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Abstract. The F-statistic is an optimal detection statistic for continuous
gravitational waves, i.e. long-duration (quasi-)monochromatic signals with slowly-
varying intrinsic frequency. This method was originally developed in the context
of ground-based detectors, but it is equally applicable to LISA where many signals
fall into this class of signals. We report on the application of a LIGO/GEO F-
statistic code to LISA data-analysis using the long-wavelength limit (LWL), and
we present results of our search for white-dwarf binary signals in the first Mock
LISA Data Challenge. Somewhat surprisingly, the LWL is found to be sufficient –
even at high frequencies – for detection of signals and their accurate localization
on the sky and in frequency, while a more accurate modelling of the TDI response
only seems necessary to correctly estimate the four amplitude parameters.
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1. Introduction

The Mock LISA Data Challenge (MLDC) [1] has the purpose of encouraging the
development of LISA data-analysis tools and assessing the technical readiness of
the community to perform gravitational-wave (GW) astronomy with LISA. The first
round of the MLDC was released in June 2006 [2], the submission deadline was in
December 2006 and a report summarizing the submitted results has been published [3].
The challenges consisted of several data-sets containing different types of simulated
sources and LISA noise. The three types of sources are white-dwarf binary signals
(WD), coalescing supermassive black holes (SMBHs) and extreme mass-ratio inspirals
(EMRIs).

The data analysis of LISA poses a few specific difficulties not encountered in
ground-based detectors: the signal wavelength is typically not long compared to the
arm-length of the detector, so the long-wavelength limit (LWL) does not generally
apply. Furthermore, in order to cancel the dominating laser-frequency noise, one has
to analyze intricate algebraic combinations of time-delays between spacecraft instead
of simple “strain”, an approach known as time-delay interferometry (TDI). Another
difficulty stems from the large number of detectable sources in the LISA bandwidth,
which complicates their separate detection and parameter estimation, usually referred
to as the “confusion problem”.

All of the MLDC signals (WD, SMBH, EMRI) are long-lasting (of the order
of a year) and are (quasi-)monochromatic with slowly-varying intrinsic frequency

‡ LIGO-P070029-00-Z
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f(τ); in this sense they belong to the class of continuous GWs. In the case of
ground-based detectors the typical sources of continuous GWs are spinning neutron
stars with non-axisymmetric deformations. One of the standard tools developed for
these searches is the F-statistic [4], which is an optimal detection statistic based
on matched filtering. We have restricted our searches in the first MLDC to WD-
binary signals, which are very similar to GWs from spinning neutron stars, which
have very little intrinsic frequency evolution ḟ (in fact, here it was ḟ = 0) and
constant orientation and polarization. Contrary to the approach used in [5, 6], we
use an F-statistic code developed for the continuous-wave search in LIGO/GEO, with
only minimal modifications to adapt it to LISA. In particular, we use the LWL at all
frequencies, which turns out to work surprisingly well even at high frequencies where
the wavelength is comparable to the LISA arm length.

2. Methods and Pipeline

2.1. Continuous Gravitational Wave Signals

A system with an oscillating mass quadrupole moment emits GWs described, far from
the source, by the metric perturbation

h
↔

= A+ cos(φ0 + φ) e↔+ +A× sin(φ0 + φ) e↔× , (1)

where e↔+ = ~ex⊗~ex−~ey⊗~ey and e↔× = ~ex⊗~ey+~ey⊗~ex are the polarization basis tensors
constructed from a right-handed basis {~ex, ~ey, ~ez} with ~ez pointing in the direction
of propagation of the wave, described by the ecliptic longitude λ and latitude β, and
~ex and ~ey along the principal polarization axes. In an inertial reference frame, such
as the solar-system barycenter (SSB), the phase of this (quasi-)periodic signal can
be written as φ(τ) = 2π

∫ τ

τref

f(τ ′) dτ ′, in terms of the (slowly-varying) intrinsic GW

frequency f(τ) = f(τref) + ḟ(τref)∆τ + . . . . The WD signals in the first MLDC
were restricted to have a constant intrinsic frequency, i.e. f(τ) = f . In the case of
a binary system for which orbital evolution due to GW emission can be neglected,
the principal polarization axes are found by taking the unit vector ~ex to lie in the
orbital plane and ~ey in the hemisphere containing the orbital angular momentum.
The polarization amplitudes are A+ = h0(1+ cos2 ι)/2 and A× = h0 cos ι, where h0 is
usually referred to as the amplitude of the GW, and ι is the inclination angle between
the propagation direction ~ez and the normal to the orbital plane. In order to separate
the sky position λ, β from the source polarization, it is useful to consider a polarization
basis associated only with the sky position; this is done by defining a right-handed
orthonormal basis {~eξ, ~eη, ~eζ} with ~eζ = ~ez as the propagation direction, ~eξ lying
in the ecliptic plane and ~eη in the northern hemisphere. The alternate polarization
basis is then ε↔+ = ~eξ ⊗ ~eξ − ~eη ⊗ ~eη and ε↔× = ~eξ ⊗ ~eη + ~eη ⊗ ~eξ, and the principal
polarization axes of the GW are determined by the angle ψ from ~eξ to ~ex, measured
counter-clockwise around ~ez = ~eζ , i.e.

e↔+ = ε↔+ cos 2ψ + ε↔× sin 2ψ ,

e↔× = −ε↔+ sin 2ψ + ε↔× cos 2ψ .
(2)

In terms of this alternative polarization basis, the GW tensor can be written as

h
↔

(τ) =

4∑

µ=1

Aµ h
↔

µ(τ) , (3)
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Figure 1. LISA configuration and TDI conventions used.

where the four amplitude parameters {Aµ} are

A1 = A+ cosφ0 cos 2ψ −A× sinφ0 sin 2ψ ,

A2 = A+ cosφ0 sin 2ψ +A× sinφ0 cos 2ψ ,

A3 = −A+ sinφ0 cos 2ψ −A× cosφ0 sin 2ψ ,

A4 = −A+ sinφ0 sin 2ψ +A× cosφ0 cos 2ψ ,

(4)

while the tensors {h
↔

µ} depend the frequency f(τ) and the sky position λ, β, namely

h
↔

1(τ) = ε↔+ cosφ(τ) , h
↔

2(τ) = ε↔× cosφ(τ) ,

h
↔

3(τ) = ε↔+ sinφ(τ) , h
↔

4(τ) = ε↔× sinφ(τ) .
(5)

2.2. LISA Response in the Long-Wavelength Limit

The LISA design consists of three spacecraft with laser links between each pair, in
a geometry illustrated in figure 1. The MLDC data were generated by two different
programs: Synthetic LISA [7] simulates a detector output consisting of Doppler shifts
of the LISA lasers due to relative motion of the spacecraft, while LISA simulator [8]
simulates the phase differences between laser light following different paths between the
spacecraft. In both cases the underlying variables are combined with appropriate time
shifts to form TDI observables which cancel the (otherwise dominating) laser frequency
noise [9, 10, 5]. One choice of such TDI quantities is the set of three observables
{X,Y, Z}, which were used to publish the data of the first MLDC. These observables,
which can be thought of as representing the output of three virtual “detectors” I, are

related to the gravitational wave h
↔

through somewhat involved expressions depending
on the frequency and propagation direction of the wave. However, in the LWL
approximation, in which the wavelength c/f is assumed to be large compared to the
distance between the spacecraft, i.e. f ¿ 10mHz, the responses can be approximated
(assuming L1 ≈ L2 ≈ L3 ≈ L) as

XsynthLISA = −4L2

c2
d
↔

X :
¨
h
↔
, XLISAsim = −2L

c
d
↔

X :
˙
h
↔
, (6)

where : denotes the contraction of both tensor indices, and d
↔

X ≡ (~n2⊗~n2−~n3⊗~n3)/2
is the usual LWL response tensor for a GW interferometer with arms ~n2 and ~n3. The
analogous expressions for Y and Z are obtained by cyclic permutations of the indices



F-statistic search for WD binaries in the first MLDC 4

1 → 2 → 3 → 1. We define an associated scalar “strain” for each of the detectors
I = X,Y, Z as

hI(t) ≡ d
↔

I(t) : h
↔

(τ(t)) . (7)

The timing relation τ(t) accounts for the Doppler effect caused by the orbital motion
of the detector, namely τ(t) = t − ~r · ~ez/c , where ~r(t) is the position of the detector
with respect to the SSB, and ~ez is the propagation direction of the GW. Note that
in the LWL approximation, we can assume that all virtual detectors follow the same
trajectory ~r(t) corresponding to the barycenter of the three spacecraft.

The input to our search code consists of Fourier-transformed data stretches of
duration TSFT, the so-called SFTs, which is a common data format used within the
LIGO Scientific Collaboration for continuous-wave searches (e.g. see [11]). The time
baseline TSFT has to be chosen sufficiently short such that the noise-floor can be
approximated as stationary and the rotation and acceleration of the detector can
be neglected. For LISA we chose TSFT = 7 days, while in LIGO/GEO (where the
rotation of the Earth dominates the acceleration) this is typically TSFT = 30 min.

Approximating the detector tensor d
↔

I as constant during TSFT, we can Fourier-
transform (6) to obtain

h̃X(f) =
1

(4πfL/c)2
X̃synthLISA(f) , h̃X(f) =

i

4πfL/c
X̃LISAsim(f) . (8)

We use h̃I(f) as our SFT input data, and so we can run the same pipeline on
LISAsim and synthLISA data, with only a different “calibration” (8) used to generate
the SFTs. The noise contributions to X, Y , and Z are correlated, therefore it is
often convenient to work with the TDI variables X and Y − Z instead, which are
statistically independent. This is a straightforward generalization, using the response

tensor d
↔

Y −Z = d
↔

Y − d
↔

Z .

2.3. The F-Statistic Method

The F-statistic was originally developed in [4] and extended to the multi-detector case
in [12]. A generalization to the full TDI framework for LISA was obtained in [5], but
here we follow the simpler route of working in the LWL approximation, which allows
for a more direct application of existing LIGO/GEO codes to LISA.

Combining the scalar strain (7) with the expression (3) for the GW tensor, we
can write the strain signal hI at detector I as

hI(t) =
4∑

µ=1

Aµ hI
µ(t) , (9)

in terms of the four basis functions

hI
1(t) = aI(t) cosφ (τ(t)) , hI

2(t) = bI(t) cosφ (τ(t)) ,

hI
3(t) = aI(t) sinφ (τ(t)) , hI

4(t) = bI(t) sinφ (τ(t)) ,
(10)

where we defined the antenna-pattern functions aI ≡ d
↔

I : ε↔+ and bI ≡ d
↔

I : ε↔×. The
functions {hI

µ} depend on the sky-position λ, β and the frequency f(τ) of the source.
We see that the signal parameters separate into two classes: (i) the four amplitude

parameters A ≡ {Aµ}, and (ii) the Doppler parameters θ ≡ {λ, β, f, ḟ , f̈ , ...}. We
model the output xI(t) of detector I as a superposition of stationary Gaussian noise
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nI(t) and a signal hI(t;A, θ). Following the notation of [12, 13], we write the different
data-streams xI(t) as a vector x(t), and we define the standard multi-detector scalar
product as

(x|y) =
∑

I,J

∫ ∞

−∞

x̃I∗(f)P−1
IJ (f) ỹJ (f) df , (11)

where x̃ is the Fourier-transform, x∗ denotes complex conjugation, and the noise-power
matrix P IJ (f) is defined as

P IJ (f) ≡ κ̃IJ (f) , with κIJ (t) ≡ E
[
nI(t)nJ (0)

]
, (12)

where E[ ] is the expectation value. We search for a signal by seeking the parameters
{A, θ} which maximize the log-likelihood ratio

L(x;A, θ) = (x|h) − 1

2
(h|h) = Aµ(x|hµ) − 1

2
Aµ(hµ|hν)Aν , (13)

where here and in the following we use automatic summation over repeated amplitude
indices µ, ν. Defining

xµ(θ) ≡ (x|hµ) , and Mµν(θ) ≡ (hµ|hν) , (14)

we see that L is maximized for given θ by the amplitude parameters Aµ
MLE = Mµνxν ,

where Mµν is the inverse matrix of Mµν . Thus the detection statistic L, maximized
over the amplitude parameters A, is

F(x; θ) ≡ 1

2
xµ Mµν xν , (15)

which defines the (multi-detector) F-statistic.

2.4. Analysis Pipeline

Our analysis used standard LAL/LALApps software [14] developed for the
search for continuous GWs with ground-based detectors, in particular the code
ComputeFStatistic v2, which implements the multi-detector F-statistic (15). Only
minor modifications were necessary to adapt this code to the analysis of LISA data
using the LWL approximation. All white-dwarf binary signals in the first MLDC
had constant intrinsic frequency f , so the set of Doppler parameters consisted of
θ = {λ, β, f}. We performed a hierarchical search that begins with single-detector
searches in each of the TDI variables I, looks for cöıncident local maxima of 2F , and
performs a follow-up multi-detector F-statistic search to establish the parameters of
all candidate signals. Our initial analysis submitted as an MLDC entry [3] used the
TDI-variables X, Y and Z as three “detectors”, assuming for simplicity that their
correlation matrix P IJ (f) is diagonal. However, given that the corresponding noises
are correlated, we subsequently re-ran the search using the uncorrelated TDI variables
X and Y −Z, which did not result in any significant changes in the results, which are
presented here. Whether I ranges through {X,Y, Z} or {X, Y − Z}, the structure of
the pipeline is the same:

(i) Perform a wide-parameter F-statistic search on each data stream I over a
template grid of Doppler parameters {λ, β, f} . Keep only candidates which are
local maxima of 2F above some threshold.

(ii) Keep only cöıncident candidates with consistent Doppler parameters in all
detectors I.
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(iii) Perform a more finely-gridded multi-detector search around each candidate to
increase the accuracy of the parameter estimation.

(iv) Classify each candidate as primary if it has the highest 2F value within
∆f = 1.4 × 10−4 f , and as secondary otherwise.

The last step arises from the empirical observation that a given signal will have
secondary “false” F-statistic maxima at frequencies within roughly ∼ 10−4 f but at
different sky positions. Only primary candidates were reported, while the secondary
candidates were discarded. This is a limitation of our pipeline: given two signals
very close in frequency but at different sky positions, it cannot distinguish the peak
at the true sky position of the “fainter” source from a secondary maximum of the
“brighter” one. This problem is seen particularly in Challenges 1.1.4 and 1.1.5 with
signals clustered very densely in frequency.

3. Results

3.1. Challenge 1.1.1: Isolated Binaries

This challenge consisted of three separate data sets, each containing one WD signal
at an unspecified sky position and within a given frequency band: 1.1.1a at ∼ 1mHz,
1.1.1b at ∼ 3mHz, and 1.1.1c at ∼ 10mHz. Note that the LWL is only a good
approximation for f ¿ 10mHz, and we therefore expect it to deteriorate significantly
in 1.1.1b and 1.1.1c. Nevertheless, in each of the three cases our pipeline recovered

Table 1. Recovery of Doppler parameters in Challenge 1.1.1: the frequency (error
∆f) and sky position (error φsky) are accurately estimated even at the highest
frequencies.

Challenge f β λ ∆f φsky

1.1.1a 1.1 mHz 0.30π 1.62π 1.7 nHz 34.8 mrad
1.1.1b 3.0 mHz −0.03π 1.47π 0.8 nHz 7.1 mrad
1.1.1c 10.6 mHz −0.04π 1.48π 0.2 nHz 4.4 mrad

a single primary candidate with an SNR above 10, and the Doppler parameters were
determined with very good accuracy, as summarized in table 1. The recovery of the
amplitude parameters A is illustrated in figure 2, comparing the estimated vector
Acand to the injected parameters Akey. The amplitude four-vectors A live in a space
with constant metric tensor Mµν given in (14), so the magnitude |A| is

|A| =
√

Aµ Mµν Aµ =
√

2F ≡ SNR , (16)

which defines our signal-to-noise ratio (SNR). The two vectors Acand and Akey define
a plane, and so we can plot them in two dimensions, with the horizontal and vertical
components

A‖ =
Akey · A
|Akey|

, A⊥ =

∣∣∣∣A−A‖
Akey

|Akey|

∣∣∣∣ , (17)

where the inner product is calculated using the metric Mµν . These components
are shown in figure 2, and we see that the agreement of the amplitude parameters
deteriorates substantially for higher frequencies, where the LWL approximation breaks
down. The difference between the amplitude vectors, ∆A ≡ Acand − Akey, has a
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Figure 2. Amplitude parameters for Challenges 1.1.1a (left), 1.1.1b (middle),
and 1.1.1c (right). Each plot compares the (4-dimensional) amplitude vectors of
the recovered candidate, Acand, to the injected signal, Akey, shown in the plane
defined by the two vectors. Gaussian fluctuations would lead to a separation of
the endpoints of the order |∆A| ∼ 2. The breakdown of the LWL with increasing
frequency leads to larger errors, affecting both the orientation and the length
(reflecting the SNR) of the recovered amplitude vector.

covariance matrix E[∆Aµ ∆Aν ] = Mµν , if the deviation is caused by noise alone.
In this case the magnitude of this difference, i.e. |∆A| =

√
∆Aµ Mµν ∆Aν , would

have variance E[|∆A|2] = MµνMµν = 4, thus a standard deviation of 2. Table 2

Table 2. Amplitude parameters for Challenge 1.1.1: as seen in figure 2, the
angle φA between Acand and Akey grows with increasing frequency, and there is
an increasing deficit in SNR = |A|. The absolute error from Gaussian noise would
be expected to be |∆A| /2 ∼ O(1).

Challenge f ∆SNR/SNRkey φA |∆A| /2

1.1.1a 1.1 mHz 0.005 0.019π 1.5
1.1.1b 3.0 mHz −0.019 0.168π 9.6
1.1.1c 10.6 mHz −0.377 0.703π 108.7

summarizes the errors in the amplitude parameters for the three challenge data sets
in terms of |∆A| /2, the difference in length ∆SNR ≡ SNRcand − SNRkey, and the
angle φA between the recovered and the injected amplitude vectors, given by

φA = cos−1

( Acand · Akey

|Acand| |Akey|

)
. (18)

We see in table 2 that the amplitude errors are larger than would be expected from
noise fluctuations alone, especially at higher frequencies, which is consistent with the
breakdown of the LWL.

3.2. Challenge 1.1.2: Verification Binaries

In Challenge 1.1.2, we were provided with the sky positions and frequencies of twenty
real and hypothetical “verification binaries” with unspecified amplitude parameters,
which were injected into a single data stream. We therefore performed a targeted
F-statistic search at each of the specified sets of doppler parameters, and found
the maximum-likelihood estimators Acand for the amplitude parameters. Figure 3
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Figure 3. Amplitude parameters for Challenge 1.1.2, where the Doppler
parameters were known. Left: all 20 signals are recovered with SNR ≥ 8.8, but
the errors |∆A| /2 are substantially larger than the expected standard deviation
of unity for all but the smallest frequencies. Top right: the angle φA between the
true and recovered amplitude vectors grows with frequency, and is always larger
than its expected standard deviation of 1/SNR. Bottom right: the length of the
recovered amplitude vector is within the expected range for much of the frequency
band, but begins to show an SNR deficit above f > 5 mHz.

illustrates the discrepancies between the recovered amplitude parameters Acand and
the ones used for the simulation, Akey, in terms of |∆A|, ∆SNR/SNRkey, and φA used
in table 2. Both ∆SNR/SNRkey and φA have expected standard deviations of 1/SNR,
and these one-sigma error bars are indicated in the plots on the right. Again we see
that our recovered amplitude parameters differ from the injected ones by more than
would be expected from Gaussian noise alone, and that the agreement deteriorates at
higher frequencies.

3.3. Challenge 1.1.3: Resolvable Binaries

Challenge 1.1.3 was a blind search on data containing 20 white dwarf binary signals
across the LISA band. As shown in figure 4, we recovered 17 of the 20 signals with

Figure 4. Doppler parameters for Challenge 1.1.3: errors in sky position (left
figure) and frequency (right figure) as functions of frequency. Horizontal errorbars
indicate the width of the frequency cöıncidence window used, i.e. 1.4×10−4f , but
they are too short to be seen on this scale, making the recovered signals appear
as short vertical lines. The three missed signals (long vertical lines) all fall close
to recovered signals, but outside of all cöıncidence windows.



F-statistic search for WD binaries in the first MLDC 9

good frequency and sky accuracy. The three missed signals were at frequencies “close”
to recovered sources, but not within the frequency cöıncidence window of 1.4×10−4f ,
and there is some indication that the Doppler parameters of those sources were slightly
compromised.

3.4. Challenge 1.1.4 and 1.1.5: Source Confusion

In Challenges 1.1.4 and 1.1.5, many sources were injected into a small frequency
range in order to illustrate the source confusion problem, namely 40–60 signals within
[3, 3.015]mHz in Challenge 1.1.4 and 30–50 signals within [2.9985, 3.0015]mHz in
Challenge 1.1.5. As shown in Figure 5, our pipeline “found” signals all across the

Figure 5. Doppler parameters for Challenges 1.1.4 (Top row) and 1.1.5 (bottom
row): errors in sky position (left column) and frequency (right column) as
functions of frequency. Each of the “missed” injections falls within the cöıncidence
window of a recovered signal, and would therefore have been rejected as a
secondary maximum. The dashed lines in the top-right plot show the maximum
possible frequency recovery error, namely the width of the cöıncidence window. In
both challenges, source confusion causes our pipeline to find a candidate at every
possible frequency, including one false alarm at f = 3.0022mHz in Challenge 1.1.4.

band, but many of them were far removed in sky position from any true signal. Many
additional signals were missed within the frequency cöıncidence window, presumably
because they were mistaken for secondary maxima of the “found” signals. The results
of this challenge illustrate a known limitation of our pipeline: it cannot distinguish
multiple signals close together in frequency.
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4. Conclusions

Using the F-statistic in the long-wavelength limit approximation, we found that
the estimation of the four amplitude parameters {Aµ} deteriorates significantly with
increasing frequency, as would be expected from the breakdown of the LWL. However,
the detection of signals and the estimation of the Doppler parameters (frequency and
sky-position) does not seem to be affected by the use of the LWL, even at frequencies
as high as f ∼ 10 mHz. This somewhat surprising result suggests the following
“hierarchical” search strategy: start with a fast F-statistic code using the LWL to
detect signals and localize them in Doppler space, then use a more accurate (and
computationally expensive) modelling of the TDI responses to estimate the amplitude
parameters.

More work is required to deal with “source confusion”, i.e. signals that lie within
a frequency window O(10−4 f). Secondary maxima in parameter space due to a
signal cannot easily be distinguished from primary maxima corresponding to other
signals within this frequency window. One popular strategy consists of successively
“removing” detected signals from the data, which also eliminates its associated
secondary maxima, and allows one to re-run the search for the next-loudest candidates.
An alternative approach might consist of a classification of candidates into equivalence

classes consistent with the same signal, either by using the metric or a suitable
global correlation criterion analogous to the “circles in the sky” [15] present for short
observation times.
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