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Abstract.

We present two general methods, the so-called Locust and the generalized Hough

algorithm, to search for quasi-monochromatic signals of moderate frequency evolution

and limited duration in datastreams of gravitational wave detectors. Some models

of long gamma ray bursts (e.g. van Putten, 2003) predict quasi-monochromatic

gravitational wave signals of limited duration emitted during the gamma ray burst

event. These type of signals give rise to curling traces of local maxima in the time-

frequency space that can be recovered via image processing methods (Locust and

Hough). Tests of the algorithms in the context of the van Putten model were carried

out using injected simulated signals into gaussian white noise and also into LIGO-like

data. The Locust algorithm has the relative advantage of having higher speed and

better general sensitivity, however, the generalized Hough algorithm is more tolerant

of trace discontinuities. Combination of the two algorithms increases search robustness

and sensitivity at the price of execution speed.
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1. Introduction

Quasi-monochromatic gravitational waves (GWs) are one of the types of signals that are

expected to be detectable by ground-based interferometric detectors [1], such as LIGO

[2, 3], VIRGO [4], TAMA300 [5], and GEO600 [6]. Known possible sources of these type

of signals include rotating non-axisymmetric or oscillating neutron stars [7, 8]. The long

duration and known frequency evolution of their expected signals allows for integration

on long time scales, thus signals (in principle) can be detected at very small signal-

to-noise ratios. The motion of Earth (rotation and orbital motion around the Sun)

modulate long duration GW signals, which for known source sky positions can be taken

into account. However, in case of a blind search, where source position is unknown, the

size of the parameter space becomes so large that search processes based on long-term

integration are limited by present computational capabilities. One must face similar

difficulties if frequency evolution and/or time duration of signals are unknown.

Methods used in searches for quasi-monochromatic GW signals with interferometric

detectors so far were based on coherent integration of data [9], or include matched

filtering [10], the Stack Slide method [11, 12] or linear Hough transformation ([13, 14, 15]

and recently [16, 17, 18]). These methods usually do targeted searches and/or take

advantage of the known evolution of signal frequency and hourly-monthly duration of

searched signals.

In this paper we examine methods capable of detecting signals with unknown

frequency evolution and limited duration. We will illustrate the techniques through

a plausible astrophysical prediction. Gravitational waves are expected to be emitted

during long gamma-ray burst events, lasting for ∼ 2 − 100 s [19, 20, 21, 22, 23].

An alternative model of long gamma ray bursts [24, 25] (GRBs) predicts quasi-

monochromatic gravitational wave emission lasting for a few tens of seconds during

the GBR event, instead of a short transient. The model assumes the source of the

radiation to be a magnetically interacting system of a rapidly rotating Kerr black hole

surrounded by a uniformly magnetized rotating torus and a remnant stellar envelope. A

significant portion of the GRB’s energy is emitted by the torus in form of GW radiation.

The model predicts the emission of T ≃ 90 s long GW signal for 7M⊙ mass black hole,

corresponding to the lifetime of the black hole spin. Event rate is predicted to be ∼ 1

per year within a distance of 100 Mpc. Nominal frequency of the GW signal is predicted

to be around fGW ≃ 500 Hz and scales as

fGW ≃ 500(
η

0.1
)(

7M⊙

MH

) Hz, (1)

where MH is the mass of the Kerr black hole, and η is the ratio of angular velocities of

the torus and the Kerr black hole. However, the GW signal frequency is expected to

vary slowly with time by a total variation within signal duration of . 10%.

The rotation of the torus around the black hole can be modulated by a precessing

motion (Lense-Thirring precession, [26]) that also modulates the GW signal. Angular

velocity of this precession is typically around ≃ 10% of the angular velocity of the



How to find long quasi-monochromatic gravitational wave transients with unknown frequency evolution?3

rotating motion of the torus.

GW signal features proposed in this model will be used to illustrate the strengths

and limitations of the search methods. For timescales of a few tens of seconds long-term

variations, such as tidal effects, rotation of the Earth, motion of the Earth around the

Sun, etc, do not appreciably affect the signal. The restriction we impose on the frequency

evolution of the function representing a signal is the slow variance of frequency with time.

We present two algorithms (”Locust” and generalized ”Hough”) that are capable

of searching for quasi-monochromatic signals, in general. The Locust algorithm uses

local wandering, while the Hough algorithm implements the Hough transformation

method[27], while providing a generalization such that polynomial curves, not just

straight lines, can be fitted. While tests of the methods were carried out using

characteristic signal forms, durations and frequency drifts predicted by the van Putten

model of GRBs, we would like to point out that in principle both methods require

minimal assumptions about the GW waveform beyond its duration, relatively narrow

frequency content and frequency evolution describable with polynomials.

We give a description of the two algorithms as applied in a single detector

datastream process, and results of corresponding sensitivity tests in sec.2 and sec.3,

respectively. Test results for multiple datastream processing are presented in sec.4.

2. Search Method

The pipeline starts with filtering a finite stretch of input data. Then we create a

spectrogram of the data stretch by applying discrete Fourier-transformation. The

spectrogram is then flattened by normalizing each of its rows separately. Finally, one

or both of the image processing methods (Locust and the generalized Hough method)

is applied to find traces of local maxima corresponding to signals. In this section a

detailed description of each step of the pipeline from filtering to the image processing

methods is given.

2.1. Transformation of Data into Time-Frequency Space

First the time-amplitude data stream of a single gravitational wave detector is divided

into Tseg second long 50% overlapping segments. Taking the van Putten model as a basis,

we chose Tseg to be T = 10 s. Such segment length provides reasonable search resolution

while being a significant fraction of the tens of seconds duration of the long gamma ray

burst signals predicted by the model. However, parameter Tseg is to be optimized if

faster frequency evolution or significantly different signal duration is expected.

2.1.1. Filtering Filtering of input data with respect to the LIGO detectors’ spectral

sensitivity [28] is performed (IIR, Butterworth bandpass filter in the 80 − 2000 Hz

range). At certain frequencies narrow ”insensitivity” peaks (power lines, violin mode

of mirror suspension, calibration lines, etc.) appear in the spectral sensitivity curve
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of LIGO detectors which are also eliminated by notch filtering in the time-domain.

Filtering in the time domain has the advantage of enabling us to cut out only the

narrow peaks from the spectrum without touching the wider frequency environment of

Fourier transformation bins and mitigate energy bleeding into other frequency bins.

All filtering procedures were performed via zero-phase means [29] in order to

facilitate coherent processing afterwards. Finally Ttrans = 2.5 s long segments (based

on numerical studies of filters) were cut off from the beginning and end of the originally

Tseg = 10 s long data segment to remove filter transients, leaving T = 5 s for further

processing.

2.1.2. Discrete Fourier-transformation After filtering, a discrete Fourier-transformation

is used to transform the time-amplitude sample into a two-dimensional time-frequency

space. In the transform process a Tukey window [30] is used, where the ratio of taper

to constant sections is 0.5. The sample is split into overlapping sections of size equal

to the size of the window: the overlap between neighboring segments is 1/4 of the win-

dowsize. After the transformation of the data, only the relevant frequency range that is

compatible with the range of the bandpass filter (i.e. 80−2048 Hz) is processed further.

In case of processing the datastream of a single detector, we take the absolute value

of every element in the resulting matrix of Fourier-coefficients. As a result, we get a

matrix of non-negative real elements. The rows of this matrix represent the frequency

while columns the time axis of the Fourier-space.

2.1.3. Spectrum Flattening Filtering and detector response presents the data such that

certain frequency regions get overemphasized or deemphasized. This effect is transferred

into the Fourier-coefficient matrix, thus its rows need to be normalized with respect to

each other. Hereafter, we refer to this normalization process as ”flattening”. This

procedure produces similar results to ”whitening” generally applied during the filtering

phase for other methods [31].

If a filtered data sample only consists of random noise and does not contain

contributions from a real signal, then we empirically found the magnitude of the Fourier-

coefficients in each row to be well described by a gamma distribution. In the case of

signal presence in the data, the resulting distribution of coefficients is altered from this

gamma distribution in the range of the highest values.

One can identify segments of data that are expected to have very similar frequency

content but is not expected to have signal contribution. For example, for triggered

searches, such off-source segments are typically chosen outside of the trigger window but

still from the same detector lock stretch where the data frequency characteristics are

alike. We apply the gamma function fit to rows of spectrograms that belong to such ”off-

source” data segments. Therefore the average and sigma that is used in the flattening

process are deduced from different spectrograms that are shifted in time compared to

the spectrogram to be flattened.
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The final step of flattening is the subtraction of this average from every element

of the row and the division of the row by sigma. This procedure essentially takes away

the fraction of power in the given frequency bin that is associated with the ”average”

noise (noise power removal). This flattening process is done for every row of the matrix

separately. In this paper from now on we will refer to the resulting flattened Fourier-

coefficient matrix as ”spectrogram”.

2.2. Image Processing Algorithms

A generalized quasi-monochromatic signal in the input data will manifest itself as a

trace consisting of a chain of local maxima in the time-frequency space. This can be

described as a polynomial function of time. Our goal is to find and identify these

traces in the noisy background. We treat the two-dimensional time-frequency space as

a grayscale image, for which the shade of a pixel is proportional to the magnitude of the

corresponding matrix element (i.e. excess energy), thus signal search task is converted

into an image processing problem. We have used two independent algorithms in image

analysis: the so called Locust algorithm (conceived by us), and a method based on the

generalized Hough-transform.

2.2.1. The Locust Algorithm The method is based on a gradient driven wandering.

Traces of local maxima to be identified in the spectrogram image of the input data

consists of loosely connected chains of non-negative elements.

The simplest way to describe the actual algorithm scheme is through the next

analogy: in a grayscale image we are searching for a trace of local maxima via a path

that resembles that of a virtual ”locust” (thus we call it ”Locust algorithm”). This

metaphoric ”insect” crossing through a ”virtual cropfield” (i.e. the grayscale image of

the spectrogram) looks for the maximum of ”grain” (i.e. Fourier coefficients) in its local

environment.

Its local environment is described by n × m time-frequency bins, first heading

forward, then backward along the time axis, from the same starting point. The starting

point of the ”locust” is always the absolute maximum of the processed spectrogram

(which is reduced to zero immidiately). It searches for the maximum in its local

environment heading forward in time, jumps to local maximum found, and reduces

its value to zero (”eats up the grain in that bin of the cropfield”). It then looks for

the next maximum similar way until it either reaches the edge of the image or at any

time the maximum in a local environment is found to be zero. The wandering is then

repeated the same way, but heading backward in time from the original starting point.

Such forward-backward path pairs of the ”locust” represents one trace of local

maxima we are looking for. If the ratio of the sum over the number of elements in the

integral for a given trace exceeds the value of a preset threshold, the search results in

an alarm and the properties of the trace are saved. The Locust search then continues

from the next absolute maximum of the matrix, until every element of the matrix are
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reduced to zero.

The final step of the Locust search visualizes saved traces, first separately, then

together in one image. All trace elements are added to a null-matrix of same size as the

spectrogram, and a polynomial curve of given order is fitted to elements of this resulting

matrix. The parameters of the polynomial fit are determined via minimization of the

distance of the fit from the trace pixel element positions, weighted by the actual grayscale

shade (that is significance of the given time-frequency bin) of each pixel. Knowing the

parameters of the polynomial curve having the best fit to the traces allows us to give

an estimate on the properties of the GW source in the context of the applied model of

long GRBs.

An example for resulting images of Locust search is shown in fig.(1).
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Figure 1. Pre-processed spectrogram of input data in the local frequency environment

of injected signal (a). Plot of a trace satisfying the alarm requirements of the Locust

method (b). A second order polynomial curve fitted to the above trace found by Locust

method (c).
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2.3. The Generalized Hough Algorithm

This is a generalization of the Hough-transform method [27] and is based on polynomial

curve fitting to a trace of local maxima instead of the traditional line. First a

dimension parameter (D) is chosen representing the dimension of the space of polynomial

parameters. In most implementations of the Hough transform only linear fits are

considered (D = 2). We shall consider higher order polynomials. For a given dimension

parameter, D number of positive elements from the spectrogram are selected and a

polynomial curve of D−1 order is fitted to them. This procedure continues for other D

number of positive elements from the spectrogram until every combination of positive

elements are taken into account.

This process results in an ’output matrix’ of D columns and
(

N

D

)

- the number of

different combinations - rows, where N is the total number of positive elements in the

matrix. Each row of this ’output matrix’ contain polynomial fit parameters that describe

a position vector of a single datapoint in the ”Hough space” (essentially a D-dimensional

polynomial parameter space). If a signal is present in the input data, and its frequency

evolution can be described by a polynomial function of order D − 1, the resulting data

points in the ”Hough space” have an extremely high density within a small parameter

region. To identify this high density region, we collect data points in histogram bins

for each parameter, and look for the bin that contains the most data points. Binsize

was chosen to be such as to minimize the probability for multiple datapoints to be in

one bin for an approximately homogeneous density distribution (i.e. in the abscence of

a signal in input data), while still get an appreciable resolution for the histogram. We

choose final parameters of the polynomial (and thus the best fit to the signal trace) to

be equal to the components of the position vector that points to the closest datapoint to

the center of mass of the bin with the highest number of datapoints. The Hough search

process then results in an alarm if the ratio of the sum of Fourier-coefficients in the 1

bin local frequency environment along the found polynomial trace, over the number of

these coefficients, exceed a predefined threshold.

An example for the binned parameter space in the proximity of the density

maximum is shown in fig.(2).

Execution time of the Hough process is proportional to ND. In order to save running

time, we can reduce N , the number of positive elements in the spectrogram. Because

Fourier-coefficients with the highest values have the highest probability to belong to a

trace corresponding to a potential signal, we keep a certain number of elements with the

highest value and reduce value of the rest of the elements to zero. In our tests, we chose

this number to be 15. The number of elements to be left untouched was and can be

optimized to a limit that our false alarm rate and execution speed tolerance requirement

allows.
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Figure 2. Three dimensional binned Hough parameter space (corresponding to second

order polynomials fitted to traces of local maxima in the spectrogram), in proximity

of the density maximum. Shade of markers represent the number of datapoints in the

appropriate bins. Parameters of the best fit are chosen to correspond to the closest

datapoint to the center of mass of the bin with the highest number of datapoints.

2.4. Comparison of Locust and Hough algorithms

The characteristic features of traces for which Locust and Hough methods are the most

sensitive differ in many aspects.

Terms of alarm in the Locust method are independent from the length of the trace

and all traces of a spectrogram satisfying alarm conditions are treated as parts of one

trace with discontinuities. However, the alarm rate for the Locust algorithm drops if

the trace corresponding to a signal has significant discontinuities beyond the ∆ f × ∆ t

size of the local environment of the search. In that case the Locust search chooses a

maximum from the noise background and might continue the process by following local

noise maxima. Thus the final trace may not reach the threshold level for alarm even

if it contains segmental contributions of a real signal. This effect is more likely at low

signal-to-noise ratios, and can be reduced by optimizing the size of the local environment

applied in the Locust maximum search to the expected signal-to-noise ratios.

Compared to the Hough method, the Locust method has the relative advantage of

higher execution speed and its performance in principle is less dependent from the order

of the polynomial to be fitted to the identified traces (somewhat independent from the

signal waveform).

Alarm rate of the Hough search process is less dependent on trace discontinuities,

however it is highly dependent on the order of the polynomial to be fit (D-1).

Increasing D leads to an exponentially greater computational time. This can be

partially compensated by decreasing the number of non-zero elements used in the
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Hough transform, which saves execution time, however decreases number of alarms

and increases false alarm rate.

Because of their differing response to the choice of signal trace polynomial fit and

to trace discontinuities, a combination of the two independent methods (Locust and

generalized Hough) in one search process can lead to higher sensitivity with a cost of

greater computational time. The easiest way to combine the two algorithms in one

process is applying both of them paralelly on the same datastream, and take the union

of their outputs.

3. ROC-tests

The sensitivity of our search methods was tested by finding the alarm rate versus false

alarm rate (i.e. the receiver operating curve or ROC) for injected signals into simulated

noise.

We have completed our tests for two types of noise; gaussian white noise and

a LIGO-like data with basic statistical characteristics (e.g. amplitude distribution,

spectral compatibility) of LIGO 4 km detectors during the 4th science run [32]. To

calculate the alarm and false alarm rates, we used 500 samples from gaussian and 250

samples from LIGO-like noise, all are 10 s long.

Gravitational wave signals (h(t)) can be expressed as linear combinations of signals

of two independent polarizations:

h(t) = F+h+(t) + F×h×(t) (2)

where F+ and F× are linear coefficients dependent on the detector’s directional

sensitivity characteristics and the position of the source in the sky.

In the van Putten model [24] h+(t) and h×(t) are expressed as

h+(t) = A × (1 + l(t)2) × cos (2 × ΩT (t) × t) (3)

and

h×(t) = −2 × A × l(t) × sin (2 × ΩT (t) × t) . (4)

In these expressions A is the amplitude of the GW signal while the time-dependent

geometrical factor, l(t), and the angular velocity of the torus in the van Putten

model[24], ΩT (t), are functions of time:

l(t) = B × cos (ΩLT (t) × t) + D (5)

where ΩLT (t) is the angular velocity of the potential Lense-Thirring precession of the

torus, while B, D are other variables dependent on the properties of the source and

parameters of its motion (see [24, 23] for details).

In general, ΩT can be any kind of continuous function of time, but in our analysis the

simplest, but still not trivial, case of second order polynomials were considered. Since

our analysis is carried out in time-frequency space and the functions that describe the

frequency evolution of GW signals are the same for both polarizations, search sensitivity
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and test results are the same for signal functions of both kind. For this reason, the results

are given only for h+(t).

As it is seen in eq.(5), a possible Lense-Thirring precession of the torus might

modulate the van Putten signal with a cosine function of frequency ΩLT . This causes

sidebands to appear in the spectrum of the signal at frequencies 2ΩT + ΩLT and

2ΩT − ΩLT . According to predictions of the van Putten model [24], ΩLT typically

does not exceed the nominal value of ≃ 0.1ΩT [24]. We chose frequency resolution of

our demonstration (8 Hz/bin) such that modulation sidebands usually do not appear in

separate frequency bins from the main trace of the signal. Possible slight broadening of

the main trace however can be handled by both Locust and Hough algorithms.

The Locust algorithm results with an alarm, if the ratio of the integral and the

number of elements of a trace exceeds a given threshold, C. In case of the Hough

method, the same ratio is calculated and compared to a predefined threshold, C, but

integration is carried out for the 1 bin local frequency environment along the polynomial

curve found by method.

To map ROC characteristics of a method, one first needs to explore the alarm and

the false alarm rate as a function of threshold C. Using gaussian white noise and LIGO-

like noise samples without injections (all going through identical processing described

in section 2.1), we applied the Locust and Hough methods. The distribution results

then directly gives us the false alarm rate (FAR) as a function of C. We follow the

same method, but with injection of van Putten type signals (eq.(3)) to find the alarm

rate for the same C threshold values. Each point on the ROC curves is then produced

by identifying the C threshold value for a given false alarm rate from the FAR vs. C

empirical curve and then finding the alarm rate corresponding to the same C threshold

using the alarm rate vs. C curve. At extremely low FARs and alarm rates linear

extrapolation to the log-log tail of the empirical FAR (or alarm rate) vs. C curves was

used.

The resulting ROC-curves of the Locust and Hough methods, for four different

signal root sum square amplitudes (i.e. hrss =
√

∫

h(t)2dt, [33]) in the hrss =

6.3×10−21−2.1×10−20 1/
√

Hz range are given in fig.(3). The corresponding LIGO-like

data noise sensitivity in the 400-600 Hz region (corresponding to the injected van Putten

type signal’s frequency content) is ∼ 3.8× 10−22 1/
√

Hz. For gaussian white noise data

(mean=0, sigma=1) the injected hrss-s range is 6.6 × 10−2 − 2.2 × 10−1 1/
√

Hz.

4. Processing datastreams of multiple detectors

As an obvious generalization, we can increase search sensitivity via coherent use of data

streams of multiple interferometers, and process the resulting single stream with the

Locust and Hough methods. If the time delay between the realization of the same

signal in different data streams is well known, the data streams can be synchronized by

shifting one of the streams relatively to the other by the known delay. Additionally the

detectors’ orientation with respect to each other and the proposed source direction (i.e.
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Figure 3. ROC curves of single datastream searches. a:white noise/Locust, b:white

noise/Hough, c:modified LIGO/Locust, d:modified LIGO/Hough.

the antenna factors) can also be taken into account.

We will illustrate the simplest case where sky position is known (optimal) and the

detectors are aligned. After the data are synchronized, they are processed the same way

as described in section2.1 to the step of discrete Fourier-transformation resulting in the

matrix of complex Fourier-coefficients. The correlation process is carried out on these

complex matrices. Let us denote these two matrices by s1 and s2 respectively. The

correlation matrix, c, can be calculated in time-frequency space, using the following

expression:

c (m,n) =
√

fracs1 (m,n) s∗2 (m,n) + s∗1 (m,n) s2 (m,n)2 (6)

where s∗i is the complex conjugate of si. Note, that if s1 = s2 = s (i.e. single detector

case), c is the absolute value of the complex s matrix, thus we get back the input for

the single datastream process.

In principle true GW signals present in the coherent datastreams are correlated and

thus give rise to positive values in the correlation matrix. On the other hand, noises in

the two datastreams are uncorrelated and the corresponding correlation coefficients are



How to find long quasi-monochromatic gravitational wave transients with unknown frequency evolution?12

randomly distributed around zero. Therefore negative values and the lower portion of

the positive values in the distribution of the correlation coefficients can be attributed

to noise and can be changed to the zero level during image processing to speed up

processing.

The resulting ROC-curves of the Locust and Hough methods in case of a multiple

datastream search and for the same injected signals as for the single detector case are

given in fig.(4).
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Figure 4. ROC curves of multiple datastream searches. a:white noise/Locust, b:white

noise/Hough, c:modified LIGO/Locust, d:modified LIGO/Hough.

5. Conclusion

We have examined two methods to search for quasi-monochromatic gravitational wave

signals in datastreams of interferometric gravitational wave detectors. Both algorithms

are applied in time-frequency space. The so called Locust algorithm uses local

wandering, searching for traces of local maxima in spectrogram of input data. The

Hough method is based on a generalized Hough transform, capable of recognizing

polynomial curve-like features in the noisy environment of a spectrogram.
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Performance measures of these algorithms are illustrated in the context of the van

Putten model of long gamma ray bursts and using gaussian white noise and also LIGO-

like noise. We characterized the search sensitivity of the two algorithms by mapping

Receiver Operating Curves for various signal amplitudes.

As the Locust algorithm uses local wandering, the Hough algorithm has the

relative advantage of higher robustness to trace discontinuities. The Locust algorithm

is significantly faster and is more general in the sense that it does not require any pre-

assumptions on the function describing time evolution of signal frequency. Applying the

two algorithms in parallel in one search process provides an opportunity to overcome

both above mentioned relative disadvantages for a price of execution speed.

Search methods described in this paper in principle are capable of processing both

single and multiple datastreams of gravitational wave detectors. Using the correlation

matrix in further steps of search process increases search sensitivity of our methods.
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