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With an enlighting treatment Baskaran and Grishchuk have recently
shown the presence and importance of the so-called “magnetic” compo-
nents of gravitational waves (GWs), which have to be taken into account
in the context of the total response functions of interferometers for GWs
propagating from arbitrary directions. In this paper more detailed angu-
lar and frequency dependences of the response functions for the magnetic
components are given in the approximation of wavelength much larger
than the linear dimensions of the interferometer, with a specific appli-
cation to the parameters of the LIGO and Virgo interferometers. Our
results agree with the work of Baskaran and Grishchuk in which it has
been shown that the identification of “electric” and “magnetic” contribu-
tions is unambiguous in the long-wavelenght approximation. At the end
of this paper the angular and frequency dependences of the total response
functions of the LIGO and Virgo interferometers are given. In the high-
frequency regime the division on “electric” and “magnetic” components
becomes ambiguous, thus the full theory of gravitational waves has to be
used. Our results are consistent with the ones of Baskaran and Grishchuk
in this case too.
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1 Introduction

The design and construction of a number of sensitive detectors for GWs is un-
derway today. There are some laser interferometers like the VIRGO detector,
being built in Cascina, near Pisa by a joint Italian-French collaboration [1[2], the
GEO 600 detector, being built in Hanover, Germany by a joint Anglo-Germany
collaboration [3] 4], the two LIGO detectors, being built in the United States
(one in Hanford, Washington and the other in Livingston, Louisiana) by a joint
Caltech-Mit collaboration [3, [6], and the TAMA 300 detector, being built near
Tokyo, Japan [7, 8]. There are many bar detectors currently in operation too,
and several interferometers and bars are in a phase of planning and proposal
stages.

The results of these detectors will have a fundamental impact on astrophysics
and gravitation physics. There will be lots of experimental data to be analyzed,
and theorists will be forced to interact with lots of experiments and data analysts
to extract the physics from the data stream.

Detectors for GWs will also be important to confirm or ruling out the physical
consistency of General Relativity or of any other theory of gravitation [9, 10,
[IT], 12]. This is because, in the context of Extended Theories of Gravity, some
differences from General Relativity and the others theories can be seen starting
by the linearized theory of gravity [9, 10, 12].

With an enlighting treatment, recently, Baskaran and Grishchuk have shown
the presence and importance of the so-called “magnetic” components of GWs,
which have to be taken into account in the context of the total response functions
(angular patterns) of interferometers for GWs propagating from arbitrary direc-
tions [13]. In this paper more detailed angular and frequency dependences of
the response functions for the magnetic components are given in the approxima-
tion of wavelength much larger than the linear dimensions of the interferometer,
with a specific application to the parameters of the LIGO and Virgo interferom-
eters. Our results agree with the work of [I3] in which it has been shown that
the identification of “electric” and “magnetic” contributions is unambiguous in
the long-wavelenght approximation. At the end of this paper the angular and
frequency dependences of the total response functions of the LIGO and Virgo
interferometers are given. In the high-frequency regime the division on “electric”
and “magnetic” components become ambiguous, thus the full theory of gravita-
tional waves has to be used [I3]. Our results are consistent with the ones of [13]
in this case too.

2 Analysis in the frame of the local observer

In a laboratory enviroment on earth, the coordinate system in which the space-
time is locally flat is typically used [12 13}, 15, 16, [I7] and the distance between
any two points is given simply by the difference in their coordinates in the sense
of Newtonian physics. In this frame, called the frame of the local observer,
GWs manifest themself by exerting tidal forces on the masses (the mirror and
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Figure 1: photons can be launched from the beam-splitter to be bounced back
by the mirror
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the beam-splitter in the case of an interferometer, see figure 1).

A detailed analysis of the frame of the local observer is given in ref. [15],
sect. 13.6. Here we remember only the more important features of this frame:

the time coordinate xq is the proper time of the observer O;

spatial axes are centered in O;

in the special case of zero acceleration and zero rotation the spatial coor-
dinates z; are the proper distances along the axes and the frame of the local
observer reduces to a local Lorentz frame: in this case the line element reads

ds? = —(dz°)? + 6;;dx'da? + O(|2? |*)da®dx?; (1)

the effect of GWs on test masses is described by the equation for geodesic
deviation in this frame

i = —Riat, (2)

where we have called Réko the linearized Riemann tensor [I5].

Recently Baskaran and Grishchuk have shown the presence and importance
of the so-called magnetic component of GWs and have computed the detector
pattern in the low frequencies approximation [I3]. Actually a more detailed
angular and frequency dependences of the response functions for the magnetic
components can be given in the same approximation (i.e. wavelength much
larger than the linear dimensions of the interferometer), with a specific applica-
tion to the parameters of the LIGO and Virgo interferometers.

Before starting with the analysis of the response functions of interferometers,
a brief review of Section 3 of [13] is necessary to understand the importance of
the “magnetic” components of GWs. In this paper we use different notations
with respect the ones used in [I3]. We work with G =1, ¢ =1and i =1
and we call ho (s + 24+) and hy (ty + 24) the weak perturbations due to the +
and the x polarizations of the GW which are expressed in terms of syncrony



coordinates tyu, Ty, Yut, 211 in the transverse-traceless (TT) gauge. In this way
the most general GW propagating in the z; direction can be written in terms

of plane monochromatic waves [15] [16] 17, [18]

T (tee + 2et) = hoy (tee + Ztt)e;(f;) + hy(ts + Ztt)e;(uxz) =

(3)

= hyoexpiw(ty + ztt)e,(j,) + hyoexpiw(ty + ztt)e,g,x,),

and the correspondent line element will be

ds® = dt?, — dz2 — (1 + hy)da?, — (1 — hy)dy?, — 2hydzyday. (4)

The wordlines 4, Y4, 2¢¢ = const are timelike geodesics which represent
the histories of free test masses [15, [I7]. The coordinate transformation z® =
2@ (2% from the TT coordinates to the frame of the local observer is [13] [19]

_ 1(..2 24V} 1 i
t =ty + (25 — yir)he — 3T0yhx
— o h, —lu.h 1 b, —1 h
T =Ty + 5T+ — 3Yulx + 5Te2eelq — FYzeelix
- Loh, — Lo h 1 he — 1 h
Y =Yu + 3Yhy — 3Tuhx + Y2y — 5Tuzulix

1/,.2 217 1 ]
2= 24 — 31(% — Yi)ht + 5T0Yihx.

In eqs. (@) it is hy = 2 and hy, = L

b = —5;. The coefficients of this trans-
formation (components of the metric and its first time derivative) are taken
along the central wordline of the local observer [I3] [14, [19]. We emphasize that,
in refs. [I3, 19] it has been shown that the linear and quadratics terms, as
powers of zf;, are unambiguously determined by the conditions of the frame of
the local observer while the cubic and higher-order corrections are not deter-
mined by these condictions, thus, at high-frequenies, the expansion in terms of
higher-order corrections breaks down [13] [14].

Considering a free mass riding on a timelike geodesic (z =11, y = lo, 2 = I3)
[13] eqs. @) define the motion of this mass with respect the introduced frame
of the local observer. It is

2(t) =11 + $[lihe (t) — laho (8)] + Lll3hy (t) + Llalshy (t)
y(t) = lo — L[lohy () + lihw (8)] — Slalsho (t) + Slilshy (t) (6)
2(t) = ls = (18 = 13) g (t) + 2l lah (1),

which are exactly eqs. (13) of [I3] rewritten using our notation. In absence of
GWs the position of the mass is (I1,l2,13). The effect of the GW is to drive the
mass to have oscillations. Thus, in general, from egs. (B]) all three components
of motion are present [13].



Neglecting the terms with h+ and hy in egs. (@) the “traditional” equations
for the mass motion are obteined [15] [17, [1§]

J,'(t) =1+ %[llh+(f) — lghx(f)]
y(t) = lo — 3[lahy (t) + lihy (1)) (7)

Cleary, this is the analogue of the electric component of motion in electrod-
inamics [13], while equations

2(t) =l + $hlshy (t) + Slalshy (t)
y(t) = la — 3lalshy (t) + $hlshx (1) (8)

2(8) = 1y — (2 — )hi (1) + 2nalah (1),

are the analogue of the magnetic component of motion. One could think
that the presence of these magnetic components is a “frame artefact” due to the
transformation (&), but it has to be emphasized that in Section 4 of [I3] egs.
() have been obteined directly by the geodesic deviation equation too, thus the
magnetic components have a really physical significance. The fundamental point
of [13] is that the magnetic component becomes important when the frequency
of the wave increases, like it is shown in Section 3 of [13], but only in the low-
frequencies regime. This can be understood directly from eqs. ([@). In fact,

using eqs. ([B) and eqs. (@), eqs. (6) become
z(t) =l + 3[lhe(t) — lahx (t)] + Flilswhy (t) + Flolswhy (t)

y(t) = lo — L[lohy () + lihy (8)] — Slalswhy () + 2l1l3why (t) 9)
Z(t) = lg - %[(l% - l%)wh+(t) + Qlegth (t)

This also means that the terms with h+ and hy in egs. ([6) can be neglectet
only when the wavelenght goes to infinity [13] while at high-frequencies, the
expansion in terms of wl;l; corrections, with ¢ = 1,2, 3, breaks down [13] [14].

Now let us compute the total response functions of interferometers for the
magnetic components.

Equations (6]), that represent the coordinates of the mirror of the interfer-
ometer in presence of a GW in the frame of the local observer, can be rewritten
for the pure magnetic component of the + polarization as

2(t) =1y + $hlshy(t)
y(t) = lo — Lll3hy (t) (10)

2(t) =13 — 2(13 — 13)hy(t),



where l1,l2 and [3 are the umperturbed coordinates of the mirror.

To compute the responce functions for an arbitrary incoming direction of
the GW we have to remember that the arms of our interferometer are in the
@ and ¥ directions, while the x,y, z frame is the frame of the local observer
(i.e. the observer is assumed located in the position of the beam splitter) in
phase with the frame of the propagating GW. Then we have to make a spatial
rotation of our coordinate system:

u = —xcosfcosp+ysing + zsinbcos
v = —zcosfsing—ycos¢p+ zsinfsin ¢ (11)
w = rsinf + zcos b,

or, in terms of the x,y, z frame:

xr = —ucosfcos¢ — vcoshsing + wsinfb
y = wsin ¢ — v cos ¢ (12)
z = wusinfcos¢+ vsinfsing + wcosh.

In this way the GW is propagating from an arbitrary direction 7 to the
interferometer (see figure 2). Because the mirror of eqs. (I0) is situated in the
u direction, using eqs. ([I0), (II) and (I2) the u coordinate of the mirror is given
by

1 5
where we have defined
A = sin 6 cos ¢(cos? 0 cos® ¢ — sin? ¢), (14)

and L = /13 + 13 + 3 is the lenght of the arms of the interferometer.
The computation for the v arm is parallel to the one above. Using eqs. (I0)),
(@) and [@2)) the coordinate of the mirror in the v arm is:

1 .
v=1L+ ZL?Bh+(1t), (15)
where we have defined

B = sin fsin ¢(cos” 6 cos? ¢ — sin? @). (16)

3 The response function of an interferometer for
the magnetic contribution of the + polarization

Equations (I3) and ([I3) represent the distance of the two mirrors of the interfer-
ometer from the beam splitter in presence of the GW (i.e. only the contribution
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Figure 2: a GW propagating from an arbitrary direction



of the magnetic component of the + polarization of the GW is taken into ac-
count). They represent particular cases of the more general form given in eq.
(33) of [13].
A “signal” can also be defined in the time domain (i.e. T = L in our nota-
tion):
0T(t)  wu—w

| L iL(A ~ B)is (b). (17)

The quantity (I7) can be computed in the frequency domain using the
Fourier transform of h defined by

hy(w) = / h dth (t) exp(iwt), (18)

— 00

obtaining

5TT(W) = Hr—;agn (w)ﬁ‘i‘ (w)7

where the function

H;fmgn(w) = —%iwL(A - B)=

(19)
= —JiwLsin[(cos® 0 + sin 2¢H‘32ﬂ)](cos ¢ —sing)

is the total response function of the interferometer for the magnetic com-
ponent of the + polarization that is in perfect agreement with the result of
Baskaran and Grishchuk (egs. 46 and 49 of [13]). In the above computation the
derivation theorem of the Fourier transform has been used.

We emphasize that in our work the z,y, z frame is the frame of the local
observer in phase with respect the propagating GW, while in [I3] the two frames
are not in phase (i.e. in our work the third angle is put equal to zero, this is
not a restriction as it is known in literature, see for example [12]).

In figures 3 and 4 the absolute value of the response functions (I9) of the
Virgo (L = 3Km) and LIGO (L = 4Km) interferometers to the magnetic com-
ponent of the + polarization of GWs for § = 7 and ¢ = % are respectively
shown in the low-frequency range 10Hz < 100H z. This value grows with fre-
quencies. In figures 5 and 6 the angular dependence of the response function
(@) of the Virgo and LIGO interferometers to the magnetic component of the

+ polarization of GWs for f = 100H z are shown.

4 Analysis for the x polarization

The analysis can be generalized for the magnetic component of the x polar-
ization too. In this case, equations (@) can be rewritten for the pure magnetic
component of the x polarization as
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Figure 3: the absolute value of the total response function of the Virgo interfer-
ometer to the magnetic component of the + polarization of GWs for 6 = 7 and
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Figure 5: the angular dependence of the response function of the Virgo interfer-
ometer to the magnetic component of the + polarization of GWs for f = 100H z
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Figure 6: the angular dependence of the response function of the LIGO interfer-
ometer to the magnetic component of the + polarization of GWs for f = 100H z
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a(t+2) =l + lalshy (t + 2)
y(t +2) = lo + 2lil3hy (t + 2) (20)

Z(t + Z) = lg — %lllghx(t + Z)

Using eqs. (20), (II) and ([I2) the u coordinate of the mirror situated in the
u arm of the interferometer is given by

1 .
u=L+ ZchhX(t). (21)
where we have defined

C = —2cosf cos® psin fsin ¢, (22)

while the v coordinate of the mirror situated in the v arm of the interferometer
is given by

v=L+ iLzDhX (t). (23)

where it is
D = 2cos 6 cos ¢sin § sin? ¢. (24)

Thus, with an analysis parallel to the one of previous Sections, it is possi-
ble to show that the response function of the interferometer for the magnetic
component of the x polarization of GWs is

anmgn(w) = —wT(C—- D)=
(25)
= —iwLsin 2¢(cos ¢ + sin ¢) cos f

that is in perfect agreement with the result of Baskaran and Grishchuk (egs.
46 and 50 of [I3]). In figure 7 and 8 the absolute value of the total response
functions (25) of the Virgo and LIGO interferometers to the magnetic compo-
nent of the X polarization of GWs for § = 7 and ¢ = % are respectively shown
in the low- frequency range 10Hz < 100H z. This value grows with frequencies
in analogy with the case seen in previous Section for the magnetic component
of the + polarization. In figure 9 and 10 the angular dependence of the total
response function (23)) of the Virgo and LIGO interferometers to the magnetic

components of the x polarization of GWs for f = 100H z are shown.

5 The total response function of interferometers
in the full theory of gravitational waves

The low-frequencies approximation, that has been used in previous Sections to
show that the “magnetic” and “electric” contributes to the response functions

12
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Figure 9: the angular dependence of the total response function of the Virgo
interferometer to the magnetic component of the x polarization of GWs for
f=100Hz

14



Figure 10: the angular dependence of the total response function of the LIGO
interferometer to the magnetic component of the x polarization of GWs for
f=100Hz
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can be identificated without ambiguity in the longh-wavelenght regime (see also
[13]), is sufficient only for ground based interferometers, for which the condition
f < 1/L is in general satisfed. For space-based interferometers for which the
above condition is not satisfed in the high-frequency portion of the sensivity
band [13] [14] 22] 23] the full theory of gravitational waves has to be used.

If one removes the low-frequencies approximation, to compute the total re-
sponse functions of interferometers generalized in their full frequency depen-
dence, an analysis parallel to the one used for the first time in [I6] can be used:
the so called “bounching photon metod”. We emphasize that this metod has been
generalized to scalar waves, angular dependence and massive modes of GWs in
[12]. This is also a part of a more general problem of finding the null geodesic
of light in the presence of a weak gravitational wave [13] [15], 20, 211, 22| 23].

In this section we compute the variaton of the proper distance that a photon
covers to make a round-trip from the beam-splitter to the mirror of an interfer-
ometer [I2], [16] with the gauge choice (). In this case one does not have the
necessity of introducting the frame of the local observer (see also Section 5 of
[13]). In this way, with a treatment parallel to the one of [12 [16], the analysis
is translated in the frequency domain and the general response functions are
obtained.

A special property of the T'T gauge is that an inertial test mass initially at
rest in these coordinates, remains at rest throughout the entire passage of the
GW [15] [16], [18]. Here we have to clarify the use of words * at rest”: we want
to mean that the coordinates of the test mass do not change in the presence of
the GW. The proper distance between the beam-splitter and the mirror of our
interferometer changes even though their coordinates remain the same [I5, [16].

We start from the + polarization. In this case the interval (@) takes the form
(i.e. in this Section the coordinates of the TT gauge are called ¢, z,y, 2):

ds® = —dt* +dz* + [L + hT (t + 2)]d2® + [1 + b (t + 2)]dy?. (26)

But we recall that the arms of our interferometer are in the @ and @
directions, while the z,y, z frame is the proper frame of the incoming GW.
We can write for the metric tensor (see Chap. (10) of [17] ):

ik 8:1:1 a’ﬂk 1
- o' 5;6”"9

By using eq. (), eq. (I2) and eq. [27), in the new rotated frame, the line
element (26]) in the @ direction becomes:

m, (27)

ds® = —dt* + [1 + (cos? 0 cos® ¢ — sin® ¢)h ™ (t + usin 6 cos ¢)]du?. (28)

It has to be emphasized that in the line element (28)), differently from that in
eq. 2 of ref. [I6], where, because of the simplest geometry, there is a purely time
dependence, there are a spatial dependence in the u direction and an angular
dependence too. Thus our analysis is more general than the analysis of [16],

16



and parallel to the one of Section 7 of [12] for the angular response function of
the scalar component.

A good way to analyze variations in the proper distance (time) is by means
of “bouncing photons” (see [12 13| [16, 20} 21], 22] and figure 1). A photon can
be launched from the beam-splitter to be bounced back by the mirror.

The condition for null geodesics (ds? = 0) in eq. (28) gives the coordinate
velocity of the photon:

9 (du)2 B 1
dt [1+ (cos? @ cos? ¢ — sin? ¢)h+(t + usinf cos ¢)]’
which is a convenient quantity for calculations of the photon propagation
time between the the beam-splitter and the mirror [12] [I6]. We remember that
the beam splitter is located in the origin of the new coordinate system (i.e.
up, = 0, v = 0, wp, = 0). We know that the coordinates of the beam-splitter
up = 0 and of the mirror w,, = L do not changes under the influence of the
GW, thus one can find the duration of the forward trip as

v

(29)

L
() = /O T du (30)

t' +usinfcos @)’
with
t'=t—(L—u).
In the last equation ¢’ is the retardation time (i.e. ¢ is the time at which the

photon arrives in the position L, so L —u =t —t').
To first order in h™ this integral can be approximated with

cos? 0 cos® ¢ — sin® ¢
2

L

T(t) =T+ / ht (¢ + usin @ cos ¢)du, (31)
0

where

T=L

is the transit time of the photon in the absence of the GW. Similiary, the
duration of the return trip will be

cos? @ cos® ¢ —

Ty(t) =T + 5

9 0
- (b/ R (' + usin @ cos ¢)(—du), (32)
L

though now the retardation time is
t'=t—(u—1).

The round-trip time will be the sum of T(¢) and Ti[t — T5(t)]. The latter
can be approximated by T (t — T') because the difference between the exact and
the approximate values is second order in h™. Then, to first order in h™, the
duration of the round-trip will be

17



Tro(t) = Tu(t — T) + Ta(t). (33)

By using eqs. (@I) and ([B2) one sees immediatly that deviations of this
round-trip time (i.e. proper distance) from its imperurbated value are given by

OT(t) = fcosdsin® o [ Lp+ (4 _ 9T — y(1 — sinf cos §))+ ”
+hT(t + u(1 + sin @ cos ¢))]du.

Now, using the Fourier transform of the + polarization of the field, defined
by eq. (I8)) one obtains , in the frequency domain:

6T (w) = (cos® O cos? ¢ — sin? @) H, (w, 0, $)h T (w) (35)
where
ﬁu (wv 97 (b) = 2w_(11:;p2(§l;f2) ) +

(36)
— sin 0 cos ¢p((1+exp(2iwL)—2expiwL(1—sin 6 cos ¢)))
+ 2iw(14sin 6 cos? ¢) ’

and we immediately see that qu(w, 0,¢9) — L when w — 0.
Thus, the total response function of the arm of the interferometer in the
direction to the 4+ component of the GW is:

2 2 .2

(cos® 0 cos® ¢ — sin® @) (w0, 6), (37)
2L

where 2L = 27T is the round trip time in absence of gravitational waves (note
that in [I6] the Laplace transform is used. Here the Fourier one is used because
we are going to grafic the frequency response functions of the Virgo and LIGO
interferometer for the two polarizations of the GW, see also [12]).

In the same way the line element (26) in the @ direction becomes:

T, (w) =

ds® = —dt® + [1 + (cos? Osin ¢ — cos? p)hT (t + vsin O sin ¢)]dv?, (38)

and the response function of the v arm of the interferometer to the + polar-
ization of the GW is:

(cos? fsin? ¢ — cos? ¢)

N B -
where now it is
Hy(@,6,9) = sriramgants

(40)
— sin 0 sin ¢((1+exp(2iwL)—2 exp iwL(1—sin @ sin ¢)))

+ 2iw(1+sin? O sin? ¢) )

18



with H,(w,0,¢) — L when w — 0. In this case the variation of the distance
(time) is . y .
6T (w) = (cos? f cos? ¢ — cos? @) H,(w, 0, p)h T (w). (41)

From equations (35) and (1]), the total distances of the two arms in presence
of the + polarization of the GW and in the frequency domain are:

Ty(w) = (cos? 0 cos® ¢ — sin? @) H, (w, 0, p)h T (w) + T. (42)

Ty (w) = (cos® B cos? ¢ — cos® p)H,(w, 0, ¢)ht (w) + T, (43)

that are particular cases of the more general equation (39) of [I3].
Thus the total frequency-dependent response function (i.e. the detector
pattern) of an interferometer to the + polarization of the GW is:

(@) = T (W) - T} w) =

s2 s2 p—sin? r]
_ (co 9c02L¢> ¢) Hu(w, 0, ¢)+ (44)

N (cos® 0 sin22£z§—cos2 b) E[v (w, 9, ¢)

that in the low frequencies limit (w — 0), if one retains the first two terms
of the expansion, is in perfect agreement with the detector pattern of eq. (46)
of [I3] for the + polarization:

H*(w—0) = 3(1 + cos? ) cos 2¢+
(45)
—fiwL sin 0[(cos? f + sin 2(;51“7;529)]@05 ¢ — sin ).

This result also confirms that the magnetic contribution to the distance is an
universal phenomenon because it has been obtained starting by the full theory
of gravitational waves in the TT gauge (see also [13]).

Now the same analysis can be made for the x polarization. In this case,
from eq. (@) it is:

ds? = —dt* + dz2? + da® + dy® + 20" (t + 2)dzdy (46)

for the line element, and, by using eq. (), eq. [I2) and eq. @7, in the
new rotated frame, the line element (@8] in the @ direction becomes:

ds* = —dt* + [1 — 2 cos 6 cos ¢ sin ph ™ (t + usin 6 cos ¢)]du?. (47)

In this way the response function of the u arm of the interferometer to the
x polarization of the GW is:
—cosfcospsing ~
1) = ~R0ROME g .6,9). (45)
In the same way the line element (@G) in the T direction becomes:
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ds® = —dt* + [1 + 2 cos B cos ¢ sin ph™ (t + w sin O sin ¢)]dv? (49)

and the response function of the v arm of the interferometer to the x polar-
ization of the GW is:

cos9002¢sin¢ﬁv(w,9,¢) (50)

Thus the total frequency-dependent response function of an interferometer
to the X polarization of the GW is:

TX(w) =

v

— cosf cos ¢sin ¢
L

that in the low frequencies limit (w — 0) is in perfect agreement with the
detector pattern of eq. (46) of [I3] for the x polarization::

I’}X(w) = [E[u(w=9=¢) +ﬁv(w=9=¢)] (51)

H*(w — 0) = — cos Osin 26 — iwL sin 2¢(cos ¢ + sin ¢) cos b, (52)

while the total distances of the two arms in presence of the xpolarization of
the GW and in the frequency domain are:

Ty(w) = (cos B cos ¢sin ¢)Hy (w, 0, p)h > (w) + T. (53)

T, (w) = (— cos b cos ¢psin ¢)H,(w, 0, p)h* (w) + T, (54)

that also are particular cases of the more general equation (39) of [13]. We
also emphasize that the total low frequencies response functions of eqs. ([@H) and
[#3) are more accurate than the ones of [24] [25] because our equations include
the “magnetic” contribution (see also [13]).

Then, we have shown that a generalization of the analysis of [16] works
in the computation of the response functions of interferometers and that our
results in the frequency domain are totally consistent with the results of [13].
Thus our results confirm the presence and importance of the so-called “magnetic”
components of GWs and the fact that they have to be taken into account in the
context of the total response functions of interferometers for GWs propagating
from arbitrary directions.

In figs. 11 and 12 the absolute values of the total response functions of
the Virgo interferometer for the + and x polarizations of gravitational waves
propagating from the direction ¢ = 7 and ¢ = % are shown respectively. The
same for the LIGO interferometer is shown in figs. 13 and 14. We can see from
the figures that at high frequencies the absolute values of the response functions
decreases respect to the constant value of the low frequencies approximation.
Finally, in figs. 15 and 16 the angular dependence of the total response functions
of the Virgo interferometer to the 4+ and X polarizations of GWs for f = 100H z
are shown, while in figs. 17 and 18 the same angular dependences are shown for
the LIGO interferometer.

20



0.61

2000 4000 000 8000 10000

0.59 -
0.58

0.57 ¢

Figure 11: the absolute value of the total response function of the Virgo in-

terferometer to the + polarization of the gravitational waves for 8§ = I and
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Figure 15: the angular dependence of the total response function of the Virgo
interferometer to the + polarization of GWs for f = 100H z

6 Conclusion remarks

In this paper more detailed angular and frequency dependences of the response
functions for the magnetic components of GWs have been given in the approx-
imation of wavelength much larger than the linear dimensions of the interfer-
ometer, with a specific application to the parameters of the LIGO and Virgo
interferometers. Our results agree with the work of [I3] in which it has been
shown that the identification of “electric” and “magnetic” contributions is un-
ambiguous in the longh-wavelenght approximation. At the end of this paper
the angular and frequency dependences of the total response functions of the
LIGO and Virgo interferometers have been given. In the high-frequency regime
the division on “electric” and “magnetic” components become ambiguous, thus
the full theory of gravitational waves has been used. Our results are consistent
with the ones of [13] in this case too.

Acknowledgements
I would like to thank Maria Felicia De Laurentis and Giancarlo Cella for helpful
advices during my work. I strongly thank the referee for its interest in my work

and for precious advices and comments that allowed to improve this paper and
gived to me a better knowledge of the physics of the “magnetic” components of

25



Figure 16: the angular dependence of the total response function of the Virgo
interferometer to the x polarization of GWs for f = 100H z
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