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Abstract  
 
This study reports on the preliminary results obtained from the hierarchical glitch classification 
pipeline. The pipeline that has been under construction for the past year is now complete and end-
to-end tested. It is ready to generate analysis results on a daily basis. The details of the pipeline, 
classification algorithms employed and the results obtained on one day’s analysis on the 
gravitational wave and several auxiliary and environmental channels from all three LIGO 
detectors is discussed.  
 
 
Introduction  
 
The three LIGO detectors at Hanford and Livingston [1] have started taking data in continuous 
science mode since November 2005. This is the fifth science run (S5) of LIGO [2] and it is 
expected to continue until the end of 2007. As in the previous science runs, data is analyzed in 
several sub-groups focusing on different aspects of the data. Four categories of astrophysical 
gravitational wave (gw) signals are searched. These are burst sources, continuous wave sources, 
stochastic background and inspiral sources. The analysis puts upper limits on various physical 
parameters associated with the specific sources [3-6]. Raw data from the interferometers are often 
non-stationary and contains both narrow band and broadband transients or glitches [7].  This 
poses two kinds of problems. First, the efficiency of the searches are depend on data quality and 
hence need to define data quality flags [8] to identify segments of data that are best suited to the 
search analyses. Second, the glitches themselves (often arriving at a high rate) may mimic 
gravitational waves and hence we need to define efficient vetoes to rule out such possibilities. We 
thus need to understand the source these glitches are coming from not only for the veto but also to 
provide feedback to the experimentalists. These activities are performed under the umbrella of the 
detector characterization and glitch analysis groups [9,10].  
 
Brief review of glitch analysis in LIGO and motivation 
 
The current effort in glitch analysis consists of several algorithms that record and study the 
glitches from many channels both statistically as well as tracking individual glitches. Kleine-
Welle [12] algorithm is a wavelet based analysis that runs on a very large number of channels and 
records transients. Q-scan [11] is a facility that traces individual glitches seen in pipelines like 
kleine-Welle in the gw and several auxiliary channels belonging to many different sub-systems.  
Q-scan produces a set of time domain and time-frequency plots of conditioned data. Block 
Normal (BN) [13] event display also records loud glitches and looks at the time and time-
frequency displays to gain insight into the glitches seen. Binary inspiral glitches [14] are also 
recorded and viewed in Q-scan. The glitch group members analyze the glitches seen on a daily 
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basis using all of these tools before drawing conclusions. Analysis is done on single 
interferometer glitches, as well as, on double and triple coincidences data. Results are stored in 
password protected web pages accessible to the collaboration.  
In recent times, many new kinds of glitch types and events have been seen in the kleine-Welle 
and BN pipelines in the gw and auxiliary channels. While some of these could be tracked down, a 
large percentage (>70%) [15] are yet to be understood. This is one of the priorities of the glitch-
working group.  
 
Kleine-Welle pipeline picks up glitches at a fairly high rate – several thousands of glitches are 
seen per day in the gw channel. Some of the auxiliary channels e.g. magnetometer, accelerometer 
channels, are also found to glitch at a comparable rate. The glitch working group members study 
these glitches “by eye” and try to conclude about their nature and possible origin by checking if 
they show up in the BN event display or the Q-scan plots. However, given that it is very difficult 
if not impossible to study all the glitches manually and that this still leaves a major percentage of 
the glitches unexplained, more ways of looking into this problem is highly desired.  
 
Following this need, a data mining approach to this problem has been pursued [16] viz. 
multidimensional hierarchical classification analysis. The aim of this study has been to divide the 
population of glitches seen in the gw and auxiliary channels into statistically significant distinct 
similar groups with relatively more uniform members. This effectively reduces the dimensionality 
of the problem in the sense that we could deal with a smaller number of entities (in this case, the 
groups) sharing similar characteristics. The problem is dealt in multi-parameter space because it 
has been seen in astrophysical scenario [17] that higher dimensional analysis reveals features that 
are not seen in one-dimensional (histograms) or two-dimensional (scatter plots) views. The 
reason is obvious, since higher dimensions allow simultaneous consideration of many more 
physical properties. Kleine-Welle trigger database being a multivariate data set, is a natural 
candidate for a multi-dimensional analysis. In addition to the readily available parameters like 
duration, central frequency and signal-to-noise ratio (snr) , one can also make use of the 
information content in the time series itself around the trigger central time i.e. the shape of the 
trigger [16].  
 
Algorithm and pipeline 
 
Several approaches exist in the statistical literature [17-20] for classification of different types of 
data sets. In the present analysis, we adopt the hierarchical classification scheme [21]. The 
algorithm is based on computation of metrics between the data points in the multi-dimensional 
space and using the variance minimization criterion to group them into statistically distinct 
classes [22]. The metric or the so-called ‘distance’ can be computed in many ways and the 
specific nature of the problem dictates which criterion to adopt. In our case, we adopt the 
Euclidean distance. The group-formation stage is guided by the criterion of ‘complete linkage’ 
i.e. largest distance between objects in the two groups. The choice is made based on pilot study 
and past experience of working with classification of discreet data sets [17]. The vindication as to 
how well the grouping fits the data structure under investigation is achieved by well known 
statistical tests [23-25]. 
 

The analysis starts with the kleine-Welle trigger databases with an interface to protected  web 
page access. These databases come with the physical properties of the triggers that the algorithm 
has detected, viz. duration, central frequency and energy values that contain snr information. 
Typically, kleine-Welle algorithm picks up thousands of triggers, most of which have low snr 
values. A selection cut is applied to retain snr values above a certain threshold (snr=6 is the value 



chosen for this analysis). In order to extract the trigger shape information, 4 seconds of data 
around the trigger central time is chosen from the raw frame files of the respective channels. The 
data is pre-processed by first cleaning all the lines and then band-passing around the central 
frequency with a 16 Hz bandwidth. The data is base-banded [26] and re-sampled down to the 
given bandwidth. The resulting time series is retained as the best approximation to the trigger 
shape. This information, along with the three physical parameters mentioned above, go as input to 
the main classification code. The core classification code is in Matlab [27]. The pipeline uses the 
compiled version of this code and runs on a 16-node cluster. Figure 1 shows a schematic diagram 
of the pipeline. The output of the pipeline contains information about the different classes 
obtained. The individual class members are subjected to time-frequency analysis to look for the 
specific features typical of that particular class. The present version of the pipeline contains 
complete end-to-end tested modules up to this point. The next version of the pipeline will 
incorporate the last module (shown in blue in the figure) that processes the ‘pattern recognition’ 
part of the analysis, i.e. indexing well-defined class properties forming the ‘basis’ and auto-
classifying the triggers into one of these classes.  
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. The figure shows a schematic representation of the pipeline. The analysis starts with the 
kleine-Welle trigger databases. The physical properties of the triggers viz. duration, central 
frequency and snr are considered. A selection cut is applied to retain snr values above a certain 
threshold. In order to extract the trigger shape information, 4 seconds of data around the trigger 
central time is chosen from the raw frame files of the respective channels that reside in a local 
storage device accessible to the pipeline. Data-conditioning is applied and a 16 Hz band around 
the central frequency is retained as the best approximation to the trigger shape. The output of the 
pipeline contains information about the different classes obtained. The present version of the 
pipeline contains complete end-to-end tested modules up to the orange box shown in the figure. 
The next version of the pipeline will incorporate the last module (shown in blue) that processes 
the ‘pattern recognition’ part of the analysis.  



 

Analysis results 

The results of the analysis are illustrated using one day’s worth of LIGO S5 data. The date is 
February 17 2007. The corresponding GPS time range is 855763200-855849600 s. The channels 
looked at are DARM_ERR and several auxiliary and environmental channels. The latter is 
selected for demonstration from the list of auxiliary and environmental channels that are seen in 
the glitch analysis group to be affected most often.  

 

 

Figure 2. The figure shows the results from H1:LSC-DARM_ERR. On analysis with three 
parameters, duration, central frequency and snr, two statistically distinct clusters were found. The 
top panel shows the two-dimensional scatter plots between the three parameters considered and 
the bottom panel shows the histograms of the two groups thus found. Statistical tests showed that 
the group structure fitted the actual data with a correlation coefficient r=0.93 and significance 
p<0.003.  

 

Figure 2 shows the results from H1:LSC_DARM_ERR. Using three physical parameters, two 
statistically distinct classes were found. The top row of figures shows scatter plots among the 
variables used and the bottom row shows the histograms of the groups thus found. The two 



groups are marked with different colours (blue and red) two show their respective positions in the 
one and two-dimensional snap-shots. Figures 3 and 4 show the same for H2:LSC-DARM_ERR 
and L1:LSC-DARM_ERR. It is interesting to note that, in all three cases, the two groups clearly 
separate on the frequency plane. However, the separation is not so sharply visible in the duration-
snr plane in this 2-dimensional snap-shot.  

 

Figure 3. The figure shows the results from H2:LSC-DARM_ERR. On analysis with three 
parameters, duration, central frequency and snr, two statistically distinct clusters were found. The 
top panel shows the two-dimensional scatter plots between the three parameters considered and 
the bottom panel shows the histograms of the two groups thus found. Statistical tests showed that 
the group structure fitted the actual data with a correlation coefficient r=0.81 and significance 
p<0.004. 

 

On analyzing the auxiliary channels, it was found that while some of the auxiliary channel 
triggers show uniformity (i.e. no significant classes are found), some others showed a mixture of 
different types of triggers i.e. existence of statistically significant classes. Figures 5-8 show some 
of these different cases.  While the magnetometers in Hanford Observatory (HO) clearly show 
diversity of character in the trigger population (figures 5 a & b). Magnetometers in Livingston 
Observatory (LO) do not seem to show any such division (figures 6 a & b).  



 

Figure 4. The figure shows the results from L1:LSC-DARM_ERR. On analysis with three 
parameters, duration, central frequency and snr, two statistically distinct clusters were found. The 
top panel shows the two-dimensional scatter plots between the three parameters considered and 
the bottom panel shows the histograms of the two groups thus found. Statistical tests showed that 
the group structure fitted the actual data with a correlation coefficient r=0.80 and significance 
p<0.04. 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 5. The left panel (5a) shows the classes as projected on to a two dimensional plane and 
also in histograms for the channel H0:ASC-BSC6_MAGZ. The right panel (5b) shows the same 
for channel H0:ASC-COIL_MAGZ. How well the present classification fits the given data is 
given by the usual statistics : r=0.92 (p<1e-6) and 0.70 (p<1e-8) respectively. The clear division 
in frequency is seen for these trigger populations too, even though the separation is not so sharp 
in the duration-snr plane .  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The left panel (6a) shows the classes as projected on to a two dimensional plane and 
also in histograms for the channel L0:ASC-LVEA_MAGZ. The right panel (6b) shows the same 
for channel L0:ASC-COIL_MAGZ. The apparent lack of clusters is also corroborated by the 
statistics : r= 0.79 (p>0.90) and r=0.64 (p> 0.24) respectively.  

 

With the basic class information in hand, it is thus interesting to see what the members belonging 
to these different classes look like in the time-frequency plane and also in the time domain. The 
results are shown in figures 7-8. These figures are for H1:LSC-DARM_ERR, but similar picture 
is also seen in H2 and L1. Figures 7 a and b show two representative triggers from one of the 
groups that has been described by high frequency, mostly low duration and at the lower end of the 
snr distribution. The data around the trigger central frequency has been band-passed and all lines 
removed. The triggers in this group are also broadband, spanning the entire 12 Hz frequency band 
around the central frequency. Figures 8 a and b show two representative triggers from the groups 
that has been described by low frequency, mostly long duration and at the higher end of the snr 
distribution. The data around the trigger central frequency has been band-passed and all lines 



removed. The triggers in this group are narrowband, being restricted to a smaller bandwidth 
around the central frequency.  

 

 

 

 

 

 

 

 

 

 

 

 



Figure7. Figures 7 a and b show two representative triggers from one of the groups in H1 that has 
been described by high frequency, mostly low duration and at the lower end of the snr 
distribution. The data around the trigger central frequency has been band-passed and all lines 
removed. The triggers in this group are also broadband, spanning the entire 12 Hz frequency band 
around the central frequency.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure8. Figures 8 a and b show two representative triggers from the groups in H1 that has been 
described by low frequency, mostly long duration and at the higher end of the snr distribution. 
The data around the trigger central frequency has been band-passed and all lines removed. The 
triggers in this group are narrowband, being restricted to a smaller bandwidth around the central 
frequency.  



We now look at the time and time-frequency results from an auxiliary channel, H0:PEM-
BSC6_MAGZ, one of the magnetometers from the Hanford detector. This is one of the channels 
that glitches at a fairly high rate often. As seen in figure 5, triggers from this channel showed 
presence of more than one class. These results are shown in figures 9-10. The figures represent 
time domain and time-frequency plots for triggers selected from the two different groups found in 
the analysis. In figures 9 a and b, we see low frequency (<200 Hz) and bandwidth limited (~10 
Hz) triggers while in figure 10 a and b, we find high frequency magnetometer glitches that spread 
over more than 32 Hz bandwidth. The other auxiliary channels with more than one class, can also 
be seen on the time-frequency plane in a similar fashion. 

 

 

 

 

 

 

 

 

Figure 9. Figure 9 a and b show two triggers selected from group 1 of the channel H0:PEM-
BSC6_MAGZ. These triggers are characterized by low frequencies and a relatively low 
bandwidth (~10 Hz).  

 

 

 

 

 

 

 

 

 

Figure 10. Figure 10 a and b show two triggers selected from group 2 of the channel H0:PEM-
BSC6_MAGZ. These triggers are characterized by high frequencies and a wide bandwidth (>32 
Hz).  



 

Conclusions 

The results in this study point to existence of statistically significant distinct groups in the kleine- 
Welle trigger population. These groups, when analyzed in the time domain and the time 
frequency plane reveal triggers with different shapes and physical properties. The variability in 
the trigger population is shown by the presence of two significant classes in most cases, because 
three parameters, viz. duration, frequency and snr have been used here. However, the time 
domain and time-frequency images strongly indicate that trigger shape carries information that 
could be very useful in further classifying them into sub-categories, i.e. they can contribute 
additional information in the multi-parameter space for looking in to more classes. This naturally 
leads the analysis towards the next step in the pipeline, viz. development and implementation of 
time series classification algorithms. This is being done now within a suggested time frame of 
July 2007. The aim is to be able to mine maximum information from the trigger database and 
apply it towards glitch analysis and veto studies. It is expected that this analysis would be able to 
provide more information towards many of the unexplained glitches that still remain a mystery 
[13]. One of the most important outcomes of the time series classification is construction of a 
complete database of different ‘types’ of triggers.  There are many questions that could be 
addressed in the process viz. explanation of double and triple coincidence triggers, correlated 
triggers etc. The classification analysis is also not restricted to only triggers generated by the 
LIGO detectors, but can easily be extended to GEO and Virgo as well. These are future goals of 
this analysis. 
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