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Abstract. Hardware injections provide us with a crucial tool for proving that we
understand the response and performance of the LIGO detectors. Since we have
complete knowledge of the injected waveform and detailed measurements of the
detector response function, we are able to predict and confirm the instrument response.
During the S5 science run of LIGO, various burst-type waveforms are being injected.
We have analyzed the first seven months of these injections, using optimal matched
filters derived from the injection waveforms. We have confirmed that most of the
responses follow the predictions and have measured the accuracy of the estimated
arrival time. In addition, we examined transients identified by the KleineWelle
algorithm in auxiliary data channels at the time of hardware injections. Through this
study, we could recognize couplings between auxiliary channels and the gravitational
wave channels and assess the safety of the use of auxiliary channels as vetoes for
gravitation wave candidates.
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1. Introduction

The LIGO observatories are currently collecting the data for their first long observing

run at design sensitivity; this run began in November of 2005, and is designated as“S5”.

During this run, hardware injections with various waveforms have been carried out to

monitor the response and performance of the detectors. Hardware injections provide

the only direct test of the entire system.

In this article, we describe how hardware injections are performed, and the

techniques used to analyze the injection data. The primary analysis tools are linear

filters: whitening filters, and filters matched to the injected waveforms. These methods

were applied to recover the strength and timing of each injection, and compare them

with expectations. This study shows that we have a good quantitative understanding

of the total system response.

In addition, we used the transient search technique, called the KleineWelle

algorithm[1], to check the response of auxiliary channels to hardware injections, which

shows how the coupling between those channels and strain sensing channels can be

tested.

2. Hardware injection procedures

Burst-type hardware injections are performed with twenty distinct waveforms, as listed

in Table 1. Usually a subset of these are used in a single injection period, and the

magnitude and time offsets are varied in a systematic fashion. The same waveforms are

injected into all three interferometers at the same time with small (a few ms) or no time

shifts. These planned injection periods take place several times each day at irregular

intervals.

The crucial parts of the interferometer are shown in Fig. 1 as a highly simplified

block diagram of the “differential-arm” servo system. The total strain measured by

the antenna (noise plus gravitation) is shown as the quantity s(t) = n(t) + h(t). The

observable output of the system is the error signal e(t), recorded from the channel

called DARM ERR. The many components of the system can be condensed into three

linear response functions, specified in the frequency domain: a “Sensing” function C(f),

a “Digital Filter” function D(f), and an “Actuation” function A(f). The actuation

function is further divided into functions for each arm Ax(f) and Ay(f) and coupling

coefficients kx, ky,

A(f) = kxAx(f)− kyAy(f). (1)

Then the servo system can be solved to find the response function of the detector R(f),

which converts the error signal e(f) into the strain signal s(f),

s(f) =
1 + C(f)D(f)A(f)

C(f)
e(f) ≡ R(f)e(f), (2)

where e(f), s(f) are the Fourier transforms of e(t), s(t).
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Figure 1. A simplified block diagram of the differential arm servo system of the LIGO
detector. The optics and analog electronics are represented in the Sensing block, the
digital electronics in the Digital Filter block, and the mechanical components in the
Actuation block. Their transfer functions are specified by frequency domain functions,
such as C(f).

Injections are done by applying prepared waveforms onto the excitation channel on

the x-arm, ETMX EXC. Waveforms for injection, ax(t), are prepared by applying the

actuation function, Ax(f), in the frequency domain, onto waveforms generated as strain

waveforms, hinj(t),

ax(f) = −hinj(f)

Ax(f)
, (3)

and then transforming back into the time domain. The time series of this waveform is

then injected into the differential arm servo. An injection of a Gaussian with a short

width of 0.3 ms, carried out at tgps = 833, 364, 049, for example, is shown in Fig. 2.

The waveform injected to the excitation channel is shown in Fig. 2 a) and the desired

waveform in strain, hinj(t), is shown in Fig. 2 b). The designed time offset (0.5 s) from

the injection time and magnitude (20 × 10−21
√

s) scaling for this specific injection are

applied. The detector response to this injection measured in the error signal channel

DARM ERR, e(t), is shown in Fig. 2 c) and d) with two different time scales.

3. Linear filters

Two different whitening filters are applied to the data to examine the error signal

response e(t) to each injection with the noise reduced.

esw(t′) =
∫ ∞
−∞

dfe−i2πft
′ 1√
Sn(f)

e(f), (4)
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Figure 2. Hardware injection with a Gaussian impulse with τ = 0.3 ms done at
tgps = 833, 364, 049: waveforms a) injected to ETMX EXC and b) desired in strain as
hinj(t), and c) error signal data e(t) at the injection time and d) the same data with
finer time scale.

for single whitening and

edw(t′) =
∫ ∞
−∞

dfe−i2πft
′ 1

Sn(f)
e(f), (5)

for double whitening, where Sn(f) is the power spectral density of noise spectrum,

estimated from data.

The primary analysis is application of the the optimal linear filter [2], a standard

method from the classical signal processing for known signal waveforms, was used. The

optimal filter is the matched filter optimized with the double whitening filter:

||hα(t′)|| = Nα

∫ ∞
−∞

dfe−2πift′h̃∗α(f)
1

Sn(f)
s(f). (6)

Here ||hα(t′)|| is the output time series from the optimal filter with the template,

hα(t), and s(f) and h̃α(f) are the Fourier transforms of the strain data, s(t), and

hα(t), respectively. The normalization factor, Nα, in eq. (6), is derived to have the

unbiased strength measurement of the reconstructed signal waveform as the filtered

output, calculated in the unit of the norm of waveform, ||hα|| ≡
√∫

h∗α(t)hα(t)dt. The

injected waveform, hinj(t) in Eq. (3) is used as template waveform hα(t).

By using relations (2) to convert the template waveform, hα, and the noise

spectrum, Sn in strain into functions of the error signal, e(t) and Sm, it can be seen that

the equivalent formula for the optimal filter can be written for the error signal data,

after the effect of the response function are cancelled out:

||hα(t′)|| = Nα

∫ ∞
−∞

dfe−2πift′ k̃∗α(f)
1

Sm(f)
e(f), (7)

where kα and Sm are the template waveform and the noise spectrum in terms of the

error signal. This implies the optimal filter can be applied to either the strain data,

h(t), or the error signal data, e(t), to get the same filtered output, ||hα(t′)||.
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To use the discrete fourier transform, the data were segmented as shown in Fig.

3. An injection period starts 5 s before the first injection and ends 5 s (or more)

Injection Period Noise EstimateNoise Estimate

50s 50s
5s 5s

48 s

8 s
8 s

8 s

64 s

8 s

Figure 3. Time segmentation of the analysis. The injection period with injections
is divided into 64 s segments with 16 s overlapping with the next segment. Noise
spectrum is obtained from data of 50 s before and after the injection period.

after the last injection. The injection period is divided into 64 s segments with 16 s

overlapping with the next segment. The raw data from each analysis segment of 64 s is

multiplied by a Tukey window [3] (flat over the middle 62 s), then Fourier transformed,

then filtered, finally transformed back to the time-domain. The first segment starts 10

s before the first injection. After testing with various waveforms and different setups,

to avoid discontinuity at the boundary of each segment, the middle 48 s of each time

segment is kept, and the 8 s at each end are thrown away. Power spectral density of

the noise spectrum for optimization with both the whitening and optimal filters was

calculated from two 50 s long data before and after the injection period. Template

waveforms, hα(t), are obtained by reading the text files of strain waveforms injected,

and elongated to 64 s long by padding zeros to fit with 64 s data segments.

4. Results

Figure 4 shows the single (a) and double (b) whitened error signal data with an injection

of the Gaussian impulse shown in Fig. 2, as well as the expected curve for the injected

Gaussian waveform with the same whitening filter and with the proper scaling and

offsetting in time. Both whitened spectra agree well with the expected curves.

Filtered output of this same injection obtained from the optimal filter with the

template of the injected Gaussian waveform is shown in Fig. 4 c) and d) in two

different time scales. Figure 4 d) demonstrates how the strength and timing of

injection are measured. Measured strength ( ||hGA03|| = 19.984× 10−21
√

s) and timing

(toffsset = 0.5001 s) of this injection agree with the injected values within a few percents.

The root-mean-squared (RMS) of the noise level after filtering, around this injection

period, is measured σnoise = 0.0357× 10−21
√

s, which is larger than the difference in the

strength measurement.

More realistic example from an injection of a supernova waveform, Zwerger-Müller

(A3B3G1) [4], is shown in Fig. 5. The injection was done with ||hZM|| = 0.6× 10−21
√

s

and tinjected
offset = 0.3555 s, which is recovered with ||hZM|| = 0.6661 × 10−21

√
s (σnoise =
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Figure 4. Output time series for an injection of the Gaussian pulse of Fig. 2 from a)
single and b) double whitening filters and the optimal linear filter with two different
time scales in c) and d). Measurement of strength and offset time are demonstrated
in d).
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Figure 5. Injection of Zwerger-Müller (A3B3G1) waveforms: a) waveform injected to
ETMX EXC, b) error signal data recored at the channel DARM ERR, filtered outputs
from c) single whitening filter (with the expected signal waveform from the injection)
and d) the optimal filter. Measurement of strength and time offset is shown in d).

0.0417 × 10−21
√

s) and tmeasured
offset = 0.3558 s. It is noticeable in this example that the

time measurement is the offset time, rather than the peak time of the waveform. This

is the result expected from using the matched filter.

5. Statistical analysis

This report used hardware injections of about 8 months from January 20, 2006 to August

28, 2006, from all three interferometers in LIGO - 4 km detector (L1) at the Livingston

observatory and 4 km (H1) and 2 km (H2) detectors at the Hanford observatory. During
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this period, total 4098 burst injections are carried out in L1 and 5018 and 5958 injections

are done in H1 and H2 respectively. Table 1 shows how many injections were made for

all 20 burst waveforms at each detector. Eight waveforms including a Gaussian with

Table 1. Numbers of hardware injections on each detector.

Injected waveform L1 H1 H1

Gaussian τ =0.3 ms 40 48 52

Gaussian τ =1 ms 478 581 677

Gaussian τ =3 ms 40 48 52

Gaussian τ =10 ms 40 48 52

sine-Gaussian 50 Hz, Q = 9 34 46 58

sine-Gaussian 70 Hz, Q = 9 474 578 692

sine-Gaussian 100 Hz, Q = 9 34 46 58

sine-Gaussian 153 Hz, Q = 9 34 46 58

sine-Gaussian 235 Hz, Q = 9 472 579 683

sine-Gaussian 393 Hz, Q = 9 34 46 58

sine-Gaussian 554 Hz, Q = 9 34 46 58

sine-Gaussian 850 Hz, Q = 9 34 46 58

sine-Gaussian 914 Hz, Q = 9 440 524 634

sine-Gaussian 1304 Hz, Q = 9 34 46 58

sine-Gaussian 2000 Hz, Q = 9 472 579 683

sine-Gaussian 3068 Hz, Q = 9 34 46 58

Zwerger-Müller (A3B3G1) 430 527 617

Cosmic string cusp fcutoff = 220Hz 430 527 617

Band-limit white noise, 250 Hz, δf = 100 Hz, σ = 30ms 440 524 634

Ringdown 2600 Hz, δt = 30 ms 70 95 101

Total 4098 5018 5958

τ = 1 ms or sine-Gaussian with 70 Hz (Q = 9), were injected more often and with more

variety of strengths than others.

Each waveform was analyzed in terms of measurement of strength and time offset

and an example of a Gaussian with the width of τ = 1 ms is shown in Fig. 6. The gps

time dependence of measurements in Fig. 6 a) and d) shows that the performance of the

detector can be monitored by recovering signals from hardware injections. Measurement

of strengths is compared with the injected strengths in Fig. 6 b). The difference between

injected and measured time offsets of injections from the injections is shown as a function

of the injected strengths in Fig. 6 e). Uncertainty in strength and time measurements

with this waveform can be estimated with a Gaussian fit as shown in in Fig. 6 c)

and f). It is noticeable that injections with lower strengths have more fluctuations in

measurements in both strengths and timings. The discreteness of the time measurement

histogram in Fig. 6 is caused by a discrete estimate of arrival time.
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Figure 6. Measurement of strengths and time of injections with a Gaussian with the
width of τ = 1 ms at L1: a) gps time dependence of differences in the strength
measurements (∆h ≡ ||h||measured − ||h||injected) in term of noise level (σnoise), b)
injected strengths vs. measured strengths of injections, c) distribution of differences
of ∆h/σnoise, d) gps time dependence of differences of time measurements (∆t ≡
tmeasured
offset − tinjected

offset ), e) ∆t vs. ||h||injected, and f) ∆t distribution. ∆h is averaged
(0.31± 1.1)σnoise and ∆t is 0.13± 0.17 ms. The same symbol assignment is used in a),
b), d) and e), to show different injected strengths.

Figure 7 shows how eight injected waveform with better statistics from Table 1 is

measured by all three detectors. Fluctuation in strength measurement is comparable

with the noise level around injections and time measurement is in agreement within a

few ms with injection time for all three detectors.

6. Coupling between auxiliary channels and gravitational wave channels

In the LIGO experiment many auxiliary channels are recorded as data to monitor

the performance of detector and environmental changes during the experiment. These

channels are not designed to detect any real signal from gravitational wave sources, so

any signal candidates with excess strength in these channels can not be good candidates

for gravitational wave. In other words, these auxiliary channels can be very useful to

veto some events as gravitational wave candidates. However, for various reasons, it is

possible that some of these channels are influenced by the signal from real gravitational

wave sources if there is a coupling with the gravitational wave channel.

Hardware injection, which simulates realistic signal events into the detector,
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Figure 7. Measurement of a) strength and b) time of hardware injections for burst
waveforms from three LIGO interferometers.

provides a useful tool to test whether an auxiliary channel has any coupling to the

gravitational wave channel. The KleineWelle algorithm, which is developed to search

for transients, was applied to many auxiliary channels at the time of injections. For

this study, injections of 272 days from the S5 run were used. Some of these channels

are found not suitable to be used for vetoing environmental events. Figure 8 shows

significances of transient events around injection times, detected by the KleineWelle

technique from two auxiliary channels, RMP and ASI, compared to injected strengths.

While the events from RMP do not show noticeable dependence on injections, those

from ASI have strong dependence to the injection, which indicates some coupling to

gravitational channel above a certain intensity (∼ 2 × 10−21
√
s). Timing distribution

of these events also shows similar result and proves that the ASI channel has some

coupling to gravitational wave channel. More detailed report on results from this study

was presented in a separate talk in this conference by Erik Katsavounidis.

7. Summary

With this report, we demonstrate how hardware injections are useful to understand the

performance of interferometers by measuring strengths of injections and time responses

of detectors. Strengths and timings of the injections are measured by using filtered

outputs from the optimal linear filter and compared to injected values. Hardware

injections are reconstructed successfully, showing that the detector’s performance is

well understood. It is also shown that hardware injection is also useful to examine

coupling of auxiliary channels to the gravitational wave channel.
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Figure 8. Examples of coupling test done with auxiliary chanels, a) RMP (Recycling
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