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Abstract. Hardware injections provide us with a crucial tool for proving that we
understand the response and performance of the LIGO detectors. Since we have
complete knowledge of the injected waveform and detailed measurements of the
detector response function, we are able to predict and confirm the instrument response.
During the S5 science run of LIGO, various burst-type waveforms are being injected.
We have analyzed the first seven months of these injections, using optimal matched
filters derived from the injection waveforms. We have confirmed that most of the
responses follow the predictions and have measured the accuracy of the estimated
arrival time. In addition, we examined transients identified by the KleineWelle
algorithm in auxiliary data channels at the time of hardware injections. Through this
study, we could recognize couplings between auxiliary channels and the gravitational
wave channels and assess the safety of the use of auxiliary channels as vetoes for
gravitation wave candidates.
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1. Introduction

The LIGO observatories are currently collecting the data for their first long observing

run at design sensitivity; this run began in November of 2005, and is designated as “S5”.

During this run, hardware injections with various waveforms have been carried out to

monitor the response and performance of the detectors. Hardware injections provide

the only direct test of the entire system.

In this article, we describe how hardware injections are performed, and the

techniques used to analyze the injection data. The primary analysis tools are linear

filters: whitening filters, and filters matched to the injected waveforms. These methods

were applied to recover the strength and timing of each injection, and compare them

with expectations. This study shows that we have a good quantitative understanding

of the total system response.

In addition, we used a transient search technique called the KleineWelle algorithm

[1], to check the response of auxiliary channels to hardware injections, which shows how

the coupling between those channels and strain sensing channels can be tested.

2. Hardware injection procedures

Burst-type hardware injections are performed with twenty distinct waveforms, as listed

in Table 1. Usually a subset of these are used in a single injection period, and the

magnitude and time offsets are varied in a systematic fashion. The same waveforms are

injected into all three interferometers at the same time with small (a few ms) or no time

shifts between the detectors. These planned injection periods take place several times

each day at irregular intervals.

The crucial parts of the interferometer are shown in Fig. 1 as a highly simplified

block diagram of the “differential-arm” servo system. The total strain measured by the

antenna (noise plus gravitational wave) is shown as the quantity s(t) = n(t) + h(t).

The observable output of the system is the error signal e(t), recorded from the channel

called DARM ERR. The many components of the system can be condensed into three

linear response functions, specified in the frequency domain: a “Sensing” function C(f),

a “Digital Filter” function D(f), and an “Actuation” function A(f). The actuation

function is further divided into functions for each arm Ax(f) and Ay(f) and coupling

coefficients kx, ky,

A(f) = kxAx(f)− kyAy(f). (1)

Then the servo system can be solved to find the response function of the detector R(f),

which converts the error signal e(f) into the strain signal s(f),

s(f) =
1 + C(f)D(f)A(f)

C(f)
e(f) ≡ R(f)e(f), (2)

where e(f), s(f) are the Fourier transforms of e(t), s(t).

Injections are done by adding prepared waveforms to the excitation channel on the

x-arm, ETMX EXC. The waveforms for injection, ax(t), are prepared by applying the
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Figure 1. A simplified block diagram of the differential arm servo system of the LIGO
detector. The optics and analog electronics are represented in the Sensing block, the
digital electronics in the Digital Filter block, and the mechanical components in the
Actuation block. Their transfer functions are specified by frequency domain functions,
such as C(f).

actuation function, Ax(f), in the frequency domain, to waveforms generated in strain,

hinj(t),

ax(f) = −hinj(f)

Ax(f)
, (3)

and then transforming back into the time domain. The time series of this waveform is

then injected into the differential arm servo. A sample injection of a Gaussian with a

short width of 0.3 ms, carried out at tgps = 833364049, is shown in Fig. 2. The waveform

injected to the excitation channel is shown in Fig. 2 a) and the desired waveform in

strain, hinj(t), is shown in Fig. 2 b). The designed time offset (0.5 s) from the injection

time and magnitude (20 × 10−21
√

s) scaling for this specific injection are applied. The

detector response to this injection measured in the error signal channel DARM ERR,

e(t), is shown in Fig. 2 c) and d) with two different time scales.

3. Linear filters

Two different whitening filters are applied to the data to examine the error signal

response e(t) to each injection with the noise reduced.

esw(t′) =
∫ ∞
−∞

dfe−i2πft
′ 1√
Sn(f)

e(f), (4)

for single whitening and

edw(t′) =
∫ ∞
−∞

dfe−i2πft
′ 1

Sn(f)
e(f), (5)
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Figure 2. Hardware injection with a Gaussian impulse with τ = 0.3 ms done at
tgps = 833, 364, 049: waveforms a) injected to ETMX EXC and b) desired in strain as
hinj(t), and c) error signal data e(t) at the injection time and d) the same data with
finer time scale.

for double whitening, where Sn(f) is the power spectral density of the noise, estimated

from the data.

The primary analysis used is the optimal linear filter [2], a standard method from

classical signal processing for known signal waveforms. The optimal filter is the matched

filter optimized with the double whitening filter:

||hα(t′)|| = Nα

∫ ∞
−∞

dfe−2πift′h̃∗α(f)
1

Sn(f)
s(f). (6)

Here ||hα(t′)|| is the output time series from the optimal filter with the template, hα(t),

and s(f) and h̃α(f) are the Fourier transforms of the strain data, s(t), and hα(t),

respectively. The normalization factor, Nα, in eq. (6), is derived to have the unbiased

strength measurement of the reconstructed signal waveform as the maximum of the

filtered output, calculated in units of the norm of waveform, ||hα|| ≡
√∫

h∗α(t)hα(t)dt.

The injected waveform, hinj(t) in Eq. (3), is used as the template waveform hα(t).

By using relations (2) to convert the template waveform, hα, and the noise

spectrum, Sn in strain into functions of the error signal, e(t) and Sm, it can be seen that

the equivalent formula for the optimal filter can be written for the error signal data,

after the effect of the response function is cancelled out:

||hα(t′)|| = Nα

∫ ∞
−∞

dfe−2πift′ k̃∗α(f)
1

Sm(f)
e(f), (7)

where kα and Sm are the template waveform and the noise spectrum in terms of the

error signal. This implies the optimal filter can be applied to either the strain data,

h(t), or the error signal data, e(t), to get the same filtered output, ||hα(t′)||.
To use the discrete fourier transform, the data were segmented as shown in Fig. 3.

An injection period starts 5 s before the first injection and ends 5 s (or more) after the

last injection. The injection period is divided into 64 s segments with 16 s overlapping
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Figure 3. Time segmentation of the analysis. The injection period with injections
is divided into 64 s segments with 16 s overlapping with the next segment. Noise
spectrum is obtained from data of 50 s before and after the injection period.

with the next segment. The raw data from each analysis segment of 64 s is multiplied by

a Tukey window [3] (flat over the middle 62 s), then Fourier transformed, then filtered,

and finally transformed back to the time-domain. The first segment starts 10 s before

the first injection. After testing with various waveforms and different setups, to avoid

discontinuity at the boundary of each segment, the middle 48 s of each time segment

is kept, and the 8 s at each end are discarded. The power spectral density of the noise

(for constructing the whitening and optimal filters) was calculated from two 50 s long

data before and after the injection period. Template waveforms, hα(t), are obtained by

reading the text files of strain waveforms injected, and elongated to 64 s long by padding

with zeros.

4. Results

Figure 4 shows the single (a) and double (b) whitened error signal data with an injection

of the Gaussian impulse shown in Fig. 2, as well as the expected curve for the injected

Gaussian waveform with the same whitening filter and with the proper scaling and offset

in time. Both whitened spectra agree well with the expected curves.

The filtered output of this same injection obtained from the optimal filter with

the template of the injected Gaussian waveform is shown in Fig. 4 c) and d) in two

different time scales. Figure 4 d) demonstrates how the strength and timing of injection

are measured. The measured strength ( ||hGA03|| = 19.984 × 10−21
√

s) and timing

(toffsset = 0.5001 s) of this injection agree with the injected values to within a few

percent. The root-mean-squared (RMS) noise level around this injection period after

filtering is σnoise = 0.0357 × 10−21
√

s, which is larger than the difference between the

injected and measured strengths.

A more realistic example from an injection of a supernova waveform, the Zwerger-

Müller A3B3G1 [4], is shown in Fig. 5. The injection was done with ||hZM|| =

0.6×10−21
√

s and tinjected
offset = 0.3555 s, and was recovered with ||hZM|| = 0.6661×10−21

√
s

(σnoise = 0.0417×10−21
√

s) and tmeasured
offset = 0.3558 s. It is noticeable in this example that

the time measurement is the offset time, rather than the peak time of the waveform.

This is the result expected from using the matched filter.
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Figure 4. Output time series for an injection of the Gaussian pulse of Fig. 2 from a)
single and b) double whitening filters and the optimal linear filter with two different
time scales in c) and d). Measurement of strength and offset time are demonstrated
in d).
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Figure 5. Injection of Zwerger-Müller (A3B3G1) waveforms: a) waveform injected in
ETMX EXC, b) error signal data recorded at the channel DARM ERR, filtered outputs
from c) single whitening filter (with the expected signal waveform from the injection)
and d) the optimal filter. Measurement of strength and time offset is shown in d).

5. Statistical analysis

This report used hardware injections over about 7 months from January 20, 2006 to

August 28, 2006, from all three interferometers in LIGO - the 4 km detector (L1) at

the Livingston observatory and the 4 km (H1) and 2 km (H2) detectors at the Hanford

observatory. During this period, a total of 4098 burst injections were carried out in L1

and 5018 and 5958 injections were done in H1 and H2 respectively. Table 1 shows how

many injections were made for each of the 20 burst waveforms at each detector. Eight

waveforms, including a Gaussian with τ = 1 ms or sine-Gaussian with 70 Hz (Q = 9),
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Table 1. Numbers of hardware injections on each detector.

Injected waveform L1 H1 H1

Gaussian τ =0.3 ms 40 48 52

Gaussian τ =1 ms 478 581 677

Gaussian τ =3 ms 40 48 52

Gaussian τ =10 ms 40 48 52

sine-Gaussian 50 Hz, Q = 9 34 46 58

sine-Gaussian 70 Hz, Q = 9 474 578 692

sine-Gaussian 100 Hz, Q = 9 34 46 58

sine-Gaussian 153 Hz, Q = 9 34 46 58

sine-Gaussian 235 Hz, Q = 9 472 579 683

sine-Gaussian 393 Hz, Q = 9 34 46 58

sine-Gaussian 554 Hz, Q = 9 34 46 58

sine-Gaussian 850 Hz, Q = 9 34 46 58

sine-Gaussian 914 Hz, Q = 9 440 524 634

sine-Gaussian 1304 Hz, Q = 9 34 46 58

sine-Gaussian 2000 Hz, Q = 9 472 579 683

sine-Gaussian 3068 Hz, Q = 9 34 46 58

Zwerger-Müller (A3B3G1) 430 527 617

Cosmic string cusp fcutoff = 220Hz 430 527 617

Band-limit white noise, 250 Hz, δf = 100 Hz, σ = 30ms 440 524 634

Ringdown 2600 Hz, δt = 30 ms 70 95 101

Total 4098 5018 5958

were injected more often and with more variety of strengths than others.

Each waveform was analyzed in terms of the measured strength and time offset. An

example, a Gaussian with width τ = 1 ms, is shown in Fig. 6. The gps time dependence

of measurements in Fig. 6 a) and d) shows that the performance of the detector can be

monitored over time by recovering signals from hardware injections. Measured strengths

are compared with the injected strengths in Fig. 6 b). The difference between injected

and measured time offsets of injections is shown as a function of the injected strengths

in Fig. 6 e). Uncertainties in strength and time measurements with this waveform

can be estimated with a Gaussian fit as shown in Fig. 6 c) and f). It is noticeable

that injections with lower strengths have more uncertainty in both strength and time.

The discreteness of the time measurement histogram in Fig. 6 is caused by a discrete

estimate of the arrival time.

Figure 7 shows how the eight waveforms from Table 1 injected the most time

are measured by all three detectors. Fluctuations in the strength measurement are

comparable with the noise level around the injections, and the time measurement is in

agreement within a few ms with the injection time for all three detectors.
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Figure 6. Measurement of strengths and time of injections with a Gaussian with the
width of τ = 1 ms at L1: a) gps time dependence of differences in the strength
measurements (∆h ≡ ||h||measured − ||h||injected) in term of noise level (σnoise), b)
injected strengths vs. measured strengths of injections, c) distribution of differences
of ∆h/σnoise, d) gps time dependence of differences of time measurements (∆t ≡
tmeasured
offset − tinjected

offset ), e) ∆t vs. ||h||injected, and f) ∆t distribution. The mean and
standard deviation of the distribution of ∆h is (0.31 ± 1.1) ∗ σnoise, and for ∆t, it is
(0.13 ± 0.17) ms. The same symbol assignment is used in a), b), d) and e), to show
different injected strengths.

6. Coupling between auxiliary channels and gravitational wave channels

In the LIGO experiment many auxiliary channels are recorded as data to monitor

the performance of detector and environmental changes during the experiment. These

channels are not designed to detect any real signal from gravitational wave sources, so

any signal candidates with excess strength in these channels can not be good candidates

for a gravitational wave. In other words, these auxiliary channels can be very useful to

veto some events as gravitational wave candidates. However, for various reasons, it is

possible that some of these channels are influenced by a signal from a real gravitational

wave source if there is a coupling with the gravitational wave channel.

Hardware injections, which simulate realistic signal events in the detector, provide

a useful tool to test whether an auxiliary channel has any coupling to the gravitational

wave channel. The KleineWelle algorithm, which was developed to search for transients,

was applied to many auxiliary channels at the time of injections. For this study,

injections of 272 days from the S5 run were used. Many of these channels are found
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Figure 7. Measurement of a) strength and b) time of hardware injections for burst
waveforms from three LIGO interferometers.

not suitable to be used for vetoing environmental events. Figure 8 shows significances

of transient events around injection times, detected by the KleineWelle algorithm from

two auxiliary channels, RMP and ASI, compared to injected strengths. While the events
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Figure 8. Examples of coupling test done with auxiliary chanels, a) RMP (Recycling
Mirror Pitch) and b) ASI (AntiSymmetric port In phase).

from RMP do not show a noticeable dependence on injections, those from ASI have a

strong dependence on the injection, which indicates some coupling to the gravitational

channel above a certain amplitude (∼ 2 × 10−21
√
s). The timing distribution of these
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events also shows a similar result and proves that the ASI channel has some coupling to

the gravitational wave channel. A more detailed report on results from this study was

presented in a separate talk in this conference by Erik Katsavounidis.

7. Summary

In this report, we demonstrate how hardware injections are useful for understanding the

performance of the LIGO interferometers by measuring the strength of injections and

time responses of detectors. The strength and timing of the injections are measured

using optimal linear filters, and compared to injected values. Hardware injections are

reconstructed successfully, showing that the detector’s performance is well understood.

It is also shown that hardware injections are also useful to examine the coupling of

auxiliary channels to the gravitational wave channel.
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