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Abstract

Suitable shaping (in particular, flattening and broadening) of the laser beam has recently been

proposed as an effective device to reduce internal (mirror) thermal noise in advanced gravita-

tional wave interferometric detectors. Based on some recently published analytic approximations

(valid in the infinite-test-mass limit) for the Brownian and thermoelastic mirror noises in the

presence of arbitrary-shaped beams, this paper addresses certain preliminary issues related to the

optimal beam-shaping problem. In particular, with specific reference to the Laser Interferometer

Gravitational-wave Observatory (LIGO) experiment, absolute and realistic lower-bounds for the

various thermal noise constituents are obtained and compared with the current status (Gaussian

beams) and trends (“mesa” beams), indicating fairly ample margins for further reduction. In this

framework, the effective dimension of the related optimization problem, and its relationship to

the critical design parameters are identified, physical-feasibility and model-consistency issues are

considered, and possible additional requirements and/or prior information exploitable to drive the

subsequent optimization process are highlighted.

PACS numbers: 04.80.Cc, 07.60.Ly, 41.85.Ew, 42.55.-f

∗Electronic address: vgaldi@unisannio.it; URL: http://www.ing.unisannio.it/vgaldi

1



I. INTRODUCTION

In all currently operating (and possibly future) interferometric gravitational wave detec-

tors, the overall limit sensitivity of the instrument is bounded by the noise floor, which,

in the most interesting observational frequency band (30–300 Hz), is dominated by ther-

mal noises in the substrate and in the high-reflectivity coating of the test masses. With

particular reference to the Laser Interferometer Gravitational-wave Observatory (LIGO) ex-

periment [1], an introductory discussion of the various noise components can be found in

[2], and a numerical code for computing the noise budget is available from [3]. Toward the

development of second-generation detectors, such as Adv-LIGO [4], the quest for increasing

the event rate in the observational band has motivated the exploration of various techniques

for reducing the mirror thermal noise. With specific reference to the coating Brownian

noise (dominant in the current baseline design featuring fused-silica test-masses), use of

improved (low-mechanical-loss) materials [5], geometric optimization of the coating design

[6], and flat-top (commonly referred to as “mesa”) beams [7, 8] seem the most promising.

The latter option, intuitively motivated by the potential capability of a mesa beam (MB) of

better averaging the thermally-induced mirror surface fluctuations as compared to a stan-

dard Gaussian beam (GB), has been numerically proved to yield significant reductions in

the overall thermal noise [9, 10], and has led to the development of a cavity prototype

with non-spherical “Mexican hat” (MH) profile mirrors [11]. Alternative (nearly-concentric

[12], nearly-spheroidal [13–15]) designs have been subsequently proposed to cope with the

inherent tilt-instability of the originally-conceived nearly-flat configuration. Also, use of

higher-order modes in standard spherical cavities has been shown to provide, in principle,

comparable reductions without the need of changing the mirror profile [16], but its practical

feasibility still remains to be assessed.

The method utilized in [10] to compute the coating and substrate thermal noises re-

lies on a finite-test-mass (FTM) computationally-intensive numerical analysis based on the

approach in [17, 18]. More recently [19, 20], a general though simple formula has been

derived in the infinite-test-mass (ITM) limit, which allows the computation of the above

noises for arbitrary-shaped beams. This approximation has been validated and calibrated

in [20] against the FTM numerical solutions (see also the discussion in Sec. III B 3). In

view of its remarkably simple form, in terms of spectral integral functionals of the beam
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intensity profile, it appears suggestive to exploit it for addressing the optimal beam-shaping

problem, i.e., finding the beam profile that minimizes a given thermal noise constituent.

In a step-by-step approach, acknowledging the formal and computational complexity of the

arising optimization problem, this paper addresses some key preliminary issues. In partic-

ular, emphasis is placed on the a priori deduction of absolute and realistic lower-bounds

for the various thermal noise constituents, the identification of the effective dimension of

the problem, and how this depends on the critical design parameters, and the gathering of

additional requirements and/or prior information to be utilized in the actual optimization

problem.

Accordingly, this paper is organized as follows. In Sect. II, the problem geometry, formu-

lation, notation and strategy are outlined, with a compact review of the relevant background

theory (ITM approximation). In Sect. III, under the idealized assumption of zero diffraction-

loss (compact spatial support) beam profiles, absolute lower bounds for the noise constituents,

as well as the corresponding beam profiles over the mirror, are obtained in analytic form,

by solving a straightforward variational problem. Subsequently, a key physical-feasibility

constraint (related to the finite spatial bandwidth of the cavity eigenmodes) is taken into

account by approximating the above compact-support optimal profiles in a suitable L2 func-

tional subspace, whose dimension is fixed by the diffraction-loss constraint. This results in

more realistic tighter bounds. In this framework, the role of the number of electromagnetic

degrees of freedom [21] of the cavity in setting the effective dimension of the optimization

problem is highlighted. In Sect. IV, the obtained absolute and realistic lower bounds for

the considered noise components are compared to the levels currently achievable using GB

and MB profiles. Moreover, some model-consistency issues are discussed in order to assess

the practical relevance of the results. Finally, in Sect. V, conclusions and recommendations

are provided.

II. PROBLEM STATEMENT

A. Geometry

Referring to the problem geometry illustrated in Fig. 1, we consider a standard Fabry-

Perot optical cavity with two identical, symmetric, nearly-flat (nonspherical) mirrors of
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radius a laid on cylindrical test masses, separated by a distance L (see Fig. 1a). The

mirror (axisymmetric) departure from flatness is described by h(r), with r denoting the

radial coordinate in the mirror plane (see Fig. 1b). In what follows, attention is focused

on the axisymmetric (i.e., θ-independent) eigenmode field distribution Φ(r) on the mirror,

with implicit exp(ıωt) time-harmonic dependence. Note that, in view of the duality relations

expounded in [22], the results derived hereafter apply to the nearly-concentric case too [37].

B. Background: Infinite-Test-Mass Approximations

In the ITM approximation [19, 20], and in the low frequency limit of interest for

gravitational-wave interferometers, the power spectral densities of the main coating and

substrate thermal noise constituents of interest can be written as

S = C

∫ ∞

0

κq+1
{
H
[
|Φ|2

]
(κ)
}2
dκ, (1)

where C is a noise-type- and frequency-dependent factor (irrelevant for all further develop-

ments), q is a noise-type-dependent scaling exponent (see Table I), Φ(r) is the axisymmetric

eigenmode field distribution on the mirror, and

H[F ](ξ) ≡
∫ ∞

0

F (ζ)J0(ξζ)ζdζ (2)

denotes the Hankel-transform (HT) operator. Here and henceforth, Jm denotes an mth-

order Bessel function of the first kind [23, Sec. 9.1]. The (axisymmetric) field distribution

Φ(r) satisfies the eigenvalue equation [24]

γΦ(r) =

∫ a

0

K(r, r′)Φ(r′)r′dr′, (3)

where γ denotes the half-roundtrip eigenvalue, and the kernel is given by

K(r, r′) =
ık

L
J0

(
krr′

L

)
exp

{
ık

[
−L+ h(r) + h(r′)− (r2 + r′2)

2L

]}
, (4)

with k = 2π/λ denoting the free-space wavenumber (λ being the wavelength). Equations

(3) and (4) can be recognized as a mapping between a mirror profile h(r) and a set Ω(h) =

{[γm,Φm],m = 1, 2, . . . } of eigenstates. Here and henceforth, unless otherwise specified, the

field distribution on the mirror is assumed to be normalized as follows∫ ∞

0

|Φ(r)|2 rdr = 1. (5)
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In addition, a further constraint has to be enforced on the diffraction loss [24]

L[Φ] ≡
∫ ∞

a

|Φ(r)|2 rdr = 1− |γ|2 ≤ LT , (6)

with LT denoting a design limiting value. For Adv-LIGO, the reference figure is LT = 1ppm

(10−6). The diffraction-loss constraint singles out a subset ΩC(h) ⊂ Ω(h) of admissible

eigenmodes.

C. Formulation and Notation

It is expedient to recast the problem into a canonical form by introducing the scaled

variables

r̄ =
r

a
, κ̄ = aκ, (7)

and the scaled field distribution

φ(r̄) = aΦ(r̄a). (8)

Here and henceforth, the overbar denotes scaled quantities. The noise functional in (1) can

accordingly be rewritten as

S =
C

aq+2
S̄
[
|φ|2 , q

]
, (9)

where

S̄
[
|φ|2 , q

]
=

∫ ∞

0

κ̄q+1
{
H
[
|φ|2
]
(κ̄)
}2
dκ̄, (10)

thereby explicitly factoring out the a−(q+2) scaling law predicted by the ITM approximation

[19, 20]. In what follows, we focus on the scaled noise functional in (10), which essentially

accounts for the beam-shaping effects. Unless strictly needed, the explicit dependence on

|φ|2 and q will be omitted for simplicity of notation. The scaled field distribution φ(r̄) in (8)

satisfies the scaled version of the eigenproblem in (3), which can be conveniently recast as

γ̄φ(r̄) = ıπND exp [−ıV (r̄)]H1 [exp (−ıV )φ] (πNDr̄), (11)

where γ̄ = γ exp (ıkL),

H1[F ](ξ) ≡
∫ 1

0

F (ζ)J0(ξζ)ζdζ (12)

denotes the [0, 1] interval-windowed HT operator, and

V (r̄) = kh(ar̄)− πNDr̄
2

2
(13)
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is a mirror-profile-dependent phase function, with

ND ≡ 2NF =
2a2

λL
(14)

denoting twice the Fresnel number NF of the optical cavity [24]. Following [21], we shall

refer to ND in (14) as the number of electromagnetic degrees of freedom [38], whose relevance

will be illustrated later on (see Sec. III B). In the following we shall always assume the

eigenfunctions as normalized, viz.,

‖φ‖ ≡
[∫ ∞

0

|φ(r̄)|2 r̄dr̄
] 1

2

= 1, (15)

with ‖·‖ denoting the usual L2
[0,∞[ (cylindrical) Hilbert norm. Accordingly, we shall write

the diffraction-loss constraint as

L[φ] =

∫ ∞

1

|φ(r̄)|2 r̄dr̄ = 1− |γ̄|2 ≤ LT . (16)

D. The Optimization Problem

The optimization problem of interest consists of minimizing the scaled noise functional in

(10), acting on the mirror profile h(r̄), i.e., in finding the special mirror profile h(r̄) (within

a suitable functional class, e.g., C∞) for which

min
φ∈ΩC(h)

∥∥∥κ̄ q
2 H

[
|φ|2
]∥∥∥2

(17)

takes on its smallest value, ΩC(h) denoting the subset of eigenmodes obeying the diffraction-

loss constraint (16). The minimization of (17), subject to (16), represents a formidable

optimization problem, whose well-posedness (i.e., existence and uniqueness of the solution,

and its continuous dependence on data) cannot be taken for granted, with the consequent

ill-conditioning problems that may arise in the numerical implementation. A further com-

plication is posed by the general non-convexity of the problem, which may result in multiple

local minima that may trap standard descent-based optimization techniques (e.g., conju-

gate gradient [25]) into false solutions. Therefore, global optimization techniques need to be

applied, such as genetic [26], evolutionary [27], or particle-swarm [28] algorithms, whose con-

vergence is typically rather slow. Taking into account that each iteration in the optimization

procedure may require several numerical solutions of the eigenproblem in (11), the resulting
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overall computational burden can become prohibitive. From the above considerations, it is

clear that any blind attempt of attacking such a complex and computationally-demanding

problem may be deemed to failure. In a step-by-step approach, it appears more reasonable

to start addressing some preliminary issues, such as:

i) A priori estimation of realistic lower bounds for the various noise constituents, and

comparison with the current status and trends, in order to assess the potential reduc-

tion achievable by further optimization (and, hence, its worthiness).

ii) Identification of the effective problem’s dimension, as a function of the key cavity

design parameters.

iii) Gathering of prior information (e.g., optimal beam profiles and associated structural

features) to be exploited in order to intelligently drive the optimization process.

The rest of the present paper accordingly deals with the above issues.

III. SOME THEORETICAL BOUNDS

A. Absolute Bounds: Compact-Support Beams

1. Variational Problem

The simplest and crudest approximation of the original optimization problem in (17),

leading to a well-posed and analytically-treatable problem, consists of assuming the beam

profile to exhibit a compact spatial support within the [0, 1] interval, thereby implying zero

diffraction-losses. As we shall see, this implicitly prevents the profile from being a solution

of the eigenproblem in (11). Letting f ≡ |φ|2, one is thus led to the variational problem in

the space L1
[0,1] of summable functions,

S̄
(min)
abs ≡ min

f∈L1
[0,1]

∥∥∥κ̄ q
2 H1 [f ]

∥∥∥2

, (18)

under the constraints

f : [0, 1] → R+, (19a)∫ 1

0

f (r̄) r̄dr̄ = 1, (19b)
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whose solution is given below. The arising results are anticipated to provide absolute

lower bounds, which may not be attainable, in view of the mentioned unphysical simplifying

assumptions. From the Lagrange theory of constrained optimization [29], the constrained

variational problem in (18) and (19b) can be recast into the unconstrained optimization of

the Lagrangian functional [39]

Λ[f, µ] =
∥∥∥κ̄ q

2 H1 [f ]
∥∥∥2

− 2µ

[∫ 1

0

f (r̄) r̄dr̄ − 1

]
, (20)

where µ is the so-called Lagrange multiplier. It is shown in Appendix A that this prob-

lem admits a unique solution fs (i.e., an absolute minimum), obtainable using variational

calculus, viz.,

fs (r̄) = |φs (r̄)|2 = (q + 2)(1− r̄2)
q
2 , − 1 ≤ q ≤ 1, (21)

which also satisfies the positivity constraint in (19a), with the corresponding (minimum)

noise components,

S̄
(min)
abs = 2q+1Γ

(q
2

+ 1
)

Γ
(q

2
+ 2
)
. (22)

The optimal beam profiles are shown in Fig. 2, whereas the corresponding (minimum) noise

values are collected in Table II. The following remarks are in order:

• The noise-minimizing beam profiles can exhibit step discontinuities, or even singu-

larities at r̄ = 1 (see Fig. 2). This is neither surprising (in view of the relaxation

of the physical feasibility constraints) nor undermining of the meaningfulness of the

preliminary results derived at this stage as (anticipated) absolute lower bounds for the

actual problem. The reader is referred to Sect. III B below for more realistic bounds.

• For the coating noises (q = 0), the optimal profile is perfectly flat, thereby supporting

previous intuitive arguments in favor of flat-top beams [7, 8].

• For the substrate noises, the optimal beam profile is appreciably rounded (non-flat)

for the thermoelastic component (q = 1). This should be taken into account when

assessing the performance of configurations featuring sapphire test-masses, for which

substrate thermoelastic noise is known to be dominant [10]. In this framework, use

of hyperboloidal beams [13–15] as physically-feasible approximants should be explored.

On the other hand, the optimal intensity profile for the Brownian component (q = −1)

is close to flat, with a steep increase at the mirror’s edge. This is clearly unphysical,
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but may be suggestive of using an annular beam. Note that the above results pertain

to the minimization of a single noise constituent. Extensions to the minimization

of a given combination of noise constituents are possible, but most likely need to be

pursued numerically, via suitable discretization of the involved operators.

B. More Realistic (Tighter) Bounds: Diffraction-Loss vs. Band-Limitation Con-

straints

Besides the diffraction loss constraint, a less obvious (and competing) constraint exists,

stemming from an abstract property of the eigenmodes of (11): band limitation.

1. Band-Limitation Property

Applying the HT operator at both sides of the eigenproblem in (11) and using the more

or less obvious identities

H1[f ] = H[Π(r̄)f(r̄)], H[H[f ]] = f, (23)

with Π denoting the unit rectangular-window function, Π(ξ) = 1, 0 ≤ ξ ≤ 1, Π(ξ) = 0, ξ > 1,

one obtains

H [φ exp (ıV )] (πNDr̄) = ı
πND

γ̄
Π (r̄) exp [−ıV (r̄)]φ (r̄) . (24)

Equation (24) shows that the HT of the function φ exp (ıV ) (and, a-fortiori, of the function

φ) has a compact support, vanishing outside [0, πND]. Technically, the HT plays the role of a

wavenumber spectrum, and accordingly πND is the spatial bandwidth of the field. Note that

the spatial bandwidth is proportional to the number of electromagnetic degrees of freedom

ND in (14). It is therefore natural to try approximating the optimal (but, as anticipated,

unphysical) beam profiles obtained in Sect. III A 1 using a basis in L2
[0,∞[ with finite spatial

bandwidth πND. It is worth stressing that no constructive procedure is given for retrieving

a mirror profile for which such a superposition is an actual eigenmode. Nonetheless, being a

physically admissible (finite spatial bandwidth) profile, it is expected to yield tighter noise

bounds, as compared to (22).
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2. Prolate-Spheroidal Wave-Function Expansion

A more or less obvious choice for the space-bandlimited basis is provided by the so-called

prolate-spheroidal wave-functions (PSWFs) [30–32] [40], which satisfy the eigenproblem [41]

η̄ϕ(r̄) = ıπNDH1 [ϕ] (πNDr̄). (25)

In our implementation, the PSWFs are calculated following the approach in [32]. It can be

shown that (apart from irrelevant complex multiplicative constants) the solutions of (25),

ϕn, are real and satisfy the double orthogonality condition

〈ϕn, ϕm〉 = δnm, 〈ϕn, ϕm〉1 = η̄nδnm, (26)

where δmn is the Kronecker symbol, η̄n indicates the n-th eigenvalue of (25), and 〈·, ·〉 and

〈·, ·〉1 denote the L2
[0,∞[ and L2

[0,1] (cylindrical) inner product, respectively. The eigenvalue

spectrum of (25), shown in Fig. 3 for several values of ND, has a step-like behavior: the first

∼ ND eigenvalues are close to one in magnitude, while the remaining decay exponentially

to zero [31]. The semi-log scale utilized in Fig. 3 highlights the step-like behavior (with

exponentially-decaying tail) of the eigenvalue spectrum. The double-orthogonality condition

in (26) implies ∫ ∞

1

|ϕm(r̄)|2r̄dr̄ = 1− |η̄m|2. (27)

In view of (27) and the noted behavior of the eigenvalues, the first ∼ ND eigenmodes are

almost fully localized in [0, 1], while the remaining ones are almost fully (de-)localized to

r̄ > 1. A plot of a few PSWFs of increasing order is shown in Fig. 4, for ND = 9.

Also shown, as a reference, is the behavior of the infinite-mirror (GL-type) solutions. It is

observed that the agreement between the two is rather good for low orders, for which the

functions are localized, and deteriorates as the order m approaches ND, beyond which the

functions exhibit the anticipated de-localization.

The best (in L2 norm) band-limited approximation of the compact-support minimum-

noise beam profiles is therefore provided by the PSWF expansion

φBL(r̄) =

MT−1∑
m=0

cmϕm(r̄), (28)
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with the coefficients cm obtained via Fourier-type projection [42],

cm =
〈φs, ϕm〉1√√√√MT−1∑

n=0

(〈φs, ϕn〉1)
2

. (29)

It is readily shown that the truncation order MT in (28) is dictated by the prescribed

diffraction loss. Under the ideal step-like assumption for the eigenvalue dependence on

index, whereby |η̄m| = 1, ∀m ≤ ND, and η̄m = 0, ∀m > ND, the diffraction-loss constraint

would be satisfied for any MT ≤ ND, however small the prescribed LT . A conservative

estimate of MT , taking into account the actual, albeit tiny, departure of the m < ND

eigenvalue magnitudes from unity may be obtained from the obvious inequality

L [φBL] =

MT−1∑
m=0

(1− |η̄m|2)|cm|2 ≤ (1− |η̄MT−1|2)
MT−1∑
m=0

|cm|2 = (1− |η̄MT−1|2), (30)

where use has been made of the double-orthogonality conditions in (26), the fact that the

|η̄m| form a monotonically-decreasing sequence, and the unit-norm constraint, viz.

MT−1∑
m=0

|cm|2 = ‖φBL‖ = 1. (31)

We accordingly get the following (conservative) estimate for the truncation order, which

sets the effective dimension (number of available design parameters) of the beam (mirror)

optimization problem:

MT = largest m : (1− |η̄m−1|2) ≤ LT . (32)

For LT = 1ppm, the truncation index MT computed from (30) is plotted as a function of

ND in Fig. 5. We may loosely conclude that the effective dimension of the optimization

problem is

MT . ND. (33)

The inequality in (30) will be reasonably tight when representing functions that are es-

sentially localized within the unit-disc (mirror-confined beams), whose projection onto the

de-localized eigenstates with m & ND is negligibly small.

More or less obviously, the accuracy of (28) is strictly dependent on (and expected to

increase with) the number of terms in the truncated expansion. It makes therefore sense to

check how close one can get to the optimal profiles for various meaningful values of ND (and

hence, via (32), MT ).
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Figures 6a-c show the behavior of the noises associated with the band-limited profiles in

(28), referred to as S̄BL, as a function of ND. For all three cases, the noise decreases with

increasing ND, and appears to asymptotically approach values close to the absolute bounds

in (22). Recalling (14), the variation of ND was obtained by tuning the cavity length L and

the laser wavelength λ at the reference values in Adv-LIGO, and taking the mirror radius

a within a realistic range (see the scale on the top axis of Fig. 6). For each value of a

(and, hence, ND), the truncation index MT (cf. Fig. 5) was derived according to (32), with

LT = 1ppm [43].

Figure 7 shows the corresponding band-limited beam profiles for selected values of ND.

For the q = 0 case (coating Brownian and thermoelastic noises), for instance, it is observed

that, as ND increases, the profile tends to exhibit a more rapid ripple and a steepest decay.

It can be argued that the flatness of the profile does not seem to be an essential ingredient

for the coating noise reduction.

To sum up, it is seen that the diffraction-loss constraint sets an upper limit to the effective

dimension of the optimization problem, via the finite-spatial bandwidth property of the

physically admissible solutions of the cavity eigenstate equation. Thus, the only way to

approach the absolute minima of the noise constituents acting on the beam/mirror profiles,

under a prescribed diffraction-loss constraint, is by increasing ND, (i.e., if the cavity length

and laser wavelength are kept fixed, by increasing the mirror radius a). However, as seen

from Fig. 6, increasing ND (aka, a) beyond a certain value pays little, as the noise curves

roll-off very slowly beyond a certain point, and tend to settle. Going, e.g., from a = 16

cm (Adv-LIGO baseline design) to a = 23 cm reduces the coating noise only by ∼ 14%.

Moreover, besides the technological challenges involved, this raises some model-consistency

issues related to the actual validity of the underlying ITM approximation.

3. Validity of the ITM Approximation

In [20], the ITM approximations in (1) have been validated and calibrated against the

FTM numerical solutions in [10], for GB and MB profiles. Assuming a 40 kg fused-silica test

mass and LT = 1ppm (design specifications for Adv-LIGO), the ITM predictions for a MB

profile were found to yield errors < 10% in the coating (Brownian as well as thermoelastic)

noises and < 25% in the substrate Brownian noise (the thermoelastic noise component being
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negligible for fused-silica test-masses [10]), for mirror radii a . 17cm. For sapphire test-

masses, the error in the (dominant) substrate thermoelastic noise component was found to

be comparable to the substrate Brownian case for fused silica. Assuming that comparable

figures apply to the band-limited beam profiles in (28) too, some representative values of

the realistic bounds for the case a = 16cm (ND = 12.03) are reported in Table II (scaled to

the corresponding absolute bounds in (22)). One observes a moderate increase, as compared

with the absolute bounds, of a factor ∼ 1.14 for the substrate Brownian noise, ∼ 1.31 for the

coating (Brownian as well as thermoelastic) noises, and ∼ 1.55 for the coating thermoelastic

noise.

IV. COMPARISON WITH CURRENT STATUS AND TRENDS: GAUSSIAN

AND “MESA” BEAMS

It is suggestive to compare the above derived bounds with those attainable by the current

(Gaussian) and proposed (mesa) beam profiles. For these profiles, without solving the

eigenvalue problem in (11), one can exploit simple approximate analytic solutions for the

dominant eigenmode, valid in the (transversely) infinite mirror limit, estimating the relevant

diffraction losses via the so-called “clipping approximation” [33], i.e., by using the infinite-

mirror approximate field distributions in the first equation in (16).

A. Gaussian Beams

The scaled field distribution, in the infinite-radius-mirror approximation, for a GB can

be expressed as

φGB(r̄, w̄0) = ΞGB exp

(
− r̄2

2w̄2
0

)
, (34)

where ΞGB is a normalization constant, and the waist parameter w̄0 is fixed by the clipping-

approximated diffraction-loss constraint,

w̄0c = (− logLT )−
1
2 . (35)

In view of the particularly simple analytic expression of the field intensity distribution (and

of its HT), the scaled noise functional in (10) can be computed in closed form,

S̄GB ≡
∥∥∥κ̄ q

2 H
[
|φGB|2

]∥∥∥2

=
2

q
2 Γ
(

q
2

+ 1
)
(− logLT )

q
2
+1

(1− LT )2
, q ≥ −1, (36)
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with Γ denoting the Gamma (factorial) function [23, Sec. 6.1].

B. Mesa Beams

A MB profile supported by a nearly-flat MH-shaped mirror can be synthesized via co-

herent superposition of GBs, with identical waist parameter w0 and parallel optical axes,

launched from a circular aperture of radius R0 in the waist plane. As shown in [14, 15],

in the infinite-mirror approximation, such a beam profile can be effectively represented in

terms of a Gauss-Laguerre (GL) expansion, which, in the scaled form used here, can be

written as [44]

φMB(r̄, R̄0, w̄0, ND) = ΞMB exp [iΘ (r̄)]
∞∑

m=0

Am(R̄0, w̄0, ND)ψm

( √
2r̄

w̄0

√
1 +N2

Dw̄
4
0

)
. (37)

In (37), ΞMB is a normalization constant, Θ (r̄) is an irrelevant phase distribution, and the

expansion coefficients Am are given by

Am(R̄0, w̄0, ND) = (−1)mP

(
m+ 1,

R̄2
0

2w̄2
0

)
exp

[
−2ım arctan

(
1

NDw̄2
0

)]
, (38)

with P denoting an incomplete Gamma function [23, Eq. (6.5.13)]. The orthonormal GL

basis functions in (37) are

ψm(ξ) =
√

2 exp

(
−ξ

2

2

)
Lm(ξ2), (39)

with Lm denoting an mth-order Laguerre polynomial [23, Chap. 22]. In the most gen-

eral case, the scaled MB profile depends on three parameters: R̄0, w̄0, and ND. How-

ever, the (clipping-approximated) diffraction-loss constraint introduces a relationship R̄0 =

R̄0c (w̄0, ND), illustrated in Fig. 8 for several representative values of ND, which reduces the

number of independent parameters to two (w̄0, ND). It is worth noticing that, in the topi-

cal MB literature, the waist parameter w̄0 is heuristically chosen according to a minimum

spreading criterion [45], viz.

w̄
(MS)
0 ≡ 1

a

√
k

L
=

1√
ND

, (40)

in an attempt of achieving the best tradeoff between top-flatness and edge-steepness of the

beam intensity profile. This further reduces the number of independent parameters to one

(ND). When minimizing the noise functional in (17), the above choice, while intuitively
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sound, is not necessarily justified a priori from the mathematical viewpoint, and the more

general two-parameter optimization problem

S̄
(min)
MB = min

w̄0,ND∈R

∥∥∥κ̄ q
2 H

[
|φMB|2

]∥∥∥2

(41)

should be considered instead. However, the heuristic minimum-spreading criterion in (40) is

pretty close to optimal for sufficiently large ND. As an illustrative example, the functional in

(41) for q = 0 (coating Brownian and thermoelastic noises) is shown in Fig. 9 as a function

of w̄0 (scaled to the reference minimum-spreading value in (40)), for several representative

values of ND, within the parametric range of potential interest for Adv-LIGO. It is observed

that the curves at fixed ND exhibit a broad minimum around (but not exactly at) w̄0 =

w̄
(MS)
0 , which becomes deeper and broader as ND is increased. A similar behavior is observed

for the substrate Brownian (q = −1) and thermoelastic (q = 1) noises, and is not shown for

brevity.

C. GB vs. MB vs. Absolute and Realistic Bounds

The noise levels achievable via a GB profile and a reference MB profile (minimum noise,

for a = 16cm, i.e., ND = 12.03, cf. Fig. 9), scaled to the corresponding absolute and realistic

bounds derived in Sect. III, are also included in Table II [46]. As already established in

[10], MB profiles yield consistently lower noises than the GB counterparts, with reductions of

nearly a factor ∼ 2.13 in the coating (Brownian as well as thermoelastic) noise, and of ∼ 1.45

and ∼ 3.07 in the substrate Brownian and thermoelastic noise components, respectively.

By comparison with the absolute and realistic bounds, one notes a potential for significant

further reductions. Specifically, as compared to the MB reference values, the realistic bounds

indicate potential reductions of nearly a factor 1.8, 2.5, and 2.9 for the substrate Brownian,

coating (Brownian as well as thermoelastic) and substrate thermoelastic noises, respectively,

thereby justifying the further exploration of alternative numerical-optimization-driven con-

figurations.

D. Optimal vs. Good Profiles

On the basis of the above analysis, a robust (e.g., genetic) optimization algorithm based

on a mirror parameterization consistent with the problem’s effective dimension, aimed at
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getting as close as possible to the realistic (lower) noise bounds, could be implemented with

relative ease.

It should stressed, however, that any optimal design should also cope with some more or

less obvious additional requirements to be also rated as a good design, e.g.,

• The optimal mirror should note pose critical technological challenges;

• The optimal field should be easy to launch, i.e., should couple effectively to the injected

laser beam;

• The optimal field should be reasonably stable against misalignment and mirror man-

ufacturing tolerances.

Any candidate sub-optimal designs should be ultimately gauged on the basis of their

compliance with the above practical requirements.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, based on the ITM approximations in [19, 20], we have addressed some key

preliminary issues in connection with the optimal beam-shaping problem for thermal noise

reduction in advanced gravitational wave interferometric detectors. The main conclusions

can be summarized as follows:

i) The estimated lower-bounds in a realistic configuration, accounting for physical-

feasibility-induced (diffraction losses, band-limitation) and model-consistency (ITM

approximation) constraints, indicate the possibility of significant noise reductions (cf.

Table II) as compared with the current status and trend. In particular, for the coating

noise (dominant for the case of fused-silica test-masses), a potential reduction of nearly

a factor 2.5 is estimated, as compared with the MB counterpart.

ii) The key role of the number ND of electromagnetic degrees of freedom (aka, the Fres-

nel number) of the optical cavity in establishing realistic lower-bounds has been high-

lighted. In this connection, while the possibility of increasing ND by acting on the

cavity length or the laser wavelength does not appear technologically viable for second-

generation detectors (thereby leaving the mirror radius as the only adjustable design

parameter), it could be taken into account for third-generation instruments.
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iii) From inspection of the band-limited beam profiles derived in Sect. III B 2, one can

infer important (sometime counter-intuitive) prior information to intelligently drive

the optimization process. For instance, for the coating noises, it clearly emerges that

the flatness of the beam is not a critical requirement, since profiles with ripples (cf. Fig.

7) can perform better than flat-top MBs. This observation, which is also consistent

with the results obtained using higher-order modes in spherical-mirror cavities [16],

should be taken into account when parameterizing the functional space chosen for the

optimization problem.

We believe that the above results pave the way for the actual optimization problem, for

which a genetic-algorithm [26] implementation is currently under investigation. Interesting

research directions include extensions of the preliminary study to higher-order (multipolar,

non-axisymmetric) modes.

While proofreading this paper, we became aware of work done independently by M.

Bondarescu and Y. B. Chen [35, Chap. 3]. Using the GL basis [24] to synthesize the

cavity field, they succeeded in retrieving a special mirror profile which minimizes the coating

(Brownian and thermoelastic) noise. Remarkably, their results provide a nice independent

confirmation of the general conclusions drawn here. Indeed, they confirm the key role of the

mirror radius (aka, cavity Fresnel number) in setting the tradeoff between diffraction loss

and noise reduction, in complete agreement with the general scenario outlined here. Also,

the minimum noise achieved by their design gets pretty close to our corresponding realistic

bound.

APPENDIX A: MINIMIZATION OF THE LAGRANGIAN FUNCTIONAL IN

(20)

The stationary solution of the variational problem obtained equating to zero the func-

tional derivative of (20) can be easily derived using the Gateaux differential

lim
ε→0

Λ[fs + εδf, µ]− Λ[fs, µ]

ε
= 0, ∀δf ∈ L1

[0,1]. (A1)
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It is readily verified that

Λ[f + εδf, µ] = Λ[f, µ] + 2ε
[〈
κ̄

q
2H1 [f ] , κ̄

q
2H1 [δf ]

〉
− µ

∫ 1

0

dr̄r̄δf (r̄)

]
+ ε2

∥∥∥κ̄ q
2 H1 [δf ]

∥∥∥2

. (A2)

By using (A2) in (A1), and interchanging the spectral and spatial (HT) integrals in the

inner product, the stationarity condition can be equivalently written as∫ 1

0

dr̄

[∫ ∞

0

dκ̄κ̄q+1J0(κ̄r̄)

∫ 1

0

dr̄′r̄′fs(r̄
′)J0(κ̄r̄

′)− µ

]
r̄δf(r̄) = 0, ∀δf ∈ L1

[0,1], (A3)

from which it follows that the stationary profile fs satisfies the integral equation∫ ∞

0

dκ̄κ̄q+1J0(κ̄r̄)

∫ 1

0

dr̄′r̄′fs(r̄
′)J0(κ̄r̄

′) = µ, 0 ≤ r̄ ≤ 1. (A4)

Equation (A4) can be solved in closed-form, by inspection. Indeed, we capitalize on its

nested-HT structure to use the following integral identities∫ ∞

0

κ̄
q
2J q

2
+1(κ̄)J0(r̄κ̄)dκ̄ = 2

q
2 Γ
(q

2
+ 1
)
, 0 ≤ r̄ ≤ 1, − 1 ≤ q ≤ 1, (A5)

(see, e.g., [36, Eq. (2.12.31.1)]), and

κ̄
q
2J q

2
+1(κ̄) =

2−
q
2 κ̄q+1

Γ
(

q
2

+ 1
) ∫ 1

0

dr̄′r̄′(1− r̄′2)
q
2J0(κ̄r̄

′), q ≥ −1, (A6)

(ibid, [36, Eq. (2.12.3.6)]). By combining (A6) and (A5) one obtains

2−q[
Γ
(

q
2

+ 1
)]2 ∫ ∞

0

dκ̄κ̄q+1J0(κ̄r̄)

∫ 1

0

dr̄′r̄′(1− r̄′2)
q
2J0(κ̄r̄

′) = 1, 0 ≤ r̄ ≤ 1, (A7)

which, by comparison with (A4), yields

fs(r̄) = µ
(1− r̄2)

q
2

2q
[
Γ
(

q
2

+ 1
)]2 , 0 ≤ r̄ ≤ 1. (A8)

The as yet unspecified multiplier µ in (A8) is chosen so as to satisfy the normalization

constraint in (19b),

µ = 2q(q + 2)
[
Γ
(q

2
+ 1
)]2

, (A9)

thereby yielding the final result in (21).

From (A2) and (A4), it follows that

S̄[g]− S̄[fs] =
∥∥∥κ̄ q

2 H1 [g − fs]
∥∥∥2

,

∀g ∈ L1
[0,1] :

∫ 1

0

g (r̄) r̄dr̄ = 1. (A10)
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Therefore, from the readily verifiable positive-definiteness of the functional norm in (A10),

one concludes that that the stationary profile fs in (21) yields the absolute minimum of the

noise functional in (18).
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TABLE I: Thermal noise constituents of interest and corresponding scaling exponents (cf. (1)).

Noise type q

Substrate Brownian -1

Substrate thermoelastic 1

Coating Brownian and thermoelastic 0

TABLE II: Comparison between absolute (cf. (22)) and realistic (for a = 16cm, i.e., ND = 12.03,

estracted from Fig. 6) noise bounds. Also shown, as references, are the noise levels attainable with

GB and reference MB (minimum noise, for a = 16cm, i.e., ND = 12.03, cf. Fig. 9) profiles.

q S̄
(min)
abs S̄BL/S̄

(min)
abs S̄GB/S̄

(min)
abs S̄

(min)
MB /S̄

(min)
abs S̄GB/S̄BL S̄

(min)
MB /S̄BL

-1 1.5708 1.145 2.965 2.043 2.591 1.785

0 2 1.313 6.907 3.238 5.256 2.465

1 4.712 1.552 13.658 4.454 8.801 2.870
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FIG. 1: Problem schematic: A perfectly symmetric Fabry-Perot optical cavity composed of two

nearly-flat mirrors (with profile h(r)) attached on cylindrical test masses of radius a separated by

a distance L along the z-axis. (a): Side view. (b): Front view.
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FIG. 2: Optimal (minimum-noise) compact-support beam profiles in (21). Continuous curve:

substrate Brownian (q = −1); dashed curve: coating (q = 0); dotted curve: substrate thermoelastic

(q = 1).
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FIG. 3: PSWF eigenvalues (magnitude) as a function of order m, for various values of ND. The

semi-log scale highlights the step behavior with exponential tail (see the discussion in Sect. III B 2).

Squares: ND = 1; circles: ND = 5; up-triangles: ND = 10; down-triangles: ND = 20.
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FIG. 4: PSWF profiles for ND = 11.58 and various orders (solid curves). (a): m = 0; (b): m = 2;

(c): m = 5; (d): m = 7; (e): m = 9; (f): m = 10. Also shown, as reference (dotted curves), is the

behavior of the infinite-mirror (GL-type) solutions.
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FIG. 5: Truncation index MT in the PSWF expansion (cf. (32)) as a function of number of

electromagnetic degrees of freedom ND.
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FIG. 6: Realistic noise bounds obtained from band-limited beam profiles (cf. (28)) and truncation

index MT as in (32) (cf. Fig. 5), as a function of ND. (a): Substrate Brownian (q = −1);

(b): Coating (q = 0); (c): Substrate thermoelastic (q = 1); Also shown, as references, are the

corresponding mirror-radius scale (top axis, assuming L = 4km and λ = 1064nm), the absolute

bounds (dotted lines, cf. (22)), and the noise values for a = 16cm (i.e., ND = 12.03).
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FIG. 7: As in Fig. 6, but representative band-limited beam profiles for various values of ND.

Continuous curve: ND = 6.77 (a = 12cm); dashed: ND = 13.58 (a = 17cm); dotted: ND = 22.74

(a = 22cm).
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FIG. 8: Relationship between the MB parameters R̄0 and w̄0 arising from the clipping-

approximated diffraction-loss constraint (LT = 1ppm), for various values of ND (assuming L = 4km

and λ = 1064nm). Squares: ND = 6.77 (a = 12cm); circles: ND = 9.21 (a = 14cm); up-triangles:

ND = 12.03 (a = 16cm); down-triangles: ND = 15.23 (a = 18cm); diamonds: ND = 18.80

(a = 20cm); stars: ND = 22.74 (a = 22cm). White bullets mark the minimum-spreading configu-

rations (cf. (40)).
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FIG. 9: As in Fig. 8, but coating (q = 0) noises as a function of w̄0 (scaled to its minimum-spreading
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