GEO 600: Status and Plans

B. Willke (for the LIGO Scientific Collaboration)

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) und Leibniz Universität Hannover, Callinstr. 38, D–30167 Hannover, Germany.

E-mail: benno.willke@aei.mpg.de

Abstract. The GEO 600 gravitational wave detector located near Hannover in Germany is one of the four detectors of the LIGO Scientific Collaboration (LSC). For almost the entire year of 2006 GEO 600 participated in the S5 science run of the LSC. Overall an equivalent of about 270 days of science data with an average peak sensitivity of better than $3 \times 10^{-22}/\sqrt{\text{Hz}}$ have been acquired so far.

In this paper we describe the status of the GEO 600 project during the period between January 2006 and February 2007. In addition plans for the near-term and medium-term future are discussed.

PACS numbers: 04.80.Nn, 95.75.Kk

1. Introduction

Currently a search for gravitational waves is being performed by an international network of large-scale laser-interferometric gravitational wave detectors (LIGO [1], TAMA300 [2], Virgo [3] and GEO 600 [4]). Over the last few years GEO 600 was operated in a mode of alternating periods of short to medium duration science runs (S3 and S4 LSC Science run) and long stretches of intensive detector commissioning. In 2006 GEO 600 joined the LIGO detectors for a long S5 science run which was anticipated to last for more than one year.

A simplified layout of the GEO 600 interferometer is shown in Figure 1. The light from a master-slave laser system is filtered by two sequential input mode cleaners (MC1 and MC2), each consisting of a 3 mirror ring-cavity of about 8 meters round-trip length. In addition to their spatial filtering these cavities serve as a first set of frequency references to which the laser light is stabilized. The stabilized and filtered light is then injected through the Power-Recycling mirror (MPR) into the Michelson interferometer with folded arms and an optical round trip length of 2400 m. The operating point of the Michelson interferometer is chosen to be at the dark fringe such that, ideally, only signal sidebands and control sidebands leave the interferometer towards the output port, which hosts the Signal-Recycling mirror (MSR). The GW signal is derived by using a radio frequency heterodyne technique. A feature of a detector employing detuned signal-recycling is the fact, that a GW signal has frequency dependent components in

Figure 1. Simplified optical layout of the GEO 600 detector. A more detailed description is given in the text.

both output quadratures P(t) and Q(t). In GEO 600 these two signals are optimally combined, using a maximum likelihood method, resulting in a single GW channel, H(t), with optimal signal to noise ratio at all frequencies within the defined observation band [5].

2. Commissioning Challenges and Advanced Technology Applications

During the commissioning of GEO 600 many challenges were encountered. In this section we briefly describe some of them which are related to triple suspensions with monolithic stages, signal-recycling and electro-static actuators.

In order minimize thermal noise in the suspensions, the core optics of GEO 600 are suspended from triple cascaded pendulums with quasi-monolithic last stages made of thin fused silica fibres [7]. These have low dissipation in flexure and their attachment to the test mass eliminates friction at that point. Loss angles of various test mass internal modes have been measured to be as low as 2.5×10^{-7} [9]. To avoid a instability of the control system the mechanical qualitity factor Q of transversal fibre eigenmodes (violin modes) of the fused silica fibres had to be reduced without affecting the pendulum Q. This was realized by a novel technique employing damping, mainly of the first and second order violin modes, via a coating of amorphous Teflon at the relevant fibre sections [8]. The presence of actuators at each of the three pendulum stages allows the longitudinal feedback to be hierarchically split among them according to the range and to the frequency band of the individual actuators [10], [11]. In summary: short-

Figure 2. The usage of signal-recycling allows to shape the sensitivity of GEO 600 in a frequency dependent way. Shown is the strain amplitude spectral density of the GEO 600 detector for two different tuning frequencies of the signal-recycling cavity.

range fast corrections are applied directly to the mirror, with progressively longer range and lower frequency components being applied at the stages further up the suspension. Moreover, the passive filtering of the individual pendulum stages significantly reduces the feedback noise contributions.

While standard coil-magnet combinations are used for actuation at the top and at the intermediate pendulum stages, electro-static drives (ESD) are used as fast actuators directly acting onto the test masses. By using ESDs instead of a standard coil magnet system, it can be avoided to attach magnets to the test masses, which could degrade the thermal noise properties of the mirror. A fringing field design is employed with the curved field-lines from interleaving combs of electrodes at different voltages penetrating the dielectric test mass. At the design operating point, where the gap between the drive and test mass is about the same as the gap between the fingers of the alternating electrode combs, the force F acting on the test mass is unidirectional given by:

$$F = U^2 \cdot \varepsilon \cdot \varepsilon_r \cdot d^{3/2} \cdot a, \tag{1}$$

where U is the voltage difference, ε and ε_r are the dielectric constant and the relative dielectric constant of the test mass substrate, d is the distance between the test mass and the ESD and a is a constant geometry factor depending on the electrode pattern design [12]. In order to make the force linearly proportional to the applied voltage, the square-root of the feedback signal is generated by an electronic circuit before application to the actuator. The use of the square root circuits has the drawback of introducing

Figure 3. Noise projection of various signals for a time of the S5 LSC science run. At high frequencies the sensitivity is limited by shot noise, while at low frequencies (below 100 Hz) feedback noise is dominating. In the region between 100 Hz and 500 Hz a discrepancy between the uncorrelated sum of all noise projections and the actual observed sensitivity is found, that is suspected to originate form scattered light contributions.

additional electronic noise, but it is indispensable to provide the wide linear range needed for lock acquisition. Once the Michelson loop is locked, the required actuator range is small enough to allow the switching off of the noisy square-root circuits, and adequate linearity is obtained by use of a bias voltage. The ratio of the linear to the non-linear term in (1) increases with the DC voltage applied to the ESDs. Hence a bias voltage of 630 V is used as the normal operation point at which nonlinearities in the ESD can be neglected [15].

GEO 600 is the first large-scale GW detector to take advantage of dual-recycling, which is the combination of power-recycling and signal-recycling. While power-recycling increases the storage time of the carrier light, signal-recycling allows a shaping of the detector response and increases the sensitivity in a certain frequency band. Signal-recycling provides a variety of operation modes such that the detector response can be adjusted to match astrophysical targets. In order to maximize the science contribution

of GEO 600 within the network of the LSC detectors, it is operated with detuned signalrecycling, i.e. the signal recycling cavity is chosen to be off resonant for the carrier light. In the LSC S4 science run GEO 600 was operated with a detuning of 1 kHz and for the S5 run a detuning of 550 Hz was established. Two measured sensitivity curves with different detunings of the signal-recycling cavity are shown in Figure 2.

In the detuned signal-recycling configuration the signal-recycling cavity is not resonant for the carrier light and has asymmetric response functions for the signalrecycling sidebands. This is the cause for a strong imbalance of the detected control and signal sidebands which leads to several potential disadvantages compared to tuned signal-recycling, including increased coupling of technical noise [6] to the detector output. Recently the operation of tuned signal-recycling was demonstrated in GEO 600 and is considered as an optional configuration for the medium term future.

Figure 3 shows the noise budget of GEO 600 for the S5 run. While at high frequencies the sensitivity is limited by shot noise, at low frequencies (below 100 Hz) feedback noise, mainly from the automatic alignment system, is the dominant noise contribution. In the region between 100 Hz and 500 Hz a discrepancy between the uncorrelated sum of all noise projections and the actual noise level is found; this is suspected to originate from scattered light.

3. The S5 LSC Science run

At the end of the year 2005 the three LIGO detectors started the S5 LSC science run. In contrast to previous science runs which had durations of up to a few months, S5 is intended to last about two years. From the 21st of January 2006 the GEO 600 detector has participated in this notable data taking activity. The participation of GEO 600 in S5 can be split up in three different periods:

- Night- & Weekend-mode, period 1: 21/01/2006 to 01/05/2006
- 24/7-mode: 01/05/2006 to 16/10/2006
- Night- & Weekend-mode, period 2: 16/10/2006 to to-date

Each of these periods is briefly described in the following subsections.

The strain sensitivities of the four LSC detectors in the network are shown in the upper subplot of Figure 4. The lower subplot shows the corresponding displacement sensitivities. For the GEO 600 detector a displacement of the far mirror couples twice as much into h(t) as a displacement of the near mirror. In this plot the sensitivity to a displacement of one of the folding mirrors is given (MFn,MFe in Figure 1).

3.1. Night- & Weekend-mode, period 1

In this first section of the S5 science run, data have been taken during nights and at weekends, while the day time was dedicated for commissioning work, with care being taken to avoid distrupting the science periods. This commissioning work was

Figure 4. Strain and displacement sensitivities of the LSC detectors during the S5 science run. Shown are the LIGO interferometers (LHO2k = Hanford 2 km, LHO4k = 4 km, LLO4k = Livingston 4 km) and the GEO 600 detector.

mainly focused on gaining a better understanding of the instrument performance and on increasing the data quality. Strong efforts were put to investigating glitches, to identify them and achieving their reduction in several interferometer channels. The highest priorities were to maintain a good calibration and to characterize the science data taken during nights and weekends.

Figure 5. Histograms of the bandlimited rms of the GEO 600 strain sensitivity in a bandwidth of 10 Hz around 560 Hz. For all months during the S5 24/7 period an average peak sensitivity of better than $3 \times 10^{-22}/\sqrt{\text{Hz}}$ was achieved.

3.2. 24/7-mode

In the period from May 1st to October 16th of 2006 GEO 600 was operated in the so called 24/7-mode, meaning that we tried to collect science data 24 hours per day, 7 days a week, seeking a science time duty cycle as high as possible. Only very short maintenance periods took place for remeasuring noise transfer functions. Overall in 24/7-mode an instrumental duty cycle of about 95% and a science time duty cycle of greater 90% were achieved.

An average peak sensitivity of better than $3 \times 10^{-22}/\sqrt{\text{Hz}}$ was obtained. Figure 5 shows histograms of the rms of the GEO 600 strain sensitivity in a frequency band around 560 Hz. Detailed information about the performance of GEO 600 is generated automatically and stored in the GEO-reports, which contain comprehensive information about sensitivity, data quality, calibration and glitchiness of the instrument.

A main focus in the 24/7 mode was set to develop vetoes to exclude glitch events in h(t), which did not originate from gravitational wave events. Four different categories of vetoes are available for S5 data of GEO 600:

- Nullstream veto: The two calibrated output quadrature signals P(t) and Q(t) contain (within the calibration accuracy) the same gravitational wave information. By substraction of these two signals it is possible to create a data stream, hnull containing no gravitational wave information. This nullstream serves as a reliable veto channel. The details of this method are described in [17].
- χ^2 veto: The χ^2 value is a byproduct of the calibration process [16] and indicates first of all the calibration accuracy and second the stationarity of the instrumental noise (at frequencies close to calibration lines). In case the χ^2 value points to

bad detector performance for a time interval longer than a few seconds, the corresponding data is flagged out. Based on hardware injections, the time interval is chosen to be a few seconds in order to not flag out short duration potential GW events.

- Statistical veto with amplitude consistency check: This technique allows the derivation of safe statistical vetoes from interferometer channels which can contain traces of GW signal. Using this novel technique we were able to develop a veto for glitches originating from dust particles falling through the main output beam (referred to as *dust veto*). More details about this method and its application to S5 data can be found in [13].
- Noise projection vetoes: This method makes use of phenomenological understanding of the coupling of different detector sub-systems to the main detector output. The main idea behind this method is that the noise at the detector output (channel H) can be projected into two orthogonal directions in the Fourier space along, and orthogonal to, the direction in which the noise in an instrumental channel X would couple to H. If a noise transient in the detector output originates from channel X, it leaves the statistics of the noise component of H orthogonal to X unchanged, which can be verified by a statistical hypothesis testing. Details of this method are presented in [18] while the application to S5 data of GEO 600 is described in [19].

Figure 6 indicates the performance of the nullstream, χ^2 and the dust veto exemplarily for a 24 hour data stretch from September 2006. Shown is the timefrequency-map containing all burst triggers (black dots). Events that are vetoed by the χ^2 -veto, the nullstream veto and the dust veto are marked with crosses (green), diamonds (blue) and squares (orange), respectively. For the full month of September 2006, out of the roughly 115000 burst triggers about 1000 are vetoed by the χ^2 veto, about 16000 by the nullstream veto and about 6000 by the dust veto.

3.3. Night- & Weekend-mode, period 2

In a trade-off-decision in October 2006 the following three points were taken into account

- the necessity for maintenance of the infrastructure,
- the chance to improve the sensitivity with further commissioning work, in order to maximize the science impact of GEO 600 during off-line times of the other detectors in the network,
- the acquisition of science data at the current sensitivity in coincidence with the LIGO detectors.

With input from the LSC data analysis groups, the LSC operations committee and based on a detailed benefit/risk analysis of the GEO 600 commissioning team, the strategic decision was made to take the GEO detector out of the 24/7 mode (see also Secition

GEO 600: Status and Plans

4). At October 16th 2006 GEO 600 started a second period of Night- & Weekendmode. The beginning of this period was dedicated mainly to non-invasive investigations necessary for future planing of the detector operation. Then in 2007 the work shifted towards invasive hardware changes in order to maintain the reliability of the instrument, increase its sensitivity and to reduce its glitch rate.

3.4. Summary of S5

Overall GEO 600 collected about 270 days of well calibrated and characterized science data in the period between January 2006 and February 2007. Table 1 gives an overview of the accumulated science time and duty cycle for the three different periods of S5.

Period	duration	accumulated	science time
	[days]	science time [days]	duty cycle $[\%]$
N&W-mode 1	100	46.5	46.5
24/7-mode	168	152.4	90.7
N&W-mode 2	125	70.1	56.1
TOTAL	393	269	68.4

Table 1. A summary of the accumulated science time and the science time duty cycle of the GEO 600 detector during the S5 LSC science run so far (January 21st 2006 to February 18th 2007).

4. Future plans

Since the three LIGO detectors and VIRGO are going to shut down their interferometers for installation and commissioning of enhanced LIGO and Virgo+ in 2008, it was decided that GEO 600 will have a long science data taking to cover this period. The year 2007 will be dedicated to maintenance work necessary to allow reliable operation in 2008 with a high duty cycle and an improved sensitivity. The upcoming intensive commissioning period will concentrate on increasing the circulating light power, reducing scattered light noise and improving the performance of several control loops (aiming for more stability and less noise contribution in the detection band).

Furthermore investigations will be performed to check whether changing the readout system from the currently used heterodyne scheme to a DC-readout scheme might be beneficial. In addition we will test tuned signal-recycling operation, especially in combination with DC-readout. This configuration seems also to be promising for the application of squeezed light, which is considered to be part of the long term future of GEO 600, namely GEO-HF.

Figure 6. Performance of nullstream, χ^2 and the dust veto exemplarily for a 24 hour data stretch from September 2006. Shown is time-frequency-map containing all burst triggers (black dots). Events that are vetoed by the χ^2 -veto, the nullstream veto and the dust veto are marked with crosses (green), diamonds (blue) and squares (orange), respectively. For the full month of September, out of the roughly 115000 burst triggers about 1000 are vetoed by the χ^2 veto, about 16000 by the nullstream veto and about 6000 by the dust veto.

Acknowledgments

The authors are grateful for support from PPARC and the University of Glasgow in the UK, and the BMBF and the state of Lower Saxony in Germany.

References

- [1] Sigg D et al 2004 Commissioning of LIGO detectors Class. Quantum Grav. 21 S409–15.
- [2] Takahaschi R (the TAMA Collaboration) 2004 Status of TAMA300 Class. Quantum Grav. 21 S403-8.
- [3] Acemese F et al 2004 Status of VIRGO Class. Quantum Grav. 21 S385–94.
- [4] Willke B et al 2004 Status of GEO 600 Class. Quantum Grav. 21 S417–23.
- [5] Hewitson M et al 2005 Optimal time-domain combination of the two calibrated output quadratures of GEO 600, Class. Quantum Grav. 22 4253-4261
- [6] Hild S et al 2007 Demonstration and comparison of tuned and detuned Signal Recycling in a largescale gravitational wave detector, Class. Quantum Grav. 24 1513–1523.
- [7] Plissi M et al 2000 GEO 600 triple pendulum suspension system: Seismic isolation and control, Rev. Sci. Instrum. 71 2539–2545

- [8] Gossler S et al 2004 Damping and tuning of the fibre violin modes in monolithic silica suspension Class. Quantum Grav. 21 923-933
- [9] Smith R et al 2004 Mechanical quality factor measurements of monolithically suspended fused silica test masses of the GEO600 gravitational-wave detector Class. Quantum Grav. 21 1091-1098
- [10] Grote H et al 2004 Alignment control of GEO 600 Class. Quantum Grav. 21 S441-S449
- [11] Grote H et al 2005 The status of GEO 600 Class. Quantum Grav. 22 S193–S198
- [12] Grote H, Making it Work: Second Generation Interferometry in GEO 600!, PhD thesis, Hannover 2003
- [13] Hild S et al, A statistical veto employing an amplitude consistency check, submitted to Class. Quantum Grav..
- [14] Smith J R et al 2006 Projection of Technical Noise for Interferometric Gravitational-Wave Detectors, Class. Quantum Grav. 23 527-537
- [15] Hild S et al, 2006 Towards gravitational wave astronomy: commissioning and characterization of GEO 600, Journal of Physics: Conference Series 32 66–73
- [16] Hewitson M et al 2004 Principles of calibrating the dual-recycled GEO600 Rev. Sci. Instrum. 75, 4702
- [17] Hewitson M and Ajith P 2005 Using the null-stream of GEO 600 to veto transient events in the detector output, Class. Quantum Grav. 22 4903-4912
- [18] Ajith P et al 2006 Robust vetoes for gravitational-wave burst triggers using known instrumental couplings, Class. Quantum Grav. 23 5825–5837
- [19] Ajith P et al Physical Instrumental Vetoes for Gravitational-Wave Burst Triggers, in preparation.