for coategci A. Uniform Prior

binaries, it is typical to assume that the rate of binary coa-

lescence is directly proportional to the blue light lumiitys The posterior distribution given in Eq. (13) can now be eval-

while the constant of proportionality is unknown. Thus, theyated in some particular cases. This requires a choiceaif pri

rateR, will depend upon the distribution of blue light in the djstribution. For simplicity, we begin with a uniform prior
universe which can, in principle, be measured. Then, an ob-

servation can be used to set a limit on the rateSimilarly, p(p) = const. (15)

in a search for other astrophysical sources, one might con- ) )

sider a population which is uniformly distributed in space,Th'S distribution is not normalizable. However,_we can in-

Ro(D) = uD?, whereD is the distance. troduce a cutoff at _Iargﬁ (well above the rate being prpbed
We can use this form of the rate to simplify the general exY the given experiment) in order to render it normalizable.

pression for the posterior. To begin, we introduce the dtyant Physically, this is a reasonable choice of prior if thereds n
information available about the expected valug.of

It is straightforward to differentiate Eq. (13) and see fitsat

Ro(z) = /dAe(x’A) Ro(A). (11) peak will be away from zero if and only if(x,,) > 1. That



is, the peak will be away from zero provided it is more likely
that the loudest event is from the foreground than from the
background. If this is the case, then one might take this as an

1.0

indication of a non-zero rate. The extent to which this igtru
is explored in Sec. V.

We integrate Eq. (13) to obtain an upper limit at confidence

level C by solving

1—C = e Hholam) {1 + < Azn) )> uRo(zm)} (16)

1+ Az,

for u. It has been shown in [8] that setting the background to 20 ‘ .

zero yields a conservative rate limit. In the Bayesian agigly
however, this yields a posterior probability distributifumc-

tion which is peaked away from zero, and goes to zero at zero
rate. This is clearly seen in Fig. 1 which shows the posterior

distribution for three values of includingA — oo. This is

0.8F
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not surprising as we have neglected the background, in whichiG. 1: The posterior probability density functiguy|am, Ro, B)
case the existence of a loudest event implies a non-zero raten the ratg.:, assuming a uniform prior. The three curves correspond

Although this does not invalidate the upper limit (indedd, i

to three different values of the likelihood: &)= 0 (solid line), the

has been shown that the no background limit is conservativeloudest event is definitely background and the distributsoexpo-
it does mean that the posterior would not serve as a suitabfential; b)A = 1 (dashed line), the loudest event is equally likely to

prior for a future experiment, as it is inconsistent with aoze
rate. Nevertheless, it is still possible to obtain the upipeit
as

3.9

O(xm) .

= 17
H90% R (17)

Similarly, the no-foreground limit can be obtained by takin
A = 0. In this case, the 90% confidence limit tends to

2.3
= 18
H90% R (18)

o(Tm)
Finally, we can consider the case where the loudest event
equally likely to be due to foreground or backgrounds 1.
In this case, we have,

3.3
= 19
H90% R (19)

O(xm) .

The posterior distribution for the rate for these three jiilss
ities is shown in Fig. 1.

B. Alternative Choicesof Prior

An alternative distribution on the rate is the Jeffrey'sopri
given byp(u) o 1/p. Like the uniform prior, it is not normal-
izable. This can be fixed by imposing a cutoff at a small valu

of z, but doing so artificially introduces a length scale into the
problem. We can again compute the posterior distribution as

1
p(p|em, Ro, B) o ; + A(2m) Ro () e~HRol@m) (20)

In the no-background case, this fixes the issue of the distrib

tion being peaked away from zero. However, for the general

case where the background s included, this distributiorots

be from the foreground or background, the distribution gestkzero
but the derivative vanishes there;£)— oo (dotted line), the loud-
est event is definitely from the foreground, the distribati® peaked
away from zero.

satisfactory due to thé/u term, which will again need to be
cut off at some value.

Another alternative is the exponential prior. We first note
that this arises naturally when a previous search has been co
pleted. In this case, it is natural to use the posterior from a
previous search as the prior distribution for a subsequeat o
If the first search was performed using a uniform prior, the
Eosterior is given by (13). Furthermore, in the event that th
loudest event is most likely background< 1. Then, we can
conservatively rewrite the posterior as

pc(u|$m7Ro,B) o e HAEm)Ro(7m) (21)
where we have made use of the fact that
1+ pAR, < etBo, (22)

Itis straightforward to show that the rate limit at a givemfto
dence level inferred using this posterior is necessarily larger
than that obtained using the original distribution. In gesise,
the alternative distribution is conservative and the iistion

GJwas been cast as an exponential.

Starting with the exponential prior,

—Tol

p(p) oce” ", (23)
whose decay is governed by the quantify we can obtain a
posterior distribution. It is beneficial to re-defineas

_ |Ro(=)]

A0 = |

-1
Ro(z) + ”0} . (24)

Pb (l‘)



Then, the posterior distribution is given by

p(pl@m, Ro, B) o< [1 4 pA () (Ro(2m) + 75)] e H(Bo(@m)tro)
(25)

As before, the posterior distribution is peaked away fronoze

if A > 1. In addition, the distribution is identical to that ob-

tained using a uniform prior, only now we have effectively

searched oveR, (zy,) + 7.

90% confidence upper limit

C. Comparison with Fixed Thresholds Lr

Let us compare the loudest event statistic against a fixec %0 75 80 85 9.0
threshold approach. In order to do this, we work with the Loudest event value z

example discussed in the introductiontz) = ¢®*~")/2,

R,(z) = (8/x)3. The normalizations of these functions are 30
chosen for simplicity so that(8) = R,(8) = 1, i.e. we ex-

pect one event at or abowe= 8 and the rate is unity there. 257
The value of the upper limit as a function of the actual lotdes

eventis shown in Fig. 2a. The upper limit transitions smtyoth 207

from the zero foreground limit (at low values @) to zero
background limit (at large values a@f. Figure 2b shows the
distribution p,(z). This corresponds to the expected distri-
bution of for the loudest event if it is due to the background.
Then, by multiplying the upper limit by the expected distri-
bution for the loudest event and integrating, we obtain the e
pected upper limit. In this example it 2564.

For comparison, the upper limit for a fixed threshold is pre- 0 ‘ ,
sented in Figure 3. When calculating the upper limit for a o 7.5 L 80 8.5 9.0
fixed threshold, one simply counts the number of events Loudest event value,
above the chosen threshatgdand obtains a limit

—
ot
T

—
T

Background distribution, p(z)

FIG. 2: a) The upper limit as a function of the observed lotgesnt.

F(n) The solid line shows the value of the upper limit as a functibn.

H90% = m (26)  The dotted and dashed lines are giverely/ R, (z) and3.9/ R, (z).
We see that the upper limit transitions smoothly from onééadther.

. . . At low values ofz, the loudest event is very much consistent with
whereF(n) is a known function for each integer(see, for e hackgroundA ~ 0 and the upper limit is close to the dotted
example, [13] for more details). In particular, when zerojine, For larger values of the loudest event is more consistent with
events are observed above the threshbld) = 2.3. When  foreground A — oo, and the rate is more consistent with the dashed
performing a fixed threshold search, it is possible to tak@ in line. b) The probability distribution for the loudest everssuming
account the expected background and, much as for the loudgbat it is drawn from the background distributign«). Multiplying
event, neglecting to do so will lead to a conservative result the upper limit curve by this distribution and integratingoz gives
Figure 3, we show the expected upper limit as a function the expected value of the upper limit if the loudest eventasfthe

the threshold. background.

Clearly, in this example, the loudest event statistic isgare
able to a fixed threshold, as it will provide a better expected
upper limit value than the fixed threshold famy value of the
threshold (with or without the background). We note thad thi
result is specific to the details of the example under conaide  The rate of events in the datB(z|\) in Eq. (3), is depen-
tion; the key feature is that the background rate is a vespste dent upon the frequency of events and their amplitude distri
function of x. Indeed, in [8], the same example was consid-bution as well as the sensitivity of the search which is per-
ered, but with an expected background of unityrat= 4.5  formed. In many cases, neither of these quantities will lee pr
rather thanr = 8, leading to a small range of values where cisely known. For example, the efficiency of an experiment is
the fixed threshold does beat the loudest event. However, adten measured via Monte-Carlo methods and therefore suf-
emphasized in that paper the attraction of the loudest ésent fers from uncertainties due to the finite number of trials. If
that it is unnecessary to fix a threshold ahead of performingve expand our understanding of the paramedets further
the search — the search itself determines the threshold. parametrize the uncertainties that can arise in the underly

IV. MARGINALIZATION OVER UNCERTAINTIES



certainties. This prior distribution would typically reftethe

y : : [ =< iamoring backgromd systematic and statistical errors estimate for the expsrim
N with background As a particular example, consider the problem of the un-
| - —— londest event 1 known rate amplitude presented in Sec. Ill and assume there
N is some uncertainty associated with the valueRgf Typi-
cally, one might choose the prior to be a normal distribution
3 ERETE N B | peaked around the estimate value/df(x,,). It is, however,

unphysical for the rate to be zero, so the distribution would
o f ] need to be truncated. A more natural choice is a log-normal
distribution, for which the logarithm aR, would be normally
distributed, thereby guaranteeing ttiat is positive.

T ' ' ] Here, we choose to make use of thelistribution, pri-
marily because it can be analytically integrated. The
distribution is similar in shape (for small standard deoia}

to both the Gaussian and log-normal distributions and in-add
tion takes only non-negative values. For integer valugbe
~-distribution is given by

Expected upper limit

0 i i ; i i
7.8 8.0 8.2 8.4 8.6 8.8 9.0
Threshold value

FIG. 3: Figure showing the expected upper limit as a functién

the fixed threshold. The dashed line shows the upper liméinbt RF=1 o=Ro/6
when ignoring the background, while the dotted line inchidee p(Ro|k, 0) = —
background contribution. For large values of the threshgidre the )
expected background is small, both limits approady R, (z) as The mean ist, = k6 while the standard deviation is, —
expected. For low values af, there is a good chance of many events o . o Tto T
above threshold which leads to a worse upper limit. The lalan Vk0. Therefore, fractional standard deviatiom, /R, =
occurs at around a threshold valueaof= 8.3. For reference, we 1/+/k, which tends to zero in the limit & — oo, whereby
also plot a horizontal line showing the expected upper liimtm we expect to recover the unmarginalized results.

the loudest event. Interestingly, the loudest event will,average, The marginalized distribution is calculated by integrgtin
outperform the fixed threshold for any value of the threshold overR,,

(27)

ing models and in measurements of efficiency, it is natural P(HZm; Bo, k, B) = /dRop(RO|RO’k)p("'xm’Ro’B)'

to marginalize over these uncertainties before computing a (28)
upper limit or rate interval. Just as the marginalizatioerov Making use of the distribution (13) for the rate and the ex-
uninteresting physical parameters (given in Eq. (8)) nexqui pression for they-distribution given above, we obtain the
a prior distribution to be specified, the same is true of the unmarginalized distribution

R, 1 pAR,(1 4 1/k)
R S 7 A (T 7

p(M|IvaOaka) = (29)

In the limit thatk — oo, we recover the previous distribution while for 25 and50% this increases further t6.2/R,(x,)

for 1 as expected. and5.5/R,(xy) respectively. In Figure 5 we plot the upper
In order to examine the effect of marginalization, in Figurelimit as a function of the systematic error for four diffeten

4 we plot the unmarginalized posterior distributionfoe= 10 Vvalues ofA. The results are qualitatively similar to what was

along with three distributions obtained by marginalizingo ~ seen before — marginalizing over uncertainties will insea

different size systematic errors or uncertainties. Thésteid the upper limit and the larger the errors, the larger theceffe

butions are obtained from (29) with valuesktof= 100, 16 and

4 corresponding to errors df), 25 and50% respectively. As

the systematic error increases, the posterior distribtitiothe A. Marginalization over uncertaintiesin A

rate gets broader; the value of the probability density fiemnc

increases for large values of the rate. This causes an B&rea In many cases, there will also be uncertainties in the peecis

in the upper limit. Without taking into account any uncemtai value of A. These can be marginalized over in the same way

ties, the90% confidence upper limit i8.8 / R, (z, ). For10% as described above. Since thadlependence of the distribu-

systematic error, this increases only slightly3t®/ R, (xy,) tion (13) is straightforward, this can be done explicitlyorF
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FIG. 4: The posterior probability density function on theeror dif-
ferent sizes of systematic error. The curves were geneessam-
ing a uniform prior and using. = 10. The solid line corresponds
to the unmarginalized probability density function. The-dashed
line gives the distribution marginalized ovet @% systematic uncer-
tainty (equivalentlyk = 100 for the v-distribution). With this level
of uncertainty, the marginalized distribution is barelyanged from
the original. The dotted and dashed lines show the postenias %
(k = 16) and50% (k = 4) systematic errors. As the systematic error
increases the distribution broadens and consequentlypier limit
increases.

Marginalized 90% Confidence Upper Limit

20 30 40
Systematic Error (%)

10 50

FIG. 5: The90% confidence upper limit versus the size of the sys-
tematic error which is marginalized over (equivalent fa/% in the
~-distribution discussed in the text). The limit plotted four differ-

ent values ofA: 0,0.1, 1,10. In all cases, the upper limit increases
with larger systematic error.

ized distribution is

) = [ dAp() plafom R d) (3
In this case, the above integral of is straightforward. 8pec
cally, let us define

A

(1+A)°

Then, the posterior distribution following marginalizati
overA is given by

¢ = / dA p(A) (32)

P(plm; A) = Ro(am) [(1 = €) + pRo(wm)¢] e—“RowmiW)
33
Suppose thah is distributed with expectation valueand
variances3. Then, to leading order,

()

From this, we notice two things. Firstly, even if the frac-
tional uncertainties im\ are of order unity, wherk >> 1 or

A <« 1, the second term is small compared to the first and can
be ignored. Secondly, marginalizing oveonly serves to de-
crease the value dfrelative to the unmarginalized case. This
is equivalent to reducing the likelihood that the loudegrgv

is foreground and consequently will reduce the upper limit.
Therefore, it is possible to neglect the marginalization afs

this is a conservative thing to do.

A
1+A

o3
(1+A)

(34)

V. RATEINTERVALS

In Sec. I, we derived the upper limit on the ratdased on
the loudest event. However, in the case where the likelihood
of the event being foreground is large, we may prefer to give
a rate interval rather than an upper limit. For a uniform prio
the modeu,, of the posterior distribution for the rate (given in
Eqg. (13)) is non-zero whenevdr > 1. Furthermore, in this
case,

o 1
Ro(xm)  ARo(7ym)’

Hp = (35)

which asymptotes td/ R, for large values of\ as one might
expect. How significant an indicator of a non-zero rate is hav
ing the peak of rate distribution be non-zero? In order to ex-
amine this idea more precisely, we will describe a method of
constructing a rate interval using the loudest event si@atis

At some confidence levef, a rate interval is given by
[141, p2] such that

concreteness, let us take a uniform prior, in which case, the

posterior distribution is:

(1 + pRo(zm)A)

—uRoTm (zm)
TN (30)

p(p|zm, A) = Ro(wm)

Then, given a probability distribution(A), the marginal-

p(plzm, e, B) p(p) dp =C . (36)

/Hz
M1
A supplementary condition is required to select a unique in-
terval: we identify the interval which minimizeg — p1|
and contains the mode of the distribution (or zerofox 1).
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discussed above, the calculation of a Bayesian upper lenit r
quires the specification of a prior probability distriburtitor

the rateu. When a previous experiment has been performed,
it is natural to use the posterior from the first experiment as
the prior for the second. It is straightforward to show thnat t
results are independent of the order of the experimentss (Th
does not depend upon the loudest event, rather it is a general
Bayesian result). Begin by recalling that

10!

pRo(2)

 p(p) p(x|p)
pluln) = Jdup(p) plailp) (38)

For the second search, simply ysg:|x;) as the prior to ob-

0707 01 100 :161 BT 103 tain the posterior distribution op given the observations in
A both the first and second experiments:
FIG. 6: The graph shows the behavior of the lower and uppendbou pulzr, z2) = — p(p) p(a1|p) pla2|p) (39)
aries of the rate intervaly; and uo respectively, as a function of J dpp(p) p(21|p) p(a2|pe)

the likelihoodA. They are plotted for three different values of the
confidence level’ of 80%, 90% and 95%. The peak (solid line)  Thjs is clearly symmetric in; andz,. It is straightforward

approaches zero dsapproaches one. AS — 0, ui2 agrees with no 14 see that marginalization over nuisance parametersipesse
foreground upper limit treated above. this symmetry.

Next, let us consider the effect of taking a single search and
splitting it into two halves, which can be combined to pro-
n{juce an upper limit in the manner described above. Naively,

[{ appears that splitting the search will give a lower rateitlj
since we will be using a “quieter” loudest event for half the
search. If this were the case, then it would seem that syglitti
the search into ever shorter searches would improve the uppe
limit indefinitely. As we shall see, the result is not so cleat,

This condition clearly results ip; = 0 for small values of
A, i.e. when the loudest event was likely to have arisen fro
the background, the rate interval on the process we wish t
constrain includes zero rate.

For the uniform prior considered in Sec. Il A, the depen-
dence ofu;, o andy, on A are shown in Fig. 6. Fok < 1,

= 0 and consequently; = 0, as expected. However, for . oy
Zpsign(i)ficant rangeqa& > bll1 eveOn thougl?\ the rate distribution a_nd It dgpends critically upon the foreground and backgtioun
is peaked away from zerp; = 0 indicating that (at the given d'St”bUt_'OnSRO(I) anijb(x). .
confidence) the rate interval still includes zero. Consider an experiment performed for some given tifpe

We can determine the precise value/ofit whichi; be- and assume thz_:\t both the foreground_and background rates are
comes non-zero. For fixetl and R, (z.,), Eq. (36) givesus constant over time. We would then like to compare the (ex-

implicitly as a function ofu;. The minimal interval condition ~Pected) upper limit from the full search to that obtained by
is then just splitting the data in two parts of lengthi, and7, and cal-

culating a combined upper limit from the two searches. Let
us assume, without loss of generality, that the loudestteven
overall in the search occurs in the first half of the search wit
a statistic value of{, and the loudest event in the second half
Substitutingus = 0 into Eq. (36) and its derivative gives of the search has a statistic valug Then, we can calculate
two equations which depend qm and A. As an exam- the upper limit from the search (taking it as a single entity)
ple, consider a 90% confidence interval. In this cgse, and from the split search.
becomes non-zero, and the interval is bounded away from The posterior from the single search is given by
the origin, at value ofA ~ 11.56. This corresponds to
to =~ 3.807/R,(xm,). This result is in good agreement with
the values obtained numerically in Figure 6. In this context
it is interesting to return to Figure 4 which shows the pos- . ) ) o
terior distribution forA = 10. Although this distribution is  While for the split search, the posterior for each part igiv
peaked well away from zero, the 90% confidence interval stilPY 9iven by
includes zero.

VI. COMBINING RESULTSFROM MULTIPLE p(plzi) o< p(p) [1+ pA(2;) Ry ()] e HEe@IT/T  (47)

EXPERIMENTS

d(p2 — )

=0. 37
an 37)

p(ulr) oc p(p) (14 pRo(a1)A(z1)) e #Relm) - (40)

where: = 1,2 label the two parts of the search. Let=
When performing a series of experiments, there is a ver{f’; /T, then the combined posterior distribution for the split
natural way to combine the results in a Bayesian manner. Asearch is



p(plz1, ) oc () [1+ pA (1) Ro(21)] [1 4 pl(w2) Ry ()] e~ HIo otz (I ma) Rolw2)], (42)
|
Notice, for the split search, the exponential decay ternt is a 30 V V
least as large as for the single search, with equality only if — R(@:)/R(z:) = 1.00
x1 = xo. This tends to make the upper limit obtained in the o5l , == R(xs)/R(w1) = 1.50
split search smaller than that of the single search. In eshtr B I i?"‘f;g?’lz o

the polynomial prefactor is always more significant for the
split search (i.e. it grows more steeply wjtl. This tends to
make the upper limit larger. Whatever the form/ofz) and
R,(x), itis clear that in the case wherg = x4, splitting the
search will lead to a larger limit. Meanwhileif, < 1, the
split search will give a numerical smaller limit.

To quantify these statements, we perform a detailed analy-
sis for the uniform prior. When < 1, the posterior distribu-
tion for the single search can be approximated as

0.0 - -
plple) = Ry~ Afa e #0400 a3) 0 e .
()

while the posterior for the split search becomes

p(ulz1, 22) ~ (21, xz)e—uc(ml,m) (44) FIG. 7: The ratio Oftsingle tO Hsplit @S a function of\(z) for several
values ofR,(z2)/Ro(z1). The figure was generated far(z,) =
where 1.0 anda = 0.5. In general, there is only a weak dependence on
this value; the curves steepen a little for smaller valud @f; ), but
c(z1,m2) = Ro(x1)[o— A(z1)] + Ro(x2)[(1 — ) — A(x2)] . look qualitatively similar. Note also that for most sensilchoices

(45) of amplitude statisticc, one expects\(z2) < A(z1). The plot is
Within the context of this approximation, it is then easy to extended to\(z2) = 10 for completeness.
write down the upper limit for each distribution. In partiay

In(1.0 - C) and
Hsingle = (46)
¥ Ro(a1)[1 = A1) v(zg) = —2In(1 —V2/2) =25 (50)
for the single search; for the split search
In(1.0 - C) (47) Taking the difference of the above equations, we obtain
Msplit = N -
c(z1,22) v(zg) —v(zy) = 1.8 (51)
Hence, the single search will give a smaller upper limit if Then if we definedz = z, — ., we have
Alzs) > (1 — @) {1 - R"(‘“)} (48) v(z1) & v(z2) — Azl (z2)]- (52)
Ro(xQ)
Hence
For comparison, the ratio of upper limit8gingie/ttsplit 18
are plotted versusA(xs) for several different values of Ax =~ ) (53)
2

Ro(z1)/Ro(z2) anda = 0.5. For smallA(z2), the sin-
gle search gives a smaller upper limit when the condition inand similarly
Eq. (48) is satisfied. ,

It is interesting to consider the example of Poisson dis- Ro(2) — Ro(w1) = Az| R, (22)| (54)
tributed background, wher, (z,T;) = ¢~*"/T to gain For a Poisson background, from (12) and (14), the likeli-
further insight into this result. If we assume that each ef th hood can be written as
halves of the search has the saigx,7'/2), then the dis-

tribution of the loudest event; is given by Py, (z1,T/2)? = A(zz) = R, (22) (55)
P,(z1,T), while the distribution of the loudest event for the Ro(x2) [V (2)]

other halfis given by?, (z2) (2 — Py (2)). Then, we can €as- Then, substituting in our expressions fof (2)| from (53)
ily obtain the median value far; andxs as andR! (x») from (54) yields

v(z1) = In(2) = 0.7 (49) Ara) ~ (%8) [1 _ gg;ﬂ , (56)
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Recall that if the inequality in equation (48) is satisfidtert  better depends on the true value of the rate being explored.

the single search is expected to give a smaller upper liratt th  Even though physicists have a deep appreciation for proba-

the split search. From Eqg. (56) above, we see that the inequabilistic phenomena in nature, it is often tempting to tallab

ity is indeed satisfied. Therefore, we conclude that thelsing petter upper limits by using one method or another. Thisfis, o

search is expected to give a smaller limit on average in thigourse, a flawed approach. In fact, it is the experiment that o

approximation. should choose not the statistical method. Neverthelesse so
experiments may be more powerful than others. For example,
it would be ill-conceived to use the loudest event method to

VIl DISCUSSION determine a rate interval in an experiment which is likety (i

the sense of prior probability) to generate more than one lou

The loudest event statistic is just one method of takingevent that could be considered to arise from the phenomenon
account of the quality of an event in the interpretation of aof interest. Indeed, these considerations lead back to an ex
search. In this paper, we have presented further explorafio periment more like the standard threshold approach.
the method including the discussion of marginalizationrove
uncertainties in the input model. The Bayesian approach al-
lows simple accounting of these uncertainties by integeati
them out.

In addition, we showed how the method could be used to
determine a rate interval. Once again, thisis notthe magtpo We would like to acknowledge many useful discussions
erful method of determining an interval (in the sense that uswith members of the LIGO Scientific Collaboration inspiral
ing more than one event would lead to a more strongly peakednalysis group which were critical in the formulation of the
distribution and, consequently, a narrower interval). &ev methods and results described in this paper. This work has
theless, the approach shows that a rate interval arises whéeen supported in part by NSF grants PHY-0200852 and PHY-
the likelihood that the event is signal becomes large enough 0701817; PRB is grateful to the Research Corporation for sup

Finally, we presented a discussion of combining the resultport by a Cottrell Scholar Award; SF was funded in part by the
from multiple searches to determine a single upper limit. ItRoyal Society. LIGO was constructed by the California lsti
was shown that the limit obtained by combining two searchesute of Technology and Massachusetts Institute of Teclyyolo
of equal duration is, in general, different to the limit abted ~ with funding from the National Science Foundation and oper-
by performing a single search of equivalent duration. Whattes under cooperative agreement PHY-0107417. This paper
conclusion to draw from this is unclear since the notion ofhas LIGO Document Number LIGO-P070076-00-Z.
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