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Abstract.
One class of gravitational wave signals LIGO is searching for consists of short

duration bursts of unknown waveforms. We present a density-based clustering
algorithm to improve the performance of time-frequency searches for gravitational wave
bursts of unknown waveforms that are extended in time and/or frequency. Potential
sources include core collapse supernovae, GRBs, and the merger of binary black holes
or neutron stars. We have implemented this algorithm as an extension to the Q
Pipeline search for bursts, which determines the statistical significance of events based
solely on the peak significance observed in the minimum uncertainty regions of the
time-frequency plane. Density based clustering improves the performance of such a
search by considering the aggregate significance of arbitrarily shaped regions in the
time-frequency plane and rejecting isolated noise triggers. In this paper, we present
test results and show that density based clustering improves the performance of Q
pipeline for extended signals.
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1. Introduction

General Relativity predicts that as concentrations of mass-energy rapidly change

quadrupole moment, such as in the case of asymmetric supernovae explosion, the merger

of binary compact objects, neutron star instabilities, etc., they create gravitational

waves — space-time fluctuations that propagate through the universe at the speed

of light [1, 2, 3, 4]. The current generation of gravitational-wave observatories such

as the Laser Interferometer Gravitational Wave Observatory (LIGO; Washington and

Louisiana, USA) [5], Virgo (Pisa, Italy) [6], GEO600 (Hanover, Germany) [7], TAMA300

(Tokyo, Japan) [8], and proposed ACIGA (Perth, Australia) [9] observatiories apply

optical interferometery to detect the 1 part in 1021 strain expected due to passing

gravitational waves. The sources of GWs detectable to ground based interferometers

are customarily classified into four major groups. The inspiral phase of coalescing

binary compact objects such as neutron stars or black holes manifest as “chirp” like

signals. Stochastic signals can come from either relic GWs from the very early universe

or from the cumulative effect of many unresolved sources. Spinning compact objects

such pulsars can produce long duration periodic signals if their mass is asymmetrically

distributed [3, 4]. Finally, GW signals lasting from a few millisecond to a few seconds,

and for which we do not have sufficient theoretical understanding of the source to predict

a waveform, are classified as GW burst signals. This last category is the primary focus of

this work and includes the merger phase of binary coalescence, core collapse supernovae,

gamma ray bursts, and possibly unexpected sources.

For GW waveforms based on theoretical predictions, matched filtering (projection

of data onto the expected waveforms) is used. For bursts of unmodeled waveforms, the

data is typically projected onto a convenient basis of abstract waveforms that are chosen

to cover a targeted region of the time-frequency plane. One of these search algorithms,

the Q Pipeline [10, 11], projects the data onto the basis of Gaussian enveloped sinusoids

and determines the statistical significance of events based on the most significant single

projection in the time-frequency plane. We investigated extensions to this approach

that also consider the combined statistical significance of arbitrarily shaped clusters of

projections in the time-frequency plane while rejecting noise. Density based clustering

algorithms have proven to be the best for our purpose. We present detailed test results

and show that density based clustering improves the performance of Q Pipeline for

signals that are extended in time and/or frequency.

This paper is structured as follows. Section 2) briefly describes the Q Pipeline burst

search algorithm. Section 3) explains the motivations for exploring the advantages

of clustering as an extension to the Q Pipeline algorithm. Section 4) describes the

concept of density based clustering, and presents a flow chart of the algorithm that we

implemented. Section 5) discusses the tests performed for simulated GW burst injections

of different waveforms and their results. The conclusions are presented in Section 6).
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2. Q Pipeline

The Q pipeline is a comprehensive analysis pipeline for the detection of gravitational-

wave bursts using data from single interferometric detector [11]. It is an unmodeled

burst search algorithm analogous to matched filtering for waves having sine-Gaussian

waveform. It consists of whitening by zero-phase linear prediction [12], application of

the discrete Q transform [13], thresholding on the white noise significance of Q transform

coefficients [10], and identification of the most significant set of non-overlapping time-

frequency tiles. A final stage excludes all but the most significant time-frequency tile

within a specified time window in order to prevent the redundant reporting of candidate

events. The analysis tool of Q pipeline is the Q-transform [14] which is a modification of

the standard short time Fourier Transform [15] in which the analysis window duration

varies inversely with frequency. As a result the time-frequency plane is covered by ’tiles’

of a constant ’Q’ which can be interpreted as a dimensionless quality factor for bursts

which is the ratio of the center frequency to the characteristic bandwidth (in terms of

second central moments in frequency) of the burst.

The Q pipeline analyzes the time-frequency signal plane looking for non-overlapping

tiles that have highest energy among tiles overlapping each other. It finds the most

significant event above a threshold in a given signal space. As it projects data into

regions of the time-frequency plane, an uncertainty relation applies. The minimum

uncertainty signal is a sine-Gaussian, ie. a sinusoid with a Gaussian envelope. The

algorithm is therefore based on searching for signals that have this waveform:

h(t) = h0 sin(ω◦ t)e−
(t−t0)2

τ2 (1)

where h◦ is the amplitude, t◦ is the center-time, τ is the length in time, and

central angular ω◦ = 2πf◦ . It is efficient at successfully detecting signals identified

by a single tile that are not extended in time and/or frequency scale. However, for

extended signals that are so less well localized in the time-frequency plane that its

energy is distributed across multiple tiles, their detectability is currently determined by

their maximum projection onto the space of sine Gaussian. For extended signals, only

identifying the highest energy tile will underestimate the total signal energy most of

the time, and hence the associated Signal to Noise Ratio (SNR). The signal can even

be missed altogether if the lower value does not pass the threshold of the search. As a

result, the Q pipeline’s efficiency is not optimal for bursts that are poorly localized in

the time-frequency plane. In particular, it only considers the statistical significance of

the single most significant tile with minimum time-frequency uncertainty.

Fig. 1 (top) shows the time-frequency map of a hardware injection (a simulated

signal physically injected in the detector for test purposes) of the inspiral phase of a

binary neutron star coalescence at 5 Mpc away as seen by the Q pipeline, and the

non-overlapping tiles produced by the Q pipeline after removing overlapping tiles of

lesser energy. In this case, the performance of the Q -pipeline is determined by the

highest energy tile (the dark tile at the center of the plot). However, since the Q
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Figure 1. A hardware injection for the inspiral phase of an optimally oriented
1.4-1.4 solar mass binary neutron star merger at 5 Mpc as seen by the Q pipeline
(top-left). The Q pipeline keeps only the most significant non-overlapping tiles (top-
right). Hierarchical clustering [16] clusters together most of the injection tiles, but also
includes some noise tiles. Many individual noise clusters are produced as well. Here
each color and shape combination represents one of 68 clusters (bottom-left). Density
based clustering [17] clusters together most of the signal-energy while removing most of
the noise. The large cluster is related to the injection, the small one is a low frequency
detector glitch (bottom-right).

pipeline considers each tile as an individual event, it cannot identify the other tiles of

the injection as part of the same signal, and consider them as less significant individual

events instead. Also, had there been a nearby glitch with higher energy than the center

tile of the injection, the Q pipeline would simply identify that as the most significant

event on the signal space even if the total energy of the injection were higher than that

of the glitch, and miss the injection.

3. Motivations for Using Clustering

Clustering is the method of grouping elements of data into classes based on their specific

properties. In our case, it was expected that clustering to collect energy associated with

neighboring tiles would help to more precisely estimate the significance of extended

signals, and thus increase the detection efficiency of Q pipeline for signals extended in

time and/or frequency. Potential clustering methods include partitioning, hierarchical

clustering, and density based clustering [18, 19].
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Partitioning approaches, such as the kmeans [20] algorithm, repeatedly divides data

points into smaller groups until a certain threshold is met. It was determined not to be

useful to find clusters of arbitrary number and shape. Hierarchical algorithms, which

build many smaller clusters and keep merging them until a certain threshold is reached,

were tested using preexisting MATLAB Statistics Toolbox functions linkage [21] and

cluster [22] in conjunction with a customized measure of distance (Section 4.2) between

tiles. It was shown that much of the injection could be clustered together (Fig. 1,

bottom-left). Though much of the injection energy is included into one cluster, a lot

of noise related clusters are also produced. This makes identifying the most significant

cluster statistically difficult. Moreover, noise identified as part of the injection distorts

information about the shape of the injected waveform. While hierarchical clustering

shows the potential advantage of clustering, density based clustering (Section 4) has

been found to be most advantageous for the purpose of this project because of its

efficiency in finding arbitrarily shaped regions in the time-frequency space. While most

other clustering algorithms classify noise tiles as single member clusters or as part of

larger clusters, density based algorithms keep noise, or data points that could not be

grouped together with other data points, out of all clusters and identify them as noise.

4. Density Based Clustering

4.1. Concept [17]

Density based clustering facilitates searches for signals of unknown shape, while picking

up only significant clusters over a large data set. It does not clutter the output with a

list of numerous noise clusters that contain one or just a few data points. The algorithm

looks for neighbors of those points that have at least a given number of neighbors

within a given distance on the time-frequency plane, and forms clusters of data-points

that can be related through their common neighbors (Fig. 2, left). Our implementation

of density based clustering algorithm takes two parameter: minimum neighbor number

and neighborhood radius.

4.2. Distance Metric

Any clustering algorithm requires measurement of the pairwise distances between all

data points and in our case, the pairwise distance between all tiles produced by Q

Pipeline. However, the tiles have varied shapes which make measurement of distance

between any pair of data points rather difficult. We implemented a distance metric that

takes into account the problem of varied tile shapes by utilizing the fact that each tile

covers a time-frequency area of 1, that is, for a tile with length in time d and length

in frquency f , df = 1. It also inflates the distance on frequency scale relative to the

distance in time scale. This step has to be taken in order to compensate for the fact

that most nonlocalized signals are quite limited on the time scale (seconds) while being

comparatively more extended on the frequency scale (Hz). For a pair of tiles with center
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Figure 2. Density based clustering first finds a tile’s nearest neighbors, then the
neighbors’ neighbors, and so on (Figure from [17]). (a) Data points before clustering.
(b) If the density of data points within a given distance around a point is above a
given threshold to form a cluster, that point becomes a cluster seed. (c) Neighboring
data points having a sufficient number of neighbors are then included in the cluster.
(d) This process repeats as long as data points with sufficient number of neighbors are
found (left). The four-distance graph has the distance of the fourth closest neighbor of
every point along y-axis for every corresponding point on x-axis. The sharp turn close
to distance 8 provides us with the numerical value of neighborhood radius (right).

times t1 and t2, center frequencies f1 and f2, Q of q1 and q2, and normalized energy of

z1 and z2, the distance on the time-frequency plane D is measured from the following

ralations:

D =
√

Dt
2+30Df

2 (2)

Dt =
|t2−t1|

St

, Df =
|f2−f1|

Sf

, St =
d1z1+d2z2

z1+z2

, St =
b1z1+b2z2

z1+z2

(3)

d1 =
1

b1

, d2 =
1

b2

, b1 = 2
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π
f1

q1

, b2 = 2
√

π
f2

q2

(4)

where Dt is the distance on the time scale, Df is the distance on the frequency

scale, St is the scale factor on the time scale, Sf is the scale factor on the frequency

scale, d1 and d2 are durations, and b1 and b2 are bandwidths. The distance metric can

be compacted as:

D = (z1+z2)

√(
2
√

πf1f2 (t2−t1)

z1q1f2+z2q2f1

)2

+30

(
q1q2 (f2−f1)

2
√

π (z1q2f1+z2q1f2)

)2

. (5)

4.3. Neighborhood Radius

The exact numerical value of the neighborhood radius is determined using a 4-distance

graph that has the distance of the fourth closest neighbor of every point along y-axis

for every corresponding point on x-axis. The points are sorted according to descending
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Figure 3. Flowchart of density based clustering algorithm.

order of their 4-distance value. Close observation of the 4-distance graph provides a cut-

off distance whose numerical value depends on the distance metric used. For the specific

distance metric we used, the numeric value of 8 has been chosen as the neighborhood

radius from observing the 4-distance plot that we produced (Fig. 2, right) that evidently

shows a sharp turn in the plot near that point.

4.4. Algorithm

The main clustering function first uses the distance function to measure pairwise distance

between all tiles, and calls the expandCluster function which recursively calls itself to

induct more data points into the cluster (Fig. 3). Clustering starts at the highest energy

data-point and then proceeds to the next significant data point that is not in a cluster,

considering only such points as cluster seeds that have enough (4 in our case) neighbors

to ensure that the least number of loops are executed. If any qualifying member of

the current cluster is found to be already in a cluster, the two clusters merge. Thus,

regardless of which data-point the algorithm starts clustering from, it will always find
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the cluster. For speed optimization, though, our density based clustering function picks

the more significant data-points first. Fig. 1 (bottom-right) shows a cluster built using

density based clustering algorithm. It shows that density based clustering has clustered

together the most significant part of the previously discussed injection successfully,

and almost all the noise is removed. While it loses the high-frequency end of the

injection, that part contains very little energy which does not significantly contribute to

the duration or significance estimation of the detected trigger. The only noise cluster

on the signal space is a low frequency detector glitch.

5. Testing for Different Waveforms

We evaluated our density based clustering code implementation on single detector

searches for injections of simulated bursts of different waveforms at constant SNR.

Our test program loads segments of LIGO S5 detector data (that is data collected by

LIGO during its ongoing fifth science run) and runs clustering over the noise-only signal

space. Every detection on the noise-only space is considered a false detection. Then

it repeatedly injects constant SNR signals of specific waveforms at random times with

random signal parameters (bandwidth, duration, strength, mass of component stars

etc.), and clusters noise-injection data over the same signal space separately. Every

injection that is successfully detected after clustering is considered a successful correct

detection. We produced receiver operating characteristic (ROC) curves for each injected

signal population. ROC curves plot the false-rate of a search algorithm on the x-axis

against its detection-efficiency on the y-axis as the detection threshold is varied, which in

this case is a threshold on the energy of a tile or total energy of all tiles in a cluster. Three

other figures plotting detection-efficiency against energy, false-rate against energy, and

energy against number-of-tiles are also produced for analyzing the effects of clustering

on injections of different waveforms (Fig. 4).

A total of five waveform families have been tested for, including two non-localized

waveforms: inspiral and noise-burst, and three localized waveforms: ringdown, sine-

Gaussian, and Gaussian. Fig. 4 shows ROC curves produced for the inspiral and

sinegaussian waveform injections. These ROC curves are produced for injections at

constant SNR with one injection per 32 second LIGO data collected during the ongoing

fifth science run (S5). The red curves represent the performance of the Q pipeline

without clustering and the blue curves represent the performance of the Q pipeline with

clustering. Since density based clustering identifies and removes tiles that do not have

enough neighboring tiles within the given neighborhood radius, localized injections that

have most of their energy contained in a single tile are identified as noise. Thus, use

of density based clustering can cause Q pipeline to miss extremely localized signals

that contain most of its energy in a single tile on the time-frequency signal space. To

maintain the original Q pipeline’s sensitivity for localized signals while expanding it to

find non-localized signals through clustering, results from Q pipeline with and without

clustering can be combined carefully avoiding double-counting. In ROC’s presented
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Figure 4. ROC curve, number of tiles vs. energy plot, false-rate vs. energy plot, and
efficiency vs. energy plot for 200 Inspiral injections (top) and sine Gaussians (bottom)
at constant signal to noise ratio injected into LIGO data collected during the ongoing
fifth science run (S5).
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here, the blue curves represent such merged results.

The ROC curves indicate that for the extended waveforms (top), clustering

significantly improves the ROC curves as efficiency increases. For the localized

waveforms (bottom), the ROC curves slightly worsens though efficiency remains

unchanged. Higher false-rate is observed (false-rate vs. energy plots in Fig. 4) in all the

cases which was expected due to merger of results. However, merging the results can be

a necessary step when searching for signals that are not extended on the time-frequency

plane to ensure that Q pipeline with clustering does not disregard significant localized

triggers that it would otherwise find without clustering. This step is not applicable when

searching for only extended signals. However, it also demonstrates that to search only

for signals localized both in time and frequency, density based clustering would not offer

any advantage. It is possible to recover any performance in between the two ROC curves

by setting separate thresholds for clustering and non-clustering triggers. However, to

do that we need to specify whether to look for extended or loaclized waveforms.

6. Conclusion

Methods of clustering the measurements from neighboring or overlapping basis functions

have been employed to more efficiently detect signals that are not well represented by

this particular choice of basis. Adding density based clustering algorithm to Q Pipeline

for statistically significant events led to an improvement in the detectability GW burst

signals extended in time and/or frequency scales. Our implementation of density based

clustering facilitates Q Pipeline to find clusters of unknown shapes and rejects noise

without slowing down the search.

Since all the testing so far has been done using single detector data, the logical

next step is to incorporate clustering in to Q pipeline, and implement coherent and co-

incident search capabilities. An improvement of the false rate is expected for coherent

and co-incident searches. Clustering can help us to extract information about signal

shapes by identifying GW signal energy distributions across time and frequency, and

investigate other signal characteristics that potential search methods can not recognize

without clustering. We recommend further research to explore these promising aspects.
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