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The use of the loudest observed event to generate statistical statements about rate and strength has been
standard in searches for gravitational waves from compact binaries and pulsars. The Bayesian formulation of
the method is generalized in this paper to allow for uncertainties both in the background estimate and in the
properties of the population being constrained. The methodis also extended to allow rate interval construction
in the event of a very significant loudest event. Finally, it is shown how to combine the results from multiple
experiments and a comparison is drawn between the upper limit obtained in a single search and the upper limit
obtained by combining the results of two experiments each ofhalf the original duration. To illustrate this, we
look at an example case, motivated by the search for gravitational waves from binary inspiral.

I. INTRODUCTION

In daily life, we often estimate the birth rate, the rate of au-
tomobile fatalities, or the rate of hurricanes in the Gulf. In
these cases, it is reasonably easy to determine when one event
has occurred and so the best estimate is usually taken to be the
number of events divided by the observation time. As physi-
cists and astronomers, we know this is a good estimator of
the rate of an underlying Poisson process. In these cases, the
ability to identify events with high confidence is central tothe
correctness of the rate estimate.

We can carry this method over to more complicated obser-
vational situations by allowing for false positives in our iden-
tification of events. Experiments are usually designed so that
the rate of real (foreground) events is higher than the rate of
false positive (background) events. Hence a good estimate of
the rate is obtained by counting the number of events per unit
time, and making a small correction to allow for the false pos-
itives. This is the typical experimental method of estimating
the rate.

In both physics and astronomy, it is common to search for
very rare events in large data sets and we rely heavily on sta-
tistical methods to interpret these searches. In this paper, we
discuss the problem of estimating the rate of these rare events.
When real events are very rare or very weak, it is important
to revisit the reasoning that underlies the standard approaches
to estimating rates (and indeed other parameters). In this pa-
per, we explore the effects of incorporating information about
quality of observed events into the estimate of event rate. One
measure of quality might be the signal to noise of the events;
the louder an event, the more likely it is to be signal. Of
course, more complicated measures are also possible. We
simply require a rank ordering of the events such that larger
quality implies less likely to be background.

A popular method of incorporating quality information is
to fix a threshold, prior to looking at the data. The thresh-
old is often chosen to give an acceptable rate of background
events in some qualitative sense. Then, the upper limit is de-
termined by counting the number of events per unit time above

the chosen threshold and making a correction which allows for
the background. Central to this method is the prescription by
which the final list of events are identified.

There are many different criteria that might be used to de-
termine the sample of events in an experiment. We consider
using the loudest event to estimate the rate. This method was
first introduced in gravitational-wave searches during theanal-
ysis data from a prototype instrument [1]; the method was
used to determine an upper limit on the rate of binary neu-
tron star mergers in the Galaxy. Since then, the method has
been used in a number of searches for gravitational waves [2–
7]. More details of this method of determining an upper limit
are available in [8]. Related methods have been discussed in
the context of particle physics experiments by Cousins [9] and
Yellin [10].

In Sec. II, we present a general formulation of the loud-
est event statistic [1, 8]. We adopt the Bayesian approach
which gives a posterior distribution over physical parameters
based on the loudest event observed in an experiment. To
provide a concrete example, in Sec. III we specialize to the
case of a single unknown rate amplitude multiplying a known
distribution of events. We discuss several properties of the
statistic in more detail. In particular, we describe how the
upper limit can be calculated in practice, appropriately tak-
ing into account the estimated background distribution. In
later sections, we discuss marginalization over uncertainties,
a method by which the loudest event statistic could be used
in detections — by producing a confidence interval bounded
away from zero, a method of combining the results for sev-
eral independent experiments and the effect of splitting a sin-
gle experiment in two halves. Throughout, we illustrate with
an example where background events are Poisson distributed
with a rate given byν(x) = e−x2/2 and the foreground is dis-
tributed atx−3. These choices are natural in the context of a
search for gravitational waves from coalescing binaries where
the background isχ2 distributed with two degrees of freedom,
while the foreground is uniformly distributed in volume, and
the signal strength (and hence statistic valuex) are inversely
proportional to the distance [11]. The main feature of these
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distributions, however, is simply that they are both decreas-
ing functions ofx, and that the background decreases more
rapidly than the foreground.

II. GENERAL FORMULATION OF LOUDEST EVENT
STATISTIC

Consider a search of experimental data for a rare process.
The output of this search is a set of candidate events which
have survived all cuts applied during the analysis. Assume
that these events can be ranked according to a single parame-
ter x where the chance of the event being due to instrumental
noise decreases with increasingx. Suppose, further that we
can parametrize the rate of events which occur and produce
an event with a statistic value abovex asR(x). Then, if we
assume that events are Poisson distributed in time, the proba-
bility of observing no events above a given value ofx is

P (x) = e−R(x) . (1)

A real experiment will have a background of events due
to noise. We assume that this can be determined. We will
denote the probability of obtaining zero background eventsat
or above a valuex asPb(x). Then, taking into account the
background, the probability of there being no events louder
thanx is

P (x|B) = Pb(x)e−R(x) (2)

where we have usedB to indicate that the probability depends
upon the background.

In an observation, the rate of eventsR(x) will depend upon
many quantities, for example the details of the apparatus used,
the methods used in performing the search, a physical or as-
trophysical model for the source strength and distribution. We
split these effects into two separate categories: those which
depend upon the details of the search, and those which de-
pend upon the physical or astrophysical process whose rate
we are interested in measuring. The sensitivity of the search
is encoded in the efficiency,ǫ, which is the probability of de-
tecting a given source with a value greater than or equal to
x. Clearly, it will depend upon the statistic valuex, as well
as a set of parameters, denotedA, describing the amplitude
of the signal emitted by the candidate source. Thus, we can
write ǫ = ǫ(x,A). For example, in the case of a search for
gravitational waves from coalescing binaries, the efficiency

will depend upon the sensitivity of the detector, the massesof
the binary components, the sky location and orientation of the
binary and its distance from the detector. These will all be
encoded in the variableA.

In addition, we require the physical rateR for sources
with a given set of parametersA. We assume thatR can be
parametrized by one or more physical parametersλ which we
are interested in measuring or placing limits on. Thus, we can
write the physical rate asR(A|λ). Combining the above, it
follows that

R(x|λ) =

∫

dA ǫ(x,A) R(A|λ) . (3)

Thus, we see that the rate of events in a search can be
parametrized in terms of the model parametersλ and the
threshold valuex. Furthermore, it is broken into two distinct
parts: the efficiencyǫ which depends upon the instrumental
sensitivity and the details of the search; the physical rateR
which depends upon the physical model used. Note that if the
efficiency is independent of any of the physical parametersAi

then they can be trivially integrated out.
We can substitute our expression for the rate (3) into Eq. (2)

to obtain the probability that there are zero events in the data
with a statistic value greater thanx as

P (x|λ, ǫ, B) = Pb(x)e−
∫

dA ǫ(x,A) R(A|λ) . (4)

Furthermore, the probability of the loudest event occurring
betweenx andx + dx is given byp(x|λ, ǫ, B) dx where

p(x|λ, ǫ, B) = P ′(x|λ, ǫ, B) (5)

and the prime denotes a derivative with respect tox.
After performing an experiment, we are interested in ob-

taining a distribution for the rate. To do this, we calculatea
Bayesian posterior distribution for the parametersλ given the
observations. This is denoted,p(λ|xm, ǫ, B), wherexm is the
observed loudest event. This distribution can be derived, us-
ing Bayes’ law, from the prior probability distribution on the
model parametersp(λ) and the distribution in Eq. (5) as

p(λ|xm, ǫ, B) =
p(λ) p(xm|λ, ǫ, B)

∫

dλ p(λ) p(xm|λ, ǫ, B)
. (6)

The denominator is required to ensure the probability distri-
bution is normalized to unity.

More explicitly, we have

p(λ|xm, ǫ, B) ∝ p(λ)

[(

pb(xm)

Pb(xm)

)

+

∫

dA |ǫ′(xm,A)| R(A|λ)

]

e−R(xm|λ) . (7)

Here,pb(x) = P ′
b(x) and, as before, the prime denotes deriva-

tive with respect tox. We have made use of the fact that the
efficiency can only decrease as the value ofx increases so that

ǫ′ ≤ 0. Looking at Eq. (7), notice that the probability dis-
tribution is governed by an exponential decay determined by
the rate of events. The shape of the distribution is governed
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by two terms, the firstpb(xm)/Pb(xm) depends only upon the
background, while the second depends only upon the rate.

In many circumstances, the parametersλ may be further
divided into a set of particular interestλ0 and others of less
interestλ1. By integrating Eq. (6) over the unwanted param-
etersλ1, one obtains the posterior distribution

p(λ0|xm, ǫ, B) =

∫

dλ1 p(λ0, λ1) p(xm|λ0, λ1, ǫ, B)
∫

dλ p(λ) p(xm|λ, ǫ, B)
.

(8)
In Section IV we consider this process of marginalization over
unwanted, or nuisance, parameters in more detail.

To calculate an upper limit, or rate interval, at a given confi-
dence levelC, one integrates Eq. (8) over a regionV (λ0) such
that

C =

∫

V (λ0)

p(λ0|xm, ǫ, B) . (9)

In general, the difficult part is selecting the regionV (λ0), es-
pecially in more than one dimension. There are several ways
to do this: for example, one could marginalize over all but one
of the parameters thus reducing the problem to a 1-d integral;
or select the smallest volumeV (λ0) that gives the required
probability. (This is sometimes called a highest posteriorden-
sity interval [12].) In Sec. V, we investigate the properties of
this type of rate interval based on the loudest event method.

III. UNKNOWN RATE AMPLITUDE

We have obtained the general expression for the posterior
probability distribution of the parametersλ governing an as-
trophysical model based on an observed loudest event. In
practice, the details of obtaining either a rate upper limitor a
confidence interval on the model parameters will depend upon
the details of the astrophysical model and its dependence upon
the variablesλ. In this section, we simplify to the situation
where the rate is dependent upon a single parameterµ which
acts as an overall unknown amplitude, so that

R(A|µ) = µRo(A) . (10)

There are many instances where this simplification is well mo-
tivated physically. For example, in the search for coalescing
binaries, it is typical to assume that the rate of binary coa-
lescence is directly proportional to the blue light luminosity,
while the constant of proportionality is unknown. Thus, the
rateRo will depend upon the distribution of blue light in the
universe which can, in principle, be measured. Then, an ob-
servation can be used to set a limit on the rateµ. Similarly,
in a search for other astrophysical sources, one might con-
sider a population which is uniformly distributed in space,
Ro(D) = µD2, whereD is the distance.

We can use this form of the rate to simplify the general ex-
pression for the posterior. To begin, we introduce the quantity

Ro(x) =

∫

dA ǫ(x,A)Ro(A) . (11)

ThenR(x) = µRo(x), and (at least in principle)Ro(x) is
known. In addition, we introduce the quantityΛ(x), defined
as

Λ(x) =
|R′

o(x)|
P ′

b(x)

[

Ro(x)

Pb(x)

]−1

. (12)

The quantityΛ(xm) encodes the likelihood that the loudest
event is due to the foreground. In particular, in the limit that
Λ(xm) → 0, the event is definitely from the background. Al-
ternatively, in the limit thatΛ(xm) → ∞, the loudest event
is definitely from the foreground. We note that it depends
upon the physical rate distributionRo(xm) and its derivative
R′

o(xm). Similarly, it depends upon the background distribu-
tion throughPb(xm) and it’s derivative.

For an unknown rate amplitude, the above expressions can
be substituted into Eq. (7) to obtain the posterior distribution

p(µ|xm, Ro, B) ∝ p(µ) [1 + µ Λ(xm)Ro(xm)] e−µRo(xm) .
(13)

It is necessary to include the contribution from the back-
ground; if it is ignored, thenΛ → ∞ and the posterior dis-
tribution will generically be peaked away from zero, and go
to zero for a zero rate. Thus, even if there is no evidence for
a signal in the data, the posterior distribution for the ratewill
be inconsistent with zero events . In the next subsections, we
will explicitly evaluate the posterior for various choicesof the
prior p(µ) and obtain rate limits.

The loudest event prescription can be applied to any form
of background, provided the required quantities in Eq. (12)
can be measured or estimated. In many experiments, one
might expect the background events above a statistic valuex
to be Poisson distributed, with a rateν(x) whereν is a non-
increasing function ofx. Then, it follows directly that

Pb(x) = e−ν(x)

pb = ν′(x)|e−ν(x)|
pb(x)/Pb(x) = |ν′(x)| . (14)

We will make use of this to simplify examples. However, it
is important to note that the loudest event statistic does not
require the assumption of Poisson background.

A. Uniform Prior

The posterior distribution given in Eq. (13) can now be eval-
uated in some particular cases. This requires a choice of prior
distribution. For simplicity, we begin with a uniform prior,

p(µ) = const . (15)

This distribution is not normalizable. However, we can in-
troduce a cutoff at largeµ (well above the rate being probed
by the given experiment) in order to render it normalizable.
Physically, this is a reasonable choice of prior if there is no
information available about the expected value ofµ.

It is straightforward to differentiate Eq. (13) and see thatits
peak will be away from zero if and only ifΛ(xm) > 1. That
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is, the peak will be away from zero provided it is more likely
that the loudest event is from the foreground than from the
background. If this is the case, then one might take this as an
indication of a non-zero rate. The extent to which this is true
is explored in Sec. V.

We integrate Eq. (13) to obtain an upper limit at confidence
levelC by solving

1 − C = e−µRo(xm)

[

1 +

(

Λ(xm)

1 + Λ(xm)

)

µRo(xm)

]

(16)

for µ. It has been shown in [8] that setting the background to
zero yields a conservative rate limit. In the Bayesian analysis,
however, this yields a posterior probability distributionfunc-
tion which is peaked away from zero, and goes to zero at zero
rate. This is clearly seen in Fig. 1 which shows the posterior
distribution for three values ofΛ includingΛ → ∞. This is
not surprising as we have neglected the background, in which
case the existence of a loudest event implies a non-zero rate.
Although this does not invalidate the upper limit (indeed, it
has been shown that the no background limit is conservative),
it does mean that the posterior would not serve as a suitable
prior for a future experiment, as it is inconsistent with a zero
rate. Nevertheless, it is still possible to obtain the upperlimit
as

µ90% =
3.9

Ro(xm)
. (17)

Similarly, the no-foreground limit can be obtained by taking
Λ = 0. In this case, the 90% confidence limit tends to

µ90% =
2.3

Ro(xm)
. (18)

Finally, we can consider the case where the loudest event is
equally likely to be due to foreground or background,Λ = 1.
In this case, we have,

µ90% =
3.3

Ro(xm)
. (19)

The posterior distribution for the rate for these three possibil-
ities is shown in Fig. 1.

B. Alternative Choices of Prior

An alternative distribution on the rate is the Jeffrey’s prior,
given byp(µ) ∝ 1/µ. Like the uniform prior, it is not normal-
izable. This can be fixed by imposing a cutoff at a small value
of x, but doing so artificially introduces a length scale into the
problem. We can again compute the posterior distribution as

p(µ|xm, Ro, B) ∝
[

1

µ
+ Λ(xm)Ro(xm)

]

e−µRo(xm) . (20)

In the no-background case, this fixes the issue of the distribu-
tion being peaked away from zero. However, for the general
case where the background is included, this distribution isnot

FIG. 1: The posterior probability density functionp(µ|xm, Ro, B)
on the rateµ, assuming a uniform prior. The three curves correspond
to three different values of the likelihood: a)Λ = 0 (solid line), the
loudest event is definitely background and the distributionis expo-
nential; b)Λ = 1 (dashed line), the loudest event is equally likely to
be from the foreground or background, the distribution peaks at zero
but the derivative vanishes there; c)Λ → ∞ (dotted line), the loud-
est event is definitely from the foreground, the distribution is peaked
away from zero.

satisfactory due to the1/µ term, which will again need to be
cut off at some value.

Another alternative is the exponential prior. We first note
that this arises naturally when a previous search has been com-
pleted. In this case, it is natural to use the posterior from a
previous search as the prior distribution for a subsequent one.
If the first search was performed using a uniform prior, the
posterior is given by (13). Furthermore, in the event that the
loudest event is most likely backgroundΛ ≪ 1. Then, we can
conservatively rewrite the posterior as

pc(µ|xm, Ro, B) ∝ e−µΛ(xm)Ro(xm) (21)

where we have made use of the fact that

1 + µΛRo ≤ eµΛRo . (22)

It is straightforward to show that the rate limit at a given confi-
dence levelC inferred using this posterior is necessarily larger
than that obtained using the original distribution. In thissense,
the alternative distribution is conservative and the distribution
has been cast as an exponential.

Starting with the exponential prior,

p(µ) ∝ e−roµ , (23)

whose decay is governed by the quantityro, we can obtain a
posterior distribution. It is beneficial to re-defineΛ as

Λ(x) =
|R′

o(x)|
P ′

b(x)

[

Ro(x) + ro

Pb(x)

]−1

. (24)
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Then, the posterior distribution is given by

p(µ|xm, Ro, B) ∝ [1 + µΛ(xm)(Ro(xm) + ro)] e
−µ(Ro(xm)+ro) .

(25)
As before, the posterior distribution is peaked away from zero
if Λ > 1. In addition, the distribution is identical to that ob-
tained using a uniform prior, only now we have effectively
searched overRo(xm) + ro.

C. Comparison with Fixed Thresholds

Let us compare the loudest event statistic against a fixed
threshold approach. In order to do this, we work with the
example discussed in the introduction:ν(x) = e(82−x2)/2,
Ro(x) = (8/x)3. The normalizations of these functions are
chosen for simplicity so thatν(8) = Ro(8) = 1, i.e. we ex-
pect one event at or abovex = 8 and the rate is unity there.
The value of the upper limit as a function of the actual loudest
event is shown in Fig. 2a. The upper limit transitions smoothly
from the zero foreground limit (at low values ofx) to zero
background limit (at large values ofx). Figure 2b shows the
distributionpb(x). This corresponds to the expected distri-
bution of for the loudest event if it is due to the background.
Then, by multiplying the upper limit by the expected distri-
bution for the loudest event and integrating, we obtain the ex-
pected upper limit. In this example it is2.64.

For comparison, the upper limit for a fixed threshold is pre-
sented in Figure 3. When calculating the upper limit for a
fixed threshold, one simply counts the number of eventsn
above the chosen thresholdxt and obtains a limit

µ90% =
F (n)

Ro(xt)
(26)

whereF (n) is a known function for each integern (see, for
example, [13] for more details). In particular, when zero
events are observed above the threshold,F (0) = 2.3. When
performing a fixed threshold search, it is possible to take into
account the expected background and, much as for the loudest
event, neglecting to do so will lead to a conservative result. In
Figure 3, we show the expected upper limit as a function of
the threshold.

Clearly, in this example, the loudest event statistic is prefer-
able to a fixed threshold, as it will provide a better expected
upper limit value than the fixed threshold forany value of the
threshold (with or without the background). We note that this
result is specific to the details of the example under considera-
tion; the key feature is that the background rate is a very steep
function ofx. Indeed, in [8], the same example was consid-
ered, but with an expected background of unity atx = 4.5
rather thanx = 8, leading to a small range of values where
the fixed threshold does beat the loudest event. However, as
emphasized in that paper the attraction of the loudest eventis
that it is unnecessary to fix a threshold ahead of performing
the search — the search itself determines the threshold.

FIG. 2: a) The upper limit as a function of the observed loudest event.
The solid line shows the value of the upper limit as a functionof x.
The dotted and dashed lines are given by2.3/Ro(x) and3.9/Ro(x).
We see that the upper limit transitions smoothly from one to the other.
At low values ofx, the loudest event is very much consistent with
the background,Λ ≈ 0 and the upper limit is close to the dotted
line. For larger values ofx the loudest event is more consistent with
foreground,Λ → ∞, and the rate is more consistent with the dashed
line. b) The probability distribution for the loudest eventassuming
that it is drawn from the background distribution,pb(x). Multiplying
the upper limit curve by this distribution and integrating overx gives
the expected value of the upper limit if the loudest event is from the
background.

IV. MARGINALIZATION OVER UNCERTAINTIES

The rate of events in the data,R(x|λ) in Eq. (3), is depen-
dent upon the frequency of events and their amplitude distri-
bution as well as the sensitivity of the search which is per-
formed. In many cases, neither of these quantities will be pre-
cisely known. For example, the efficiency of an experiment is
often measured via Monte-Carlo methods and therefore suf-
fers from uncertainties due to the finite number of trials. If
we expand our understanding of the parametersλ to further
parametrize the uncertainties that can arise in the underly-
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FIG. 3: Figure showing the expected upper limit as a functionof
the fixed threshold. The dashed line shows the upper limit obtained
when ignoring the background, while the dotted line includes the
background contribution. For large values of the thresholdwhere the
expected background is small, both limits approach2.3/Ro(x) as
expected. For low values ofx, there is a good chance of many events
above threshold which leads to a worse upper limit. The balance
occurs at around a threshold value ofx = 8.3. For reference, we
also plot a horizontal line showing the expected upper limitfrom
the loudest event. Interestingly, the loudest event will, on average,
outperform the fixed threshold for any value of the threshold.

ing models and in measurements of efficiency, it is natural
to marginalize over these uncertainties before computing an
upper limit or rate interval. Just as the marginalization over
uninteresting physical parameters (given in Eq. (8)) requires
a prior distribution to be specified, the same is true of the un-

certainties. This prior distribution would typically reflect the
systematic and statistical errors estimate for the experiment.

As a particular example, consider the problem of the un-
known rate amplitude presented in Sec. III and assume there
is some uncertainty associated with the value ofRo. Typi-
cally, one might choose the prior to be a normal distribution
peaked around the estimate value ofRo(xm). It is, however,
unphysical for the rate to be zero, so the distribution would
need to be truncated. A more natural choice is a log-normal
distribution, for which the logarithm ofRo would be normally
distributed, thereby guaranteeing thatRo is positive.

Here, we choose to make use of theγ-distribution, pri-
marily because it can be analytically integrated. Theγ-
distribution is similar in shape (for small standard deviation)
to both the Gaussian and log-normal distributions and in addi-
tion takes only non-negative values. For integer valuesk, the
γ-distribution is given by

p(Ro|k, θ) =
R

(k−1)
o e−Ro/θ

θk k!
. (27)

The mean isR̂o = kθ while the standard deviation isσRo
=√

kθ. Therefore, fractional standard deviationσRo
/R̂o =

1/
√

k, which tends to zero in the limit ask → ∞, whereby
we expect to recover the unmarginalized results.

The marginalized distribution is calculated by integrating
overRo,

p(µ|xm, R̂o, k, B) =

∫

dRo p(Ro|R̂o, k) p(µ|xm, Ro, B) .

(28)
Making use of the distribution (13) for the rate and the ex-
pression for theγ-distribution given above, we obtain the
marginalized distribution

p(µ|xm, R̂o, k, B) =
R̂o

(1 + Λ)







1
(

1 + µR̂o/k
)k+1

+
µΛR̂o(1 + 1/k)
(

1 + µR̂o/k
)k+2






. (29)

In the limit thatk → ∞, we recover the previous distribution
for µ as expected.

In order to examine the effect of marginalization, in Figure
4 we plot the unmarginalized posterior distribution forΛ = 10
along with three distributions obtained by marginalizing over
different size systematic errors or uncertainties. These distri-
butions are obtained from (29) with values ofk = 100, 16 and
4 corresponding to errors of10, 25 and50% respectively. As
the systematic error increases, the posterior distribution for the
rate gets broader; the value of the probability density function
increases for large values of the rate. This causes an increase
in the upper limit. Without taking into account any uncertain-
ties, the90% confidence upper limit is3.8/Ro(xm). For10%
systematic error, this increases only slightly to3.9/Ro(xm)

while for 25 and50% this increases further to4.2/Ro(xm)
and5.5/Ro(xm) respectively. In Figure 5 we plot the upper
limit as a function of the systematic error for four different
values ofΛ. The results are qualitatively similar to what was
seen before — marginalizing over uncertainties will increase
the upper limit and the larger the errors, the larger the effect.

A. Marginalization over uncertainties in Λ

In many cases, there will also be uncertainties in the precise
value ofΛ. These can be marginalized over in the same way
as described above. Since theΛ dependence of the distribu-
tion (13) is straightforward, this can be done explicitly. For
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FIG. 4: The posterior probability density function on the rate for dif-
ferent sizes of systematic error. The curves were generatedassum-
ing a uniform prior and usingΛ = 10. The solid line corresponds
to the unmarginalized probability density function. The dot-dashed
line gives the distribution marginalized over a10% systematic uncer-
tainty (equivalentlyk = 100 for theγ-distribution). With this level
of uncertainty, the marginalized distribution is barely changed from
the original. The dotted and dashed lines show the posteriorfor 25%
(k = 16) and50% (k = 4) systematic errors. As the systematic error
increases the distribution broadens and consequently the upper limit
increases.

FIG. 5: The90% confidence upper limit versus the size of the sys-
tematic error which is marginalized over (equivalent to1/

√
k in the

γ-distribution discussed in the text). The limit plotted forfour differ-
ent values ofΛ: 0, 0.1, 1, 10. In all cases, the upper limit increases
with larger systematic error.

concreteness, let us take a uniform prior, in which case, the
posterior distribution is:

p(µ|xm, Λ) = Ro(xm)
(1 + µRo(xm)Λ)

(1 + Λ)
e−µRoxm(xm) (30)

Then, given a probability distributionp(Λ), the marginal-

ized distribution is

p(µ|xm) =

∫

dΛ p(Λ) p(µ|xm, Ro, Λ) (31)

In this case, the above integral of is straightforward. Specifi-
cally, let us define

ξ =

∫

dΛ p(Λ)
Λ

(1 + Λ)
. (32)

Then, the posterior distribution following marginalization
overΛ is given by

p(µ|xm, Λ) = Ro(xm) [(1 − ξ) + µRo(xm)ξ] e−µRoxm(xm)

(33)
Suppose thatΛ is distributed with expectation valuêΛ and

varianceσ2
Λ. Then, to leading order,

ξ ≈
(

Λ̂

1 + Λ̂

)

−
(

σ2
Λ

(1 + Λ̂)3

)

. (34)

From this, we notice two things. Firstly, even if the frac-
tional uncertainties inΛ are of order unity, whenΛ ≫ 1 or
Λ ≪ 1, the second term is small compared to the first and can
be ignored. Secondly, marginalizing overΛ only serves to de-
crease the value ofξ relative to the unmarginalized case. This
is equivalent to reducing the likelihood that the loudest event
is foreground and consequently will reduce the upper limit.
Therefore, it is possible to neglect the marginalization ofΛ as
this is a conservative thing to do.

V. RATE INTERVALS

In Sec. III, we derived the upper limit on the rateµ based on
the loudest event. However, in the case where the likelihoodΛ
of the event being foreground is large, we may prefer to give
a rate interval rather than an upper limit. For a uniform prior,
the modeµp of the posterior distribution for the rate (given in
Eq. (13)) is non-zero wheneverΛ > 1. Furthermore, in this
case,

µp =
1

Ro(xm)
− 1

ΛRo(xm)
, (35)

which asymptotes to1/Ro for large values ofΛ as one might
expect. How significant an indicator of a non-zero rate is hav-
ing the peak of rate distribution be non-zero? In order to ex-
amine this idea more precisely, we will describe a method of
constructing a rate interval using the loudest event statistic.

At some confidence levelC, a rate interval is given by
[µ1, µ2] such that

∫ µ2

µ1

p(µ|xm, ǫ, B) p(µ) dµ = C . (36)

A supplementary condition is required to select a unique in-
terval: we identify the interval which minimizes|µ2 − µ1|
and contains the mode of the distribution (or zero forΛ < 1).
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FIG. 6: The graph shows the behavior of the lower and upper bound-
aries of the rate interval,µ1 and µ2 respectively, as a function of
the likelihoodΛ. They are plotted for three different values of the
confidence levelC of 80%, 90% and 95%. The peakµp (solid line)
approaches zero asΛ approaches one. AsΛ → 0, µ2 agrees with no
foreground upper limit treated above.

This condition clearly results inµ1 = 0 for small values of
Λ, i.e. when the loudest event was likely to have arisen from
the background, the rate interval on the process we wish to
constrain includes zero rate.

For the uniform prior considered in Sec. III A, the depen-
dence ofµ1, µ2 andµp onΛ are shown in Fig. 6. ForΛ < 1,
µp = 0 and consequentlyµ1 = 0, as expected. However, for
a significant range ofΛ > 1, even though the rate distribution
is peaked away from zero,µ1 = 0 indicating that (at the given
confidence) the rate interval still includes zero.

We can determine the precise value ofΛ at whichµ1 be-
comes non-zero. For fixedΛ andRo(xm), Eq. (36) givesµ2

implicitly as a function ofµ1. The minimal interval condition
is then just

d(µ2 − µ1)

dµ1
= 0 . (37)

Substitutingµ1 = 0 into Eq. (36) and its derivative gives
two equations which depend onµ2 and Λ. As an exam-
ple, consider a 90% confidence interval. In this case,µ1

becomes non-zero, and the interval is bounded away from
the origin, at value ofΛ ≃ 11.56. This corresponds to
µ2 ≃ 3.807/Ro(xm). This result is in good agreement with
the values obtained numerically in Figure 6. In this context,
it is interesting to return to Figure 4 which shows the pos-
terior distribution forΛ = 10. Although this distribution is
peaked well away from zero, the 90% confidence interval still
includes zero.

VI. COMBINING RESULTS FROM MULTIPLE
EXPERIMENTS

When performing a series of experiments, there is a very
natural way to combine the results in a Bayesian manner. As

discussed above, the calculation of a Bayesian upper limit re-
quires the specification of a prior probability distribution for
the rateµ. When a previous experiment has been performed,
it is natural to use the posterior from the first experiment as
the prior for the second. It is straightforward to show that the
results are independent of the order of the experiments. (This
does not depend upon the loudest event, rather it is a general
Bayesian result). Begin by recalling that

p(µ|x1) =
p(µ) p(x1|µ)

∫

dµ p(µ) p(x1|µ)
. (38)

For the second search, simply usep(µ|x1) as the prior to ob-
tain the posterior distribution onµ given the observations in
both the first and second experiments:

p(µ|x1, x2) =
p(µ) p(x1|µ) p(x2|µ)

∫

dµ p(µ) p(x1|µ) p(x2|µ)
(39)

This is clearly symmetric inx1 andx2. It is straightforward
to see that marginalization over nuisance parameters preserves
this symmetry.

Next, let us consider the effect of taking a single search and
splitting it into two halves, which can be combined to pro-
duce an upper limit in the manner described above. Naively,
it appears that splitting the search will give a lower rate limit,
since we will be using a “quieter” loudest event for half the
search. If this were the case, then it would seem that splitting
the search into ever shorter searches would improve the upper
limit indefinitely. As we shall see, the result is not so clearcut,
and it depends critically upon the foreground and background
distributionsRo(x) andPb(x).

Consider an experiment performed for some given timeT ,
and assume that both the foreground and background rates are
constant over time. We would then like to compare the (ex-
pected) upper limit from the full search to that obtained by
splitting the data in two parts of lengthT1 andT2 and cal-
culating a combined upper limit from the two searches. Let
us assume, without loss of generality, that the loudest event
overall in the search occurs in the first half of the search with
a statistic value ofx1, and the loudest event in the second half
of the search has a statistic valuex2. Then, we can calculate
the upper limit from the search (taking it as a single entity)
and from the split search.

The posterior from the single search is given by

p(µ|x1) ∝ p(µ) (1 + µRo(x1)Λ(x1)) e−µRo(x1) . (40)

While for the split search, the posterior for each part is given
by given by

p(µ|xi) ∝ p(µ) [1 + µΛ(xi)Ro(xi)] e
−µRo(xi)Ti/T (41)

wherei = 1, 2 label the two parts of the search. Letα =
T1/T , then the combined posterior distribution for the split
search is
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p(µ|x1, x2) ∝ p(µ) [1 + µΛ(x1)Ro(x1)] [1 + µΛ(x2)Ro(x2)] e
−µ[αRo(x1)+(1−α)Ro(x2)]. (42)

Notice, for the split search, the exponential decay term is at
least as large as for the single search, with equality only if
x1 = x2. This tends to make the upper limit obtained in the
split search smaller than that of the single search. In contrast,
the polynomial prefactor is always more significant for the
split search (i.e. it grows more steeply withµ). This tends to
make the upper limit larger. Whatever the form ofΛ(x) and
Ro(x), it is clear that in the case wherex1 = x2, splitting the
search will lead to a larger limit. Meanwhile ifx2 ≪ x1, the
split search will give a numerical smaller limit.

To quantify these statements, we perform a detailed analy-
sis for the uniform prior. WhenΛ ≪ 1, the posterior distribu-
tion for the single search can be approximated as

p(µ|x1) ≃ Ro(x1)[1 − Λ(x1)]e
−µRo(x1)[1−Λ(x1)] (43)

while the posterior for the split search becomes

p(µ|x1, x2) ≃ c(x1, x2)e
−µc(x1,x2) (44)

where

c(x1, x2) = Ro(x1)[α−Λ(x1)]+Ro(x2)[(1−α)−Λ(x2)] .
(45)

Within the context of this approximation, it is then easy to
write down the upper limit for each distribution. In particular,

µsingle =
ln(1.0 − C)

Ro(x1)[1 − Λ(x1)]
(46)

for the single search; for the split search

µsplit =
ln(1.0 − C)

c(x1, x2)
. (47)

Hence, the single search will give a smaller upper limit if

Λ(x2) > (1 − α)

[

1 − Ro(x1)

Ro(x2)

]

(48)

For comparison, the ratio of upper limitsµsingle/µsplit

are plotted versusΛ(x2) for several different values of
Ro(x1)/Ro(x2) and α = 0.5. For smallΛ(x2), the sin-
gle search gives a smaller upper limit when the condition in
Eq. (48) is satisfied.

It is interesting to consider the example of Poisson dis-
tributed background, wherePb(x, Ti) = e−ν(x)Ti/T to gain
further insight into this result. If we assume that each of the
halves of the search has the samePb(x, T/2), then the dis-
tribution of the loudest eventx1 is given byPb(x1, T/2)2 =
Pb(x1, T ), while the distribution of the loudest event for the
other half is given byPb(x2) (2 − Pb(x2)). Then, we can eas-
ily obtain the median value forx1 andx2 as

ν(x1) = ln(2) = 0.7 (49)

FIG. 7: The ratio ofµsingle toµsplit as a function ofΛ(x2) for several
values ofRo(x2)/Ro(x1). The figure was generated forΛ(x1) =
1.0 andα = 0.5. In general, there is only a weak dependence on
this value; the curves steepen a little for smaller value ofΛ(x1), but
look qualitatively similar. Note also that for most sensible choices
of amplitude statisticx, one expectsΛ(x2) ≤ Λ(x1). The plot is
extended toΛ(x2) = 10 for completeness.

and

ν(x2) = −2 ln(1 −
√

2/2) = 2.5 (50)

Taking the difference of the above equations, we obtain

ν(x2) − ν(x1) = 1.8 (51)

Then if we define∆x = x1 − x2, we have

ν(x1) ≈ ν(x2) − ∆x|ν′(x2)|. (52)

Hence

∆x ≈ 1.8

|ν′(x2)|
. (53)

and similarly

Ro(x2) − Ro(x1) ≈ ∆x|R′
o(x2)| . (54)

For a Poisson background, from (12) and (14), the likeli-
hood can be written as

Λ(x2) =
R′

o(x2)

Ro(x2)|ν′(x2)|
(55)

Then, substituting in our expressions for|ν′(x2)| from (53)
andR′

o(x2) from (54) yields

Λ(x2) ≈
(

1

1.8

)[

1 − Ro(x1)

Ro(x2)

]

. (56)
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Recall that if the inequality in equation (48) is satisfied, then
the single search is expected to give a smaller upper limit that
the split search. From Eq. (56) above, we see that the inequal-
ity is indeed satisfied. Therefore, we conclude that the single
search is expected to give a smaller limit on average in this
approximation.

VII. DISCUSSION

The loudest event statistic is just one method of taking
account of the quality of an event in the interpretation of a
search. In this paper, we have presented further exploration of
the method including the discussion of marginalization over
uncertainties in the input model. The Bayesian approach al-
lows simple accounting of these uncertainties by integrating
them out.

In addition, we showed how the method could be used to
determine a rate interval. Once again, this is not the most pow-
erful method of determining an interval (in the sense that us-
ing more than one event would lead to a more strongly peaked
distribution and, consequently, a narrower interval). Never-
theless, the approach shows that a rate interval arises when
the likelihood that the event is signal becomes large enough.

Finally, we presented a discussion of combining the results
from multiple searches to determine a single upper limit. It
was shown that the limit obtained by combining two searches
of equal duration is, in general, different to the limit obtained
by performing a single search of equivalent duration. What
conclusion to draw from this is unclear since the notion of

better depends on the true value of the rate being explored.
Even though physicists have a deep appreciation for proba-

bilistic phenomena in nature, it is often tempting to talk about
better upper limits by using one method or another. This is, of
course, a flawed approach. In fact, it is the experiment that one
should choose not the statistical method. Nevertheless, some
experiments may be more powerful than others. For example,
it would be ill-conceived to use the loudest event method to
determine a rate interval in an experiment which is likely (in
the sense of prior probability) to generate more than one loud
event that could be considered to arise from the phenomenon
of interest. Indeed, these considerations lead back to an ex-
periment more like the standard threshold approach.
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