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Abstract. We show that the construction of optimal template banks for
matched-filtering searches is an example of the sphere covering problem. For
parameter spaces with constant-coefficient metrics a (near-) optimal template
bank is achieved by the A} lattice, which is the best lattice-covering in dimensions
n < 5, and is close to the best covering known for dimensions n < 16. Generally
this provides a substantially more efficient covering than the simpler hyper-
cubic lattice. We present an algorithm for generating lattice template banks for
constant-coefficient metrics and we illustrate its implementation by generating A
template banks in n = 2, 3,4 dimensions.

1. Introduction

The detection of gravitational waves (GWs) in the noisy data of a detector ideally
requires the knowledge of the signal waveform, in order to coherently correlate the
data with the expected signal by matched filtering. Depending on the type of
astrophysical sources considered, however, one typically only knows a parametrized
family of possible waveforms (or approximations thereof). The unknown parameters
of these waveforms could be, for example, the frequency and sky-position of spinning
neutron stars, or the masses and spins of inspiraling binary systems. Parameter
spaces of such wide-parameter searches typically have between 1 and < 10 dimensions,
depending on computational constraints and on how much astrophysical information
is available to restrict the search space a-priori.

One can obviously search only a finite subset of points in this parameter-space,
and this subset constitutes the “template bank” or search grid. The templates must
cover the parameter space, i.e. they must be placed densely enough that no signal
in this space can lose more than a certain fraction of its power (called mismatch) at
the closest template. However, coherently correlating the data with every template
is computationally expensive and increases the expected number of statistical false-
alarm candidates. An optimal template bank therefore contains the smallest number
of templates such that the worst-case mismatch does not exceed a given limit.

It was realized early on that a geometric approach is very useful to construct a
template bank, in particular the introduction of a parameter-space metric [1, 2] based
on the mismatch. This provides a natural measure of distance in parameter space and
allows one to “correctly” place templates, in the sense that the spacing is not too wide
and the maximal mismatch will not be exceeded. Less attention, however, was devoted
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to the problem of optimally placing templates once the metric is known, and often a
simple — but highly suboptimal — hyper-cubic template grid was used or the problem
was confused with sphere packing [2, 3, 4]. We will see in the following that finding
an optimal template bank is an instance of the sphere covering problem, which in a
sense is the “opposite” of the sphere packing problem. The covering problem is highly
non-trivial (as is the packing problem), which is illustrated by the fact that even in
FEuclidean space the solution is only known in n = 2 dimensions, a partial solution
(restricted to lattices) is known in n < 5 dimensions, while an optimal solution for
higher dimensions is unknown (cf. [5, 6]). The main motivation of the present work
is to develop a method for constructing efficient template banks by using the results
about Euclidean sphere covering.

2. Template-based searches and parameter-space metric

A wide class of searches for GWs can be characterized as template based, in the sense
that one searches for signals belonging to a family of waveforms s(¢; X), which depend
on a vector of parameters {A}* = A\’. The strain x(t) measured by a detector contains
(usually dominating) noise n(t) in addition to possible weak GW signals s(t; Ag), i.e.
x(t) = n(t) + s(t; As). One has to construct a detection statistic, F(A;x) say, which is
a scalar observable characterizing the probability of a signal with parameters A being
present in the data 2(t). Due to the random noise fluctuations n(t) in the data, the
detection statistic is a random variable, and generally (assuming F is unbiased) its
expectation value F(X; As) = E[F(X; )] has a (local) maximum at the location of a
signal A = Ag, i.e.

OF (XN )

X NN =0. (1)

Taylor-expanding the expected detection-statistic F in small offsets AX = X — Aq
around the signal location Ag therefore reads as
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where the matrix of second derivatives of F is negative definite. Here and in
the following we use automatic summation over repeated parameter indices i, j, . . ..
The perfect-match detection statistic F(Ag;As) is typically used to define the
optimal signal-to-noise ratio (SNR). We can now introduce the mismatch m, which
characterizes the fractional loss of SNR at a parameter-space point A, with respect to
the signal location Ag, namely

f(As;)‘S) _-7:()‘;>\s)

m(A; Xs) = — , 3
(AiA) T, (3)

Inserting the local expansion (2), we find
m(A; As) = gi(As) ANAN + O(AN), (4)

where we defined the positive-definite metric tensor g;; = —%81-3]-?, and 0; = /0N
Searching a parameter space P(\’, ¢;;), we need to compute the detection statistic
F(x; A¢) for a discrete set of templates A¢ € P. Generally one can distinguish two
different approaches to this problem: one is a random sampling of P using Markov-
chain Monte-Carlo (MCMC) algorithms (e.g. see [7, 8]), and the other consists of
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constructing a template bank T = {A¢} C P that covers the whole of P, that is, no
point A € P exceeds a given maximal mismatch mmpyay to its closest template A¢ € T,
ie.
in m(A; A¢) < Miax - 5
2 A A) < o ?
Here we focus on the construction of optimal template banks, namely those satisfying
(5) with the smallest possible number of templates A¢. Using the local metric
approximation (4), each template A¢ covers a region of parameter-space

Be = {XA€P:gij(Ae) AN AN < Mimmax, AXN=A— A}, (6)
which is a sphere of radius

R = \/Mmax , (7)
in the metric space P(\’, g;;). We can therefore reformulate the definition of an
optimal template bank as the set of (overlapping) spheres of covering radius R which
cover the whole of P in the sense of (5) with the smallest number of spheres. This is
known as the sphere covering problem [5], not to be confused with the — somewhat dual
— sphere packing problem, which seeks to pack the largest number of non-overlapping
“hard” spheres into a given volume. An optimal covering consists of an arrangement
minimizing the density of overlapping spheres, while an optimal packing maximizes
the density of non-overlapping spheres.

3. The Euclidean sphere covering problem

In this section we summarize the current status of the sphere covering problem as far
as relevant for the construction of optimal template banks. There has been impressive
progress in the study of the covering problem in recent years, e.g. see [5] for a general
overview and [6] for a more recent update. Unfortunately, all of these studies are
restricted to Euclidean spaces E”, while the metric parameter spaces of GW searches
are often curved. In the following we therefore make the assumption that P(\?, g;;)
can be treated as approzrimately flat, or at least broken up into smaller pieces that can
individually be treated as nearly flat. If the curvature of the metric is too strong, i.e.
if the curvature radius is comparable to the covering radius, it will be difficult to make
use of the Euclidean covering problem, and a different approach such as a stochastic
template bank or an MCMC sampling might be more fruitful.

We further assume that we have found a coordinate system of P such that
the metric components are (approximately) constant, i.e. g;;(A) ~ const;;, and for
simplicity of notation we assume in this section (without loss of generality) that we
have chosen coordinates ¢ where the constant-coefficient metric is Cartesian, i.e.
P = En(Il, 5”)

A covering can consist of any arrangement of covering spheres, but currently all
best coverings known are lattices, and we therefore restrict the discussion to lattice
coverings, where the centers of the spheres (i.e. templates) form a lattice.

3.1. Basics on lattices

An n-dimensional lattice A can be defined as a discrete set of points v¢ (forming an
additive group) generated by

ve=_¢1,, with ¢€Z, (8)
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where {l(;}j-, is called a basis of the lattice. Note that it is sometimes convenient
to express the n basis vectors in a higher-dimensional Fuclidean space, i.e. generally
we can have l; € E™ with m > n. When writing E™ in the following we refer
to the subspace of E™ containing the n-dimensional lattice A. The m x n matrix
M®; =12, is called a generator matriz of the lattice, with the columns of M holding
the components of the n lattice basis vectors, so we can also write the lattice A as

A={ve:ve=ME, €2} . (9)

The n x n matrix A = MT M is called the Gram matriz (where T denotes the
transpose), which is symmetric and positive definite, and

a b
AZ] - l(z) . l(j) - 6ab l(’L) l(])’ (10)

i.e. its coefficients are the mutual scalar products of lattice basis vectors. Each choice

Figure 1. Hexagonal lattice (A%) illustrating a 2-dimensional lattice covering.
The shaded areas are different choices of fundamental regions for the lattice. FP1
and FP2 are two fundamental polytopes (11) associated with different choices
of lattice basis vectors, WS is the Wigner-Seitz cell (13), and R is the covering
radius.

of lattice basis vectors {l(;)} defines a corresponding fundamental parallelotope FP,
namely

FP ({Ih}) = {z €B":xz=0"1,, 0<0 <1}, (11)

which is illustrated in figure 1. The FP is an example of a fundamental region for the
lattice, i.e. a building block containing exactly one lattice point, which fills the whole
space E" when repeated. There are many different choices of basis and fundamental
regions for the same lattice A, but they all have the same volume vol(A), given by

vol(A) = Vdet A, (12)

and in the case where M is a square matrix we also have vol(A) = det M. One
special choice of fundamental region is the nearest-neighbor region, often referred to
as Dirichlet- Voronoi cell by Mathematicians, and more commonly known as Wigner-
Seitz cell or Brillouin zone by Physicists, which is defined as

WS(A) ={x € E": ||z|| < |lx —vel|, vee A}, (13)

where ||z|| = /z-x is the standard Euclidean norm in E". The vertices of the
Wigner-Seitz cell are by construction local maxima of the distance function of points
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in E” from the nearest grid point. The maximum distance of any points in E” to the
nearest point of the lattice is called the covering radius R, which corresponds to the
circumradius of WS, as seen in figure 1.

Two lattices A; and A with generator matrices My and Ms are equivalent if
they can be transformed into one another by a rotation, reflection and change of
scale, namely if the generator matrices satisfy

MQZCBMlU, (14)

where ¢ € R is a scale-factor, U is integer-valued det U = =41, which accounts for
different choices of basis vectors, and B is a real orthogonal matrix, i.e. BT B = 1.
The associated Gram matrices are therefore related by

AQ = 62 UT A1 U, (15)
and the fundamental volumes (12) of the two lattices are
vol(Az) = " vol(Ay). (16)

Let us consider the example of a 2-dimensional hexagonal lattice, such as shown in
figure 1. An obvious generator matrix is

1 1/2
corresponding to FP1 in figure 1. However, sometimes it is more convenient to work
with a generator matrix of the form

1 0
My=| -1 1|, (18)
0 —1

which has simpler coefficients, but uses a 3-dimensional representation of the 2-
dimensional lattice with all lattice points lying in the plane x + y + z = 0. One
can verify that these two representations are equivalent in the sense of (14) with

1 0 V2 —1/V6
c=V2, U= < 0 1 ) , B=| -1/v2 -1/v6 |. (19
0 2/3
Such a higher-dimensional representation of the generator matrix will be useful later
for the description of the n-dimensional A} lattice.

3.2. Known results on optimal sphere covering

A sphere covering is characterized by its thickness © (sometimes also referred to as
the covering density), which measures the fractional amount of overlap between the
covering spheres, or the average number of spheres covering any point in E™. This can
be expressed as the ratio of the volume of one covering sphere to the volume of the
fundamental region of the lattice, i.e.
mn
_VuR
vol(A) —
where R is the covering radius and V, is the volume of the unit-sphere in n dimensions,

namely V,, = /2 /T\(n/2 + 1). We also use the normalized thickness or center density
0, defined as

(20)

SS
Il

(21)

=l
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which measures the number of centers (i.e. templates) per unit volume in the case of
R = 1. Note that under a lattice transformation (14) the covering radius R obviously
scales as Ry = ¢ Ry, and we therefore see from (16) that the thickness (20) and (21)
is an invariant property of a lattice, i.e. #2 = #;. The covering problem consists of
finding the covering with the lowest center density 6.

Kershner showed in 1939 (see [5]) that in n = 2 dimensions the most economical
arrangement of circles covering the plane is the hexagonal lattice, shown in figure 1,
which is equivalent to an A} lattice. In dimensions n = 3,4,5 only the best lattice
covering is known, and is given by A’ in all three cases. In three dimensions Aj is
the well-known body-centered-cubic (bce) lattice. Note that the best packing in n = 2
is also achieved by the hexagonal lattice, but for n = 3 the face-centered cubic (fec)
lattice is a denser packing than bcc. In higher dimensions the best lattice covering
is still unknown. In the first edition (1988) of Conway&Sloane’s book [5], the best
lattice covering known in all dimensions up to n < 23 was the A} lattice. Since then,
however, this “record” has been broken in most dimensions 5 < n < 23, e.g. see table 2
in [6], and see [9] for an up-to-date online version of the best covering lattices currently
known. The A} lattice has a center density of

n(n+2) n/2
0(AY) = 1¢———= . 22

(An) = vV + {12(n+1)} (22)
Consider on the other hand the hyper-cubic grid Z™: the Wigner-Seitz cell is a unit

hypercube, so vol(Z™) = 1, and the covering radius is the diagonal R = /n/2,
therefore the center density (21) is found as

O(Z") = 27" "2, (23)

which is dramatically worse than A} in higher dimensions, as can be seen from the
thickness ratio

o(z") 32 (n+1)"/2nm 3n/2 (24)

0(45) Vn+1\n+2 Vne '

Table 1. Thickness ratio x(n) = 6(Z™)/A%, and v(n) = 6(best)/0(AL) for
dimensions n < 17.

n 2 3 4 5 6 7 8 9

K(n) 1.3 1.9 2.8 4.3 6.8 10.9 17.7 289
y(n) 1.0 1.0 1.0 1.0 097 095 086 0.97

n 10 11 12 13 14 15 16 17

k(n) 474 78.2 130 216 359 601 1007 1692
y(n) 098 0.88 0.99 0.86 0.82 0.86 1.0 0.68

There is a theoretical lower limit on the thickness of any covering, the Coxeter-
Few-Rogers (CFR) bound 7, (see [5]), namely 6, > 7,/V,, where asymptotically
Tn ~ n/(ey/e) for n — co. Figure 2 shows the normalized thickness 6 as a function of
dimension n for the A} and hyper-cubic Z™ lattices, as well as the CFR limit and the
best covering known. In table 1 we see that in dimensions n > 5 where A7 has been
superseded as the best covering, the relative improvement v(n) = 6(best)/0(A%) in
thickness is typically quite small. The current “record holders” f(best) are taken from
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Figure 2. Normalized covering thickness 6 as function of dimension n. Shown are
the hyper-cubic lattice (Z™), the A} lattice, the theoretical lower limit (CFR), the
best lattice coverings in 1 < n < 5, and the best covering known in 5 < n < 24.

[9] as of 22 March 2007. In particular, for n < 16 the improvement (n) is typically less
than 18%, while the advantage x(n) of A compared to the hyper-cubic grid Z" grows
large very rapidly, as seen in table 1 and figure 2. For practical simplicity we therefore
propose A¥ as the covering lattice of choice for parameter spaces of dimension up to
n < 16.

4. Lattice covering of template spaces

4.1. Template counting

We now return to template spaces P(\', g;;) with constant-coefficient metrics g;;,
which only differs from the Cartesian case considered in the previous section by a
simple coordinate-transformation. An infinitesimal parameter-space region d" A has a
volume dV measured by the metric, i.e. dV = ,/gd" A, where g = det g;;. This can be
integrated to yield the volume V of a finite region of parameter space as

V:/PdV:\/g/Pd”)\, (25)

where in the second expression we used the fact that g;; is a constant-coefficient metric.
The number of templates dN,, in dV is simply given by the inverse lattice volume, i.e.

av
vol(A)
With the relation (7) between covering radius and maximal mismatch, and using (20)
and (21), we obtain

AN, = (26)

max

dN, =0m;*dV = N, =0m;"*\/g /d"/\, (27)
P
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which generalizes previous template counting expressions [2, 3, 4] to arbitrary lattices.

4.2. Practical implementation of lattice covering

In this section we present a practical algorithm for generating a lattice covering of
given maximal mismatch mpy.x in a parameter space with constant-coefficient metric
gi;- The approach described here works for any lattice generator M, but in practice
(cf. section 3.2) we will be most interested in the A’ lattice. The generator for A
can be expressed (cf. [5]) as the (n + 1) x n matrix,

1 1 ... 1 ==

n+1
-1 0 ... 0 =5
0 -1 ... 0 —
L A (28)
0 0 ... =1 =5
0 0 ... 0 =5

which is a (n + 1)-dimensional representation of the n-dimensional lattice, with the
columns of M holding the n lattice basis vectors I ;) expressed in Ertl je. M =12,
where we use index conventions 7,5 =1,...,n and a,b=1,...,n+ 1. The volume of
the fundamental region and the covering radius of this lattice are

1 n(n+2)
d R= /2212
NCES 2n+ 1)

which together with (20) results in the (normalized) thickness 0(A}) given in (22). In
order to generate such a lattice in a parameter space P(A\’, g;;), we need to express

vol(Ar) =

(29)

the generator M?; in the ! coordinates, M® ; say, such that the lattice of templates
is generated by

MNe=M ¢, with ¢ eZ. (30)
This coordinate transformation is achieved in several steps:

(1) Reduce the (n+1)xn matrix M*; to a full rank generator, M j say, by expressing
the lattice basis vectors in a Euclidean basis spanning the n-dimensional subspace
E™ of the lattice: this is achieved by a simple Gram-Schmidt procedure with
respect to the Cartesian metric d,p using the {l?j)} to generate an orthonormal
basis {e‘(’j)} satisfying

Jab €(s) €(j) = bij - (31)

The full-rank generator M ;j is obtained from the projections of the lattice vectors
{I{;y} in this orthonormal basis, namely

A7 7 a b a

(ii) Translate the full-rank generator ]\/Zij from Cartesian coordinates into the
coordinate system A' with metric g;;. For this we use a Gram-Schmidt

orthonormalization with respect to the metric g;;, with the lattice vectors {lA(Jl)}

as input to find an orthonormal basis {d{i)} satisfying

9i5 diyy dfy) = Ouk - (33)
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This representation of an orthonormal basis in coordinates A allows one to simply
translate the lattice vectors in these coordinates as

Ti _ Tk p 3 Ask
l) = 1G) Ay = diy M5 (34)
(iii) Scale the generator to the desired covering radius R = /Mmax, and using (29)
we obtain
— 12(n+1) ~
M"; = max \| —_ /| o\ (i ) 35
i = Vvm nn+2) O (35)

which is a generator in the sense of (30) for an A} template lattice with maximal
mismatch My ax.

This algorithm has been implemented in XLALFindCoveringGenerator () in LAL [10],
and some tests of this code are presented in the next section.

4.3. Test of the implementation

In order to illustrate and test the implementation of the algorithm described in the
previous section, we generate an A} lattice in dimensions n = 2, 3, 4 respectively, with
a maximal mismatch of mpax = 0.04, i.e. a covering radius of R = 0.2. For generality
we use non-Cartesian metrics g;; # 0;;, as illustrated in the left panel of figure 3.
We picked 100,000 points XA € P(A\Y, g;;) at random and compute their mismatch m

0.9 ey 3000
0.6 2500 + 3 ——
Al
2000
> 0 1500
0.3 1000 FHJ_r:::: ?
0.6 500 s
_09 L e . L e ) . 0 ,—-"“'r_r.—lr ;T
06 -03 0 03 06 0 0.05 0.1 0.15 0.2
x m

Figure 3. Left panel: Hexagonal (AJ}) lattice covering with covering radius
R = 0.2, using coordinates {z,y} with the metric g;; = [1, 0.4; 0.4, 0.5]. Right
panel: Histogram of measured distances /m in a Monte-Carlo sampling of 100,000
points from an A}, covering in n = 2, 3,4 dimensions, using non-Cartesian metrics
gij. The nominal covering radius in all three cases is R = y/Mmax = 0.2.

(using the metric) to the nearest template A¢, which is a way of measuring the maximal
mismatch of a template bank. The distribution of measured mismatch-distances v/m is
presented in the right panel of figure 3, which shows that the mismatches are bounded
by Mmax as required by (5). From the total number of templates N, in the parameter-
space AX™ covered, we can measure the (normalized) thickness 0 of the template bank
via (27), namely
p TN,
Vg A

(36)
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which is found to agree within 0.2% with the theoretical values (22) in all three
cases n = 2,3,4. The generated template banks in this example had of the order of
N, ~ O(10%) templates, and this error can be attributed to boundary effects.

5. Discussion

The applicability of the lattice covering algorithm presented here is restricted to
explicitly flat parameter spaces, which limits its usefulness to cases where we can find
a coordinate system in which the parameter-space metric is (at least) approzimately
constant. Another difficulty stems from the fact that sometimes (such as in continuous-
wave searches), even though the parameter-space metric can be approximated as flat,
its coefficient matrix turns out to be highly ill-conditioned [11], which results in the
lattice-construction algorithm to fail due to numerical difficulties. One therefore needs
to analytically “factor out” this near-degeneracy of the metric before the lattice-
covering procedure can be safely applied. More work is also required to deal with non-
trivial parameter-space boundaries, in particular non-convex ones, which complicates
the n-dimensional filling algorithm. The typical size of template banks might be as
large as N, ~ O(10°) templates, therefore we need to be able to fill the parameter
space “template per template”, without keeping the whole lattice in memory at once.
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