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We present analysis of undesirable effect of parametric instability in signal recycled GEO 600
interferometer. The basis for this effect is provided by excitation of additional (Stokes) optical
mode, having frequency ω1 , and mirror elastic mode, having frequency ωm , when the optical
energy stored in the main FP cavity mode, having frequency ω0 , exceeds a certain threshold and
detuning ∆ = ω0 − ω1 − ωm is small. We dicuss the potential of observing parametric instability
and its precursors in GEO 600 interferometer. This approach provides the best option to get familiar
with this phenomenon, to develop experimental methods to depress it and to test the effectiveness
of these methods in situ.

I. INTRODUCTION

The full scale operational terrestrial interferometric grav-
itational wave antennae LIGO have sensitivity, expressed in
terms of the metric perturbation amplitude, approximately
∼ 3 times better than the planned level of h ≃ 1 × 10−21

[1, 2] in 100 Hz bandwidth (see the current sensitivity curve
in [3]). In Advanced LIGO (to be approximately realized in
2012), after improving noise of test masses (mirrors of a 4
km long optical Fabry-Perot (FP) cavities) and increasing
the optical power circulating inside the resonator the sensi-
tivity is expected to reach the value of h ≃ 1 × 10−22 [4, 5].
GEO 600 interferometer (a younger brother of LIGO) has a
less impressive sensitivity [6], however, in addition to regis-
tration of gravitational wave, it plays an important role as a
testing area for different kinds of new technologies to be ap-
plied later for LIGO, e.g., the signal recycling configuration,
the compensation of thermal lensing and several others.

The undesirable effect of parametric instability in Fabry-
Perot cavity, which may cause a substantial decrease in an-
tennae sensitivity or even antenna malfunction, was exam-
ined in [7]. This effect appears above the certain threshold
in the optical power Wc circulating in the main mode, when
the difference ω0 − ω1 between frequency ω0 of the main
optical mode and frequency ω1 of the idle (Stokes) mode is
close to frequency ωm of the mirror mechanical degree of
freedom. Coupling between these three modes occurs due to
ponderomotive pressure of light in the main mode and Stokes
mode and the parametric effect of mechanical oscillation on
optical modes. Above the critical value of light power Wc the
amplitude of mechanical oscillation is also increasing as the
optical power in the idle (Stokes) optical mode gets bigger.
However, E. D’Ambrosio and W. Kells have shown [8] that
if the anti-Stokes mode (with frequency ω1 a = ω0 + ωm)
is taken into account in the same single dimensional model,
then the effect of parametric instability will be substantially
lower or even excluded. In [9–11] an analysis was given based
on the model of power and signal recycled LIGO interfer-
ometer. It was demonstrated that anti-Stokes mode could
not completely suppress the effect of parametric oscillatory
instability. As a possible “cure” to avoid the parametric
instability it was proposed [12] changing the mirror shape
and introducing low noise damping. D. Blair with colleagues
proposed an interesting concept of heating test masses in or-
der to vary the curvature radii of mirrors in interferometer
and hence to control detuning and decrease the overlapping
factor between the optical and acoustic modes [13–15]. Re-

cently, the instability produced by the optical rigidity was
observed in direct experiment [16]. The effect of parametric
instability was observed by K. Vahala with collaborators for
micro scale whispering gallery optical resonators [17, 18].

In this article we present a detail analysis of parametric in-
stability in signal recycled GEO 600 interferometer and show
that in spite of lower optical power in GEO 600 as compared
with LIGO, the parametric instability in this interferometer
can be observed if detuning ∆ = ω0 − ω1 − ωm is small.
It can be done by changing the frequency of anti-symmetric
optical mode (see definition below) of interferometer through
varying the position of signal recycling (SR) mirror. It al-
lows using GEO 600 as a testing area to observe precursors
of PI and to work out technology to avoid it.

In section II we derive the parametric instability con-
ditions in GEO 600 interferometer. The results obtained
are discussed in section III. The details of calculations are
present in Appendix.

II. GEO 600 INTERFEROMETER

We analyze GEO 600 interferometer with signal recycling
(SR) and power recycling (PR) mirrors — see Fig. 1 and
notations to it. The interferometer is tuned in resonance
and no regular optical power passes through SR mirror. The
wave E6 traveling through it is used to detect the signal.
Interferometer is pumped through port F5. We make the
following simplifying assumptions:

• Optical losses in all mirrors as well as thermal noises
are not taken into account.

• Transparencies of PR and SR mirrors are Tpr, Tsr cor-
respondingly and the lengthes of both arms are tuned
so that symmetric mode is in resonance with the pump.

• The distances between the beam splitter and PR, SR
mirrors are short (about several meters) as compared
with the total arm length (1.2 km), hence, we consider
the phase advance of the waves traveling between these
mirrors as a constant and omit its dependence on fre-
quency.

• We do not take into account anti-Stokes mode.
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A. Initial equations

We denote the mean (constant) amplitude of the main
wave (at frequency ω0) by calligraph upper case letters, and
small, time-dependent amplitudes of Stokes and elastic mode
by lower case letters. For example, the complex amplitude
of F1 can be written: F1 = F1e−iω0t + f1e−iω1t, where
the mean amplitude F1 corresponds to the main mode with
frequency ω0 and small field f1 — to the Stokes mode with
mean frequency ω1. Below we recalculate all constant ampli-
tudes through amplitude F0 in arms, so that F1 = F2 ≡ F0.
We normalize amplitudes so that |F0|2 = W, where W is
optical power circulating in each arm. The displacements
of mirrors’ surface are denoted by x1,2, y1,2, ypr, xbs

(see Fig. 1) and we introduce slow amplitudes as following
x1 → x1e−iωmt+x∗

1e
iωmt and so on. We start with time do-

main equations for small amplitudes f3 of symmetric mode
and f4 of anti-symmetric mode (see details in Appendix A):

ḟ3(t) + γ+f3(t) =
−iω1N1F0

L

(

ζ∗+ + x∗

bs +
√

2 y∗

pr

)

e−i∆t,

(2.1)

γ+ =
Tpr

4τ
, ζ+ =

2(x1 + x2) + (y1 + y2)√
2

, (2.2)

∆ = ω0 − ω1 − ωm, (2.3)

ḟ4(t) + Γ−f4(t) =
−ω1N1F0

L

(

ζ∗− − x∗

bs

)

e−i∆t , (2.4)

Γ− = γ− − iδ, γ− =
Tsr

4τ
, δ =

2φ

2τ
, (2.5)

ζ− =
2(x1 − x2) + (y1 − y2)√

2
. (2.6)

Here γ+, γ− are relaxation rates of symmetric and anti-
symmetric modes correspondingly. We assume that PR cav-
ity is in resonance, i.e. phase advance φpr between beam
splitter and PR mirror is fold to 2π: exp(iφpr) = 1. It means
that mean amplitudes in SR cavity equal zero: F4 = E4 = 0.
In contrast, we assume phase advance φ between beam split-
ter and SR mirror having an arbitrary value. We also assume
that φpr (and φ) does not depend on time.

The coupling between Stokes and elastic mode arises as
follows. The wave of main mode reflecting from surface of
mirror, oscillating with frequency ωm and having complex
amplitude x, originates waves

∼
(

F0e−iω0t + F∗0eiω0t
)(

xe−iωmt + x∗eiωmt
)

with frequencies ω0 ± ωm. One of them (having frequency
ω0 − ωm) is in resonance with Stokes mode — it is the ori-
gin of term in the right part of Eq. (2.1, 2.4). Another one
(having frequency ω0+ωm) is in resonance with anti-Stokes
mode, which we do not take into account in our considera-
tion.

Comparing left parts of Eqs. (2.1, 2.4) we see that reso-
nance frequency of symmetric mode (ω1) differs from reso-
nance frequency of anti-symmetric mode by detuning δ which
can be controlled by position of SR mirror.

We have to supply Eqs. (2.1, 2.4) with equations for evolu-
tion of elastic mode amplitudes (see details in Appendix A):

ẋ∗

1 + γmx∗

1 =

√
2N∗

1F∗
0

(

if3 − f4

)

ei∆t

ωmm cµ
, (2.7)
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FIG. 1: Signal and power recycled GEO 600 interferometer. FM
— folding mirrors, EM — end mirrors, BS — beam splitter. Here
F1 , E1 are amplitudes on plane (i), F2 , E2 , F3 , E3, F4 , E4 are
amplitudes on beam splitter.

ẏ∗

1 + γmy∗

1 =
N∗

1F∗
0

(

if3 − f4

)

ei∆t

√
2ωmm cµ

, (2.8)

ẋ∗

2 + γmx∗

2 =

√
2N∗

1F∗
0

(

if3 + f4

)

ei∆t

ωmm cµ
, (2.9)

ẏ∗

2 + γmy∗

2 =
N∗

1F∗
0

(

if3 + f4

)

ei∆t

√
2ωmm cµ

, (2.10)

ẏ∗

pr + γmy∗

pr =
−N∗

1

√
2F∗

0f3ei∆t

iωmmpr cµ
(2.11)

ẋ∗

bs + γmx∗

bs =
N∗

1ei∆tF∗
0

(

if4 − f3

)

iωmmbs cµ
. (2.12)

Here masses of folding and end mirrors in arms are denoted
by m (they are equal to each other), mpr, mbs are masses of
PR mirror and beam splitter correspondingly (elastic modes
in SR mirror does not participate in parametric instability),
ωm, γm are normal frequency and relaxation rate of elastic
mode, the other notations are given in Appendix A.

The waves of main and Stokes modes reflecting from the
mirror produce radiation pressure force proportional to the
square of sum field. In formula for this force we take into
account the cross term only proportional to

∼
(

F0e−iω0t + F∗

0eiω0t
)(

fStokese
−iω1t + f∗Stokese

iω1t
)

which contains the difference frequency (ω0 − ω1) (in reso-
nance with elastic mode). It originates the terms in the right
parts of Eqs. (2.7 – 2.12).

B. Parametric instability conditions

The masses (and sizes) of end and folding mirrors (EM and
FM) in arms of GEO 600 are practically the same, PR mirror
and beam splitter have different masses (see Table I). Hence,
there is a very small chance that frequencies and structures
of elastic modes in beam splitter, PR and other mirrors (EM,



TABLE I: Constants and parameters of GEO 600 used for esti-
mates.

Symbol Physical meaning Numerical value

m Masses of EM and FM 5.6 kg [19]

mpr Mass of PR mirror 2.9 kg [19]

mbs BS mirror mass 9.3 kg [19]

L Effective arm length 1200 m

W Light power circulating in each arm planned 10 kW

ω0 Mean frequency of carrier light 1.8 · 1015 s−1

Tpr Power transparency of PR mirror 0.09% [20]

γ+ Relaxation rate of sym. mode ≃ 56 s−1

Tsr Power transparency of SR mirror 1.9% [20]

γ− Relaxation rate of anti-sym. mode ≃ 1200 s−1

ωm Elastic mode frequency ≃ 106 1/sec

γm Relaxation rate of elastic mode ≃ 0.125 s−1

φloss Loss angle (γm = ωmφloss/2) 2.5 × 10−7 [21]

FM) coincide, and we have to analyze parametric instabil-
ity with elastic modes of these mirrors separately. Further,
considering elastic modes in EM and FM we can assume
that mirrors are elastically identical (i.e. the frequencies and
structure of elastic modes are the same); then we can con-
sider symmetric (subsec. II B 1) and anti-symmetric modes
(subsec. II B 2). In the opposite case we can consider fold-
ing and end mirrors separately (subsec. II B 3), including PR
mirror (subsec. II B 4) and beam splitter (subsec. II B 5). In
subsec. II B 6 we present solution of characteristic equations
obtained in subsec. II B 1 – II B 5.

For estimates we will use parameters of GEO 600 interfer-
ometer presented in Table I.

1. Symmetric mode

We see from equation (2.1) that amplitude f3 depends
on sum coordinate ζ+ (recall that here we do not take into
account dependence on coordinate xbs, ypr — it will be
done below). Using Eqs. (2.7 – 2.10), we obtain the set of
equations in time domain:

(∂t + γ+) f3(t) =
−iω1N1F0

L
ζ∗+ e−i∆t, (2.13)

ζ̇∗+ + γmζ∗+ =
5iN∗

1F∗

0f3ei∆t

ωmm cµ
. (2.14)

We call this mode a symmetric one. Finding solution for
this set as f3 = f3eλt−i∆t, ζ+ = ζ+eλt we obtain character-
istic equation (recall that optical power circulating in arms
is equal to |F0|2 ≡ W):

5Q
(

λ + γm

)(

λ + γ+ − i∆
) = 1, (2.15)

Q ≡ ω1ΛW

cLmωm

, Λ =
|N1|2

µ
(2.16)

Here Λ is overlapping factor (see also (A31)), it is equal
to 1 if distribution of Stokes mode field and elastic mode

displacement on mirror surface coincide completely, in reality
Λ < 1. The parametric instability will takes place when the
real part of one of the roots of this characteristic equation
becomes positive.

2. Antisymmetric mode

For anti-symmetric mode we have similar set of equations
in time domain, using (2.4) and (2.7 – 2.10):

ḟ4 + Γ−f4 =
−ω1N1F0

L
ζ∗−e−i∆t, (2.17)

ζ̇∗− + γmζ∗− =
−5N∗

1F∗

0f4ei∆t

ωmm cµ
(2.18)

Finding solution for this set as f4 = f4eλt−i∆t, ζ− = ζ−eλt

we obtain characteristic equation:

5Q
(

λ + γm

)(

λ + Γ− − i∆
) = 1. (2.19)

3. Single folding or end mirror

Now we can consider the case when only one mirror par-
ticipates in parametric instability. This may happen when
normal frequencies in different modes differ from each other
by value ∆ωm larger than one of relaxation rates γ+ or γ−

i.e. (using parameters from Table I) — ∆ωm/ωm ≥ 10−3.
Such difference may be easy produced by suspension system
or caused by inhomogeneity of mirror material [9].

Considering, as an example, only folding mirror in east
arm (position x1) we obtain from Eqs. (2.1, 2.4, 2.7) the
following set of equations:

(∂t + γ+) f3(t) =
−i

√
2ω1N1F0

L
x∗

1 e−i∆t, (2.20)

(∂t + Γ−) f4 =
−
√

2ω1N1F0

L
x∗

1e−i∆t, (2.21)

ẋ∗

1 + γmx∗

1 =

√
2N∗

1F′
∗

0

(

if3 − f4

)

ei∆t

ωmm cµ
, (2.22)

Finding solution of this set as f3 = f3eλt−i∆t, f4 =

f4eλt−i∆t, x∗
1 = x∗

1 eλt we obtain characteristic equation:

2Q
λ + γm

(

1

λ + γ+ − i∆
+

1

λ + Γ− − i∆

)

= 1 . (2.23)

We can obtain the same characteristic equation consid-
ering only the folding mirror in north arm (position x2).
Considering only one end mirror in any arm (positions y1

or y2) we obtain the same characteristic equation (2.23) but
without factor 2 before Q.

4. Single PR mirror

Considering only PR mirror (posision ypr) one can obtain
set of equations similar to Eqs. (2.13, 2.14) and characteristic
equation similar to (2.15):

2Qpr
(

λ + γm

)(

λ + γ+ − i∆
) = 1, (2.24)



Qpr ≡ ω1ΛW

cLmprωm

, Λ =
|N1|2

µ
(2.25)

5. Single beam splitter

As a following example, we consider only the beam splitter
— from Eqs. (2.1, 2.4, 2.12) we obtain

∂tf3 + γ+f3(t) =
−iω1N1F0

L
x∗

bs e−i∆t, (2.26)

∂tf4 + Γ−f4 =
ω1N1F0

L
x∗

bse
−i∆t, (2.27)

∂tx
∗

bs + γmx∗

bs =
N∗

1ei∆tF∗

0

(

if4 − f3

)

iωmmbs cµ
. (2.28)

Again, finding solution for this set as f3 = f3eλt−i∆t, f4 =
f4eλt−i∆t, x∗

bs = x∗

bs eλt we obtain the characteristic equa-
tion:

Qbs

λ + γm

(

1

λ + γ+ − i∆
+

1

λ + Γ− − i∆

)

= 1 , (2.29)

Qbs ≡ ω1ΛW

cLmbsωm

, Λ =
|N1|2

µ
. (2.30)

6. Solution of characteristic equations

Recall that parametric instability corresponds to the case
when real part of one of the roots of characteristic equation
becomes positive. The solution of characteristic equations
can be considerably simplified if we take into account strong
inequality (see parameters in Table I):

γm ≪ γ+, γ− (2.31)

This inequality allows us assuming that one of the roots
which is interesting for us has imaginary part much less than
relaxation rates γ+, γ− and we can find, for example for
(2.15) an approximate solution and then the parametric in-
stability condition:

λ ≃ −γm +
5Q

γ+ − i∆
, ⇒

5Q
γm

Re

(

1

γ+ − i∆

)

≥ 1 (2.32)

The characteristic equation (2.19) for anti-symmetric
mode differs from corresponding equation (2.15) for sym-
metric mode only by Γ− substituted instead of γ+. Hence
the parametric instability condition for anti-symmetric mode
differs from (2.32) by the same substitution only. The same
is true for characteristic equation (2.24) with substitution
2Qpr instead of 5Q in (2.15).

Using the same consideration we obtain parametric con-
dition from Eq. (2.23) (generalization for (2.29) is obvious):

2Q
γm

Re

(

1

γ+ − i∆
+

1

Γ− − i∆

)

≥ 1 . (2.33)

To be on the safe side we solved numerically corresponding
characteristic equations under assumption γm/γ± ≤ 10−2

and checked that the approximations (2.32, 2.33) are valid
with relative accuracy < 10−2.

III. DISCUSSION AND CONCLUSION

Looking at Eqs. (2.32, 2.33) we see that in case of zero
detuning the parametric instability may take place in GEO
600 interferometer if factors Q/γmγ± are greater than 1.
For parameters from Table I we estimate:

Q
γmγ+

≃ 1.27 × Λ,
Q

γmγ−

≃ 0.06 × Λ, (3.1)

Qpr

γmγ+

≃ 2.45 × Λ. (3.2)

Hence, one may conclude that chance to observe parametric
instability in GEO 600 interferometer is small enough be-
cause (a) overlapping factor is usually small (Λ < 0.1) and
(b) detuning is non zero in reality and it will also depress
parametric instability.

However, it would be very attractive to use GEO 600 as
a testing area to develop and test methods of parametric
instability suppression. For this purpose it is interesting to
enhance parametric instability. Recall that symmetric mode
is tuned in resonance with pump while anti-symmetric mode
may be effectively detuned by displacement of SR mirror.
Owing to this detuning one can easy obtain the information
on the frequencies and structures of elastic modes through
observing signal at the output port (using balance homodyne
detector not shown on Fig. 1) peaks of elastic oscillations in
mirrors. This detuning can be done in range (part of free
spectral range: ∆ffrs ≃ 600 Hz) large enough to scan the
range of elastic frequencies (50 . . . 300 Hz) interesting for
us. Therefore, one can choose a suitable elastic mode (i.e.
overlapping factor Λ is not small) and tune antisymmetric
mode in resonance (i.e. ∆ ≃ 0).

Now in order to observe parametric instability we have
either to increase the optical power circulating in arms or
to decrease relaxation rate γ− of anti-symmetric mode by
approximately two orders. Increasing optical power poses
a difficult problem. Replacement of SR mirror by another
one having smaller transparency in operating interferometer
is undesirable. However, effective manipulation by SR mir-
ror transparency can be done in another manner. One can
place another mirror with transparency Tadd ≃ 0.01 par-
allel to SR mirror so that these mirrors assemble a short
Fabry-Perot cavity. The transparency of this cavity vary
from 4TsrTadd/(Tsr+Tadd)2 (resonance) to TsrTadd/4 (anti-
resonance) by displacement of additional mirror. So tuning
additional Fabry-Perot cavity close to anti-resonance one can
decrease effective transparency of SR mirror by several or-
ders. Note that additional mirror may be placed outside a
vacuum camera of interferometer.

Observation of parametric instability and its precursors in
GEO 600 interferometer will provide the best approach to
explore this phenomenon, develop experimental methods to
depress it and to test effectiveness of these methods in situ.

Acknowledgments

We are grateful to Vladimir Braginsky, Bill Kells and
David Ottaway for useful discussions on parametric insta-
bility problem. Especially we would like to thank Hartmut
Grote, as fruitful discussions with him stimulated us to write
this paper and Stefan Hild who provided us with valuable



information on GEO 600 parameters. This work was sup-
ported by LIGO team from Caltech and in part by NSF
and Caltech grant PHY-0353775, by the Russian Agency of
Industry and Science: contract No. 5178.2006.2.

Appendix A: Derivation of main formulas

The electric field E in traveling wave, for example, in right
arm of GEO 600 interferometer and mean power W is written
as following:

E(t,~r⊥) ≃
√

2π

cS0

A0(~r⊥)F0e−iω0t+

+
∑

n

√

2π

cS
(n)

1

∫∞

−∞
A(n)

1 (~r⊥)f
(n)

1 (Ω)e−i(ω1+Ω)t dΩ

2π
+

+ h.c.,

W =
∣

∣F0

∣

∣

2
,

S0 =

∫

S

|A0(~r⊥)|2 d~r⊥, S
(n)

1 =

∫

S

|A(n)

1 (~r⊥)|2 d~r⊥ .

Here W is the mean power in traveling wave of main mode,

dimensionless functions A0(~r⊥), A(n)

1 (~r⊥) describe the dis-
tributions of optical fields over cross section for main and
other (Stokes) modes, integration

∫
S

d~r⊥ is taken over the
mirror surface.

The Stokes wave appears after each reflection of the main
wave from mirror surface oscillating with frequency ωm. For
example, we have for reflection from mirror with position x1:

∑

n

A(n)

1
√

S
(n)

1

e
(n)

1 e−iω1t = −
∑

n

A(n)

1
√

S
(n)

1

f
(n)

1 e−iω1t −

−
A0√
S0

F0e−iω0t 2iku⊥

(

x1e−iωmt + x∗

1eiωmt
)

.

Here sum is taken over complete set A(n)

1 of cavity modes
(they are orthogonal to each other) and u⊥ is normal to
surface component of dimensionless displacement vector ~u

of elastic mode and x1 is slow amplitude of displacement,
k = ω1/c. Multiplying this equation by distribution func-

tion A∗
1/
√

S1 of more suitable Stokes mode (we drop index
(n) from this point on), integrating over cross section and
omitting non-resonance term (∼ x1e−iωmt) one can obtain
in the frequency domain:

e1(Ω) = −f1(Ω) − N1F0in2ikx∗

1(∆ − Ω), (A1)

N1 =

∫
S
A0A∗

1 u⊥(~r)d~r⊥
√∫

S
|A0|2 d~r⊥

∫
S

|A1|2 d~r⊥

, (A2)

∆ = ω0 − ω1 − ωm.

Below we apply these consideration to each reflection.
However, for simplicity we do not write factor N1 in ev-
ery formula and restore it in final formulas (after expanding
exponents like eikx in series).

Beam Splitter. We consider that F2, E2, F3, E3, F4, E4

are amplitudes on beam splitter (its transparency is equal
to Tbs = 1/2) as shown in Fig. 1. Amplitudes F1, E1 we
consider on plane (i) (see Fig. 1) so that phase advance be-
tween beam splitter and this plane is eiφ1 = i. F2, E2 are

amplitudes on beam splitter. The phase φbs =
√

2 kxbs is
introduced due to shifting position xbs of the beam splitter.
Thus, we have:

F1

i
=

iF3 − F4e−iφbs

√
2

, F2 =
1√
2

(

− F3eiφbs + iF4

)

, (A3)

E3 =
i(i)E1 − E2eiφbs

√
2

, E4 =
i
(

− E1e−iφbs + E2

)

√
2

.

(A4)

Arms. Denoting τ = L/c where L is the path length be-
tween the beam splitter and the end mirror in each arm, we
have:

E1 = −θF1e2ikz1 , E2 = −θF2e2ikz2 , (A5)

θ = e2iΩτ ≃ 1 + 2iΩτ, z1,2 = 2x1,2 + y1,2 (A6)

Substituting (A5, A3) into (A4) we obtain:

E3 =
−θF3

2

(

e2ikz1 + e2ikz2+2iφbs
)

+ (A7)

+
iF4θ

2

(

−e2ikz1−iφbs + e2ikz2+iφbs
)

,

E4 =
θiF3

2

(

−e2ikz1−iφbs + e2ikz2+iφbs
)

+ (A8)

+
θF4

2

(

e2ikz1−2iφbs + e2ikz2
)

We consider the case when PR cavity is in resonance (see
below) — this means that the mean amplitude F4 = 0.
Hence, as it follows from (A3) that the mean amplitudes
in arms are equal to each other and we denote them by F0

(i.e. F1 = F2 = F0). Then we can obtain the formulas for
mean amplitudes:

F1 = F2 =
−F3√

2
= F0, E1 = E2 =

F3√
2

= −F0, (A9)

F3 =
−F1 − F2√

2
= −

√
2F0, E3 =

√
2F0, F4 = 0.

(A10)

From Eqs. (A7, A8) expanding exponents in series and
restoring factor N1 like in (A1) we obtain for small ampli-
tudes

e3(Ω) = −θf3(Ω) + N1F0 2ik
(

ζ∗+(∆ − Ω) + x∗

bs(∆ − Ω)
)

,

(A11)

e4(Ω) = θ f4(Ω) + iN1F02ik
(

ζ∗−(∆ − Ω) − x∗

bs(∆ − Ω)
)

,

(A12)

ζ+ =
z1 + z2√

2
, ζ− =

z1 − z2√
2

(A13)

For Power Recycling Mirror we have:

F3e−iφpr = i
√

TprF5 −
√

1 − TprE3eiφpr(1 + 2iky∗

pr),

(A14)

φpr =
(

ω1 + ∆pr + Ω
)

lpr/c. (A15)

Here last term in brackets in the right side of (A14) corre-
sponds to expansion in series of term e2ikypr . We assume
that PR cavity is in resonance, i.e. exp(iφpr) = 1 and φpr

does not depend on frequency Ω due to shortness of PR



cavity. Below we use for small amplitude only Eq. (A14)
omitting term ∼ F5 (because there is no pumping of Stokes
mode):

f3 = −
√

1 − Tpre3 −
√

1 − TprN1E3 2iky∗

pr. (A16)

And substituting (A11) into (A16) we get:

f3

(

1 − θ
√

1 − Tpr

)

= −
√

1 − Tpr N1F0× (A17)

× 2ik
(

ζ∗+ + x∗

bs +
√

2y∗

pr

)

.

Expanding in series e2iΩτ ≃ 1 + 2iΩτ,
√

1 − Tpr ≃ 1 −
Tpr/2 in Eq. (A17) we can obtain in frequency domain:

f3 (γ+ − iΩ) =
−iω1N1F0

(

ζ∗+ +
√

2 ypr + x∗

bs

)

L
, (A18)

ζ+ =
2(x1 + x2) + (y1 + y2)√

2
, γ+ =

Tpr

4τ
. (A19)

Now using obvious rule (−iΩ) ⇒ ∂t one can obtain Eq. (2.1)
in time domain from Eq. (A18).

For Signal Recycling Mirror we have:

F4e−iφ = i
√

TsrF6 −
√

1 − TsrE4eiφ. (A20)

We assume that SR cavity is not in resonance (i.e. the phase
advance φ between beam splitter and SR mirror has an ar-
bitrary value) and we also assume that φ does not depend
on frequency Ω. Again for small amplitudes we omit term
∼ F6 in Eq. (A20)

f4 +
√

1 − Tsre
i2φ e4 = 0. (A21)

Now substituting (A12) into (A21) we get:

f4

(

1 + θe2iφ
√

1 − Tsr

)

= −iN1F0e2iφ
√

1 − Tsr× (A22)

× 2ik
(

ζ∗− − x∗

bs

)

.

Below we assume convention: φ → φ+π/2 (it corresponds
to resonance for anti-symmetric mode is φ = 0):

f4

(

1 − θe2iφ
√

1 − Tsr

)

= +iN1F0e2iφ
√

1 − Tsr× (A23)

× 2ik
(

ζ∗− − x∗

bs

)

.

Expanding in series e2iΩτ ≃ 1 + i2Ωτ, e2iφ ≃ 1 +

2iφ,
√

1 − Tsr ≃ 1 − Tsr/2 in Eq. (A23) we can obtain in
frequency domain:

f4 (Γ− − iΩ) =
−ω1N1F0

L

(

ζ∗− − x∗

bs

)

, (A24)

Γ− = γ− − iδ, γ− =
Tsr

4τ
, δ =

2iφ

2τ
. (A25)

Now one can obtain time domain Eq. (2.4) from Eq. (A24)
using rule (−iΩ) ⇒ ∂t.

Ponderomotive forces. Considering the end mirror with
coordinate y1 we substitute the light pressure force acting
on it into equation for the mirror coordinate y1:

Fy1 =
2

c

(

N1F0f∗1e−i(ω0−ω1)t + N∗

1F∗

0f1 ei(ω0−ω1)t
)

,

(A26)

ÿ1 + γmẏ1 + ω2
my1 =

Fy1

mµ
, (A27)

µ =

∫
V

|~u(~r)|2 d~r

V
, (A28)

where integration is taken over volume V of mirror. Pre-
senting y1 → y1e−iωmt + y∗

1eiωmt we finally find equation
(2.8) for slow amplitude y∗

1 using (A3) and similar equation
(2.7) for x∗

1 (the force acting on mirror with coordinate x∗
1

is two times larger). The equations (2.9, 2.10, 2.11) can be
obtained in a similar way.

For the slow amplitudes xbs of beam splitter we have:

ẋ∗

bs + γmx∗

bs =
N∗

1ei∆t

2iωmmbs cµ
× G√

2
, (A29)

G ≡
(

F∗

3f3 + F∗

2f2 − F∗

1f1 + E∗

3e3 + E∗

2e2 − E∗

1e1

)

,

simplify using (A3, A9) :

G = F∗

0

(

− f1 + f2 + e1 − e2 −
√

2(f3 − e3)
)

≃
≃ F∗

0

(

2
√

2 if4 − 2
√

2f3

)

=

= 2
√

2F∗

0

(

if4 − f3

)

= 4F∗

0f2. (A30)

In the right part of equation (A29) factor 2 in denominator of
the first multiplier appears when we go to equation for slow
amplitudes (absence of factor 2 in numerator in contrast to
(A26) is due to our taking into account both incident and

reflecting waves in term G), and factor
√

2 in denominator of
the second multiplier is due to accounting for only projection
on axis xbs. As a result we find equation (2.12) for slow
amplitude xbs.

The overlapping factor Λ is equal to (see Eqs.(A2, A28)):

Λ ≡ |N1|2

µ
=

V
∣

∣

∫
S
A0A∗

1 u⊥(~r)d~r⊥
∣

∣

2

∫
S

|A0|2 d~r⊥
∫

S
|A1|2 d~r⊥

∫
V

|~u(~r)|2 d~r

(A31)
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