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Abstract

Advanced laser interferometers gravitational wave detectors may need to substan-

tially reduce the Q-factor of test mass normal modes to eliminate parametric in-

stability. In this paper we investigate various ring damper configurations for two

different laser beam geometries. We show that there is a well defined location near

the mid point of a test mass where the thermal noise degradation from the ring

damper is minimised. A Q-factor reduction by a factor of 5 can be obtained for at

least 30% of the investigated normal modes at the cost of a 1% increase in thermal

noise as seen by a 5 cm diameter incident laser beam. Ring dampers can be up to

about 10 mm wide while maintaining minimum thermal noise effect contribution.

Of the remaining modes, 30% are very weakly damped.
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1 Introduction

The long baseline gravitational wave detectors LIGO and VIRGO are oper-

ating at their design sensitivity [1] or are close from it [2]. However it is well

known that an approximate 10-fold increase in sensitivity is required to be cer-

tain of detecting known sources at a reasonable rate. To achieve the required

increased sensitivity it is proposed that the laser power in the optical cavities

be increased roughly 100-fold. This very high power combined with the require-

ment of very low thermal noise introduces the risk of opto-acoustic parametric

instability [3,4]. The parametric gain which must be less than unity to avoid

instability, scales with both optical power and acoustic Q-factor. However it

is now well understood that thermal noise is only directly linked to test mass

Q-factor in the limit of homogeneous acoustic losses [5]. In the case of low

loss test masses with localised sources of damping the thermal noise penalty

can be low [6]. DeSalvo, Torrie and Gretarsson [7] suggested that there exist

a ring position on the test mass wall where losses have a minimum contribu-

tion to the thermal noise. In preliminary work we have already assessed the

noise contribution to test masses from localised losses at their circumference

[8]. These studies led to the idea of using carefully designed ring dampers

to degrade acoustic mode Q-factors without increasing thermal noise. In this

paper we present a thermal noise analysis for possible ring dampers. Our goal

is to design the parameters of a damping scheme that will achieve significant

increase in the acoustic loss of test mass normal modes that are likely to cou-

ple to parametric instability processes, at minimal cost in thermal noise. We
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Table 1

Model properties.

Material Young’s modulus Poisson ratio Density Structural loss

[GPa] [g/cm3]

Sapphire Al2O3 400 0.23 3.983 10−8

Silica SiO2 70 0.17 2.200 10−8

restrict our consideration to laser beams of Gaussian and mesa beam profile

[9,10].

In section 2 we describe our model and the numerical methods used in this

simulation. In section 3 we evaluate the thermal noise effect of various damp-

ing ring configurations while in section 4 we evaluate the achievable acoustic

mode damping for 20 acoustic modes due to the lossy ring. In section 5 we

summarise our results and determine the most optimal ring damper configu-

ration.

2 Model

In this paper we use finite element modelling to analyse the effect of a ring

damper on mirror thermal noise, and test its ability to suppress acoustic mode

Q-factors. The analysis was carried out for both sapphire and fused silica

materials. The thermal noise analysis was based on full size 3D models whereas

for the modal analysis, we used planar symmetries to model one quarter of

the test mass in the shape of a wedge. Symmetry constraints were applied to

the nodes at the x-z and y-z planes which correspond to the flat sides of the

wedge, for the purpose of reducing the computational time. However by using

planar symmetries we were limited to those acoustic modes which possess such
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symmetry properties. Due to the small thickness and localisation of the ring

damper, we took special care to obtain adequate mesh density in modelling

the surface of the test mass side wall. To do so, several types of elements

were used such as: 10-node tetrahedral and 20-node brick structural elements

with transitional pyramid elements at these elements interface. The highest

concentration of elements was at the side wall which was meshed entirely with

brick elements, whereas the centre of the model was meshed with tetrahedral

elements with less dense meshing. The brick elements allowed us to simulate

a wide range of ring damper widths. The limit on minimum width was set by

the dimension of brick elements in the z-direction. We confirmed the validity

of our results by comparing models with different mesh densities.

We modelled cylindrical test masses with thickness of 130 mm and radius of

157 mm. Material properties used for this simulation are shown in Table 1. In

our analysis we considered two sources of loss: the structural loss related to the

test mass substrate and the ring damper loss. We assumed that structural loss

was frequency independent and equal to 10−8 for both materials although some

experimental data indicates frequency dependence of the fused silica loss angle

[11,13]. We also did not include surface losses from optical coatings. These two

assumptions allowed us to simplify the simulations which were already very

complex and computationally intensive. Since optical coatings are the main

source of the thermal noise in a test mass, neglecting coating loss results in

overestimated contribution of the ring damper to the increase of the thermal

noise. In other words, our results are only valid for non-coated test masses.

Thus, the results presented here sets the upper limit of a thermal noise change

due to the strip. The effect of frequency dependent loss is considered separately

in section 6.2.

We defined our ring damper as a 20μm thick strip with various widths and loss
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angles. Additionally we assumed that the ring is a part of the model substrate.

Thus it has exactly the same elastic properties as a substrate except for the loss

which is a variable. With this ring definition the problem of contact elements is

eliminated. We believe that this simplification is not inconsistent with practical

designs as long as the ring is well acoustically impedance matched to the

substrate. For example it could be created as a hard sputtered coating. Our

results show that for rings less than 10 mm wide the loss contribution scales

linearly with width. It also scales with volume and loss angle. Thus from our

results rings can be defined by scaling the loss angle and ring volume. However

we note that there are rather few hard materials with loss angles high enough

to allow damping strips as thin as we assumed.
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Fig. 1. Effect of a Gaussian laser beam size on thermal noise as a function of a strip

position. In our simulation the laser beam is represent as a pressure profile applied

on the front face of the test mass corresponding to x=130mm. The strip is 20μm

thick, 1 mm wide with loss of 10−2.
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3 Thermal noise analysis

Thermal noise analysis was carried out for four different laser beam configura-

tions. Test masses were made from either fused silica or sapphire. We consid-

ered Gaussian beams of 3,4 and 5 cm diameter and a mesa beam of diameter

10.4cm was also considered. The dissipation energy method [5] was adopted

for this analysis. By this method the thermal noise spectral density S(f) is

determined by an integral over the volume dv of the test mass of a product

of the strain energy E(r) and the loss angle φ(r), normalised by a Boltzman

factor and the laser beam profile. Thermal noise was estimated according to

the following formula

S(f) =
4kBT

πf

∫ E(�r)

F0(�r)2

φ(�r)√
φ2(�r) + 1

dv, (1)

where F0(�r) is the transverse pressure profile corresponding to the laser beam

profile produced by an oscillatory force integrated over the mirror face, kB

is Boltzmann’s constant, f is frequency, and T is temperature. We do not

make any assumtion about the small phase between strain and stress. Eqn.1

is a more general form of Levin’s formula which allows us to estimate thermal

noise for loss angle φ ≤ 1. A more detailed discussion of the mathematical

formalism is given in Appendix 6.1.

Since it was essential to precisely estimate strain energy at the model side wall

surface due to the applied pressure at the front face, we had to use inertia relief

[12]. This technique balances the applied pressure by inertial forces induced

by an acceleration field. We found that using any symmetry constrains on our

test mass model causes inaccurate inertia relief calculation, which has direct

impact on the surface energy estimation. Only the full model was free from
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these undesired effects thereby ensuring that the strain energy was correctly

estimated.

Our results show a clear thermal noise minimum position for the ring damper,

but not exactly at the centre of the test mass side wall. We investigated how

this thermal noise minimum position depends on laser beam size, ring position

and width of the ring. Figure 1 shows how the Gaussian beam profile affects

the thermal noise, for various locations of a 1 mm damping ring. The noise

contribution reduces almost 10-fold when the ring is located at the 60 mm

position, compared with one near a face. Each curve represents a different

Gaussian beam spot size, 3, 4 and 5 cm, respectively. The y-axis corresponds

to the percentage increase of the thermal noise due to the strip compared with

the intrinsic modal thermal noise of the substrate read out by the same sized

laser beam.

The effect of the strip width on the thermal noise is shown in Fig.2 and
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Fig. 2. Effect of the strip width on thermal noise as a function of a strip position

for fused silica test masses. Both figures show thermal noise results for various strip

widths as read out by (a) Gaussian laser beam with diameter of 5 cm and (b) Mesa

laser beam with diameter of 10.4 cm, respectively. The ring is 20μm thick, with loss

of 10−2..The front face is at x = 130 mm.
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Fig.3. We analysed 6 different strip widths assuming that the loss angle was

10−2. Thermal noise was estimated for Gaussian beams with diameter of 5

cm and mesa beams with diameter of 10.4 cm. Figure 4 shows how thermal

noise increases as the strip width increases, for all strips located at the optimal

noise position. It is clear that mesa beam is more susceptible to the strip loss

in comparison to the Gaussian beam. The linearity of the curves for small

strip widths shows that for relatively narrow strips, there is no noise penalty

in increasing the strip width such that φ · V olume remains constant. This

point is discussed further below.

4 Acoustic modes

We now go on to consider the damping of the normal modes for various damp-

ing ring configurations. The damping is represented in terms of quality factor

variations. The quality factor Q is defined as follow
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Fig. 3. Same as Fig.2 but for sapphire test masses.
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Fig. 4. Dependence of minimal thermal noise on strip width for fixed strip loss

angle. ΔTNmin represents percentage degradation of a test mass modal thermal

noise with the ring in respect to the modal thermal noise without the ring. Strip is

defined in the same way like in the previous figures.

Qn =

∫
En(�r)dv∫

En(�r)[ φ(�r)√
φ2(�r)+1

]dv
, (2)

where En is the stored energy density for a given acoustic mode n, φ is the

loss angle. The derivation of this formula is presented in Appendix 6.1.

Figure 5 shows damping of the first 10 acoustic modes for a sapphire test mass

with a 1 mm ring at the position of minimal thermal noise. It is clear that

some modes are poorly suppressed for such a strip configuration. Therefore

we investigated the width and loss angle of the strip in more detail. To do this

we set constraints on the minimum acceptable thermal noise amplification.

We analysed three different strip configurations for which thermal noise would

increase by 1, 2 and 4%, respectively. Figure 6 shows the excess loss for the

first 10 modes in a fused silica test mass, and the first 20 modes in a sapphire

test mass. In each case we calculated the excess noise when a strip of 1 mm
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Fig. 5. En example of acoustic modes suppression due to a 1mm strip with various
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width has a loss contribution that causes 1%, 2% and 4% TN degradation

of the thermal noise, respectively. In order to allow estimation for various

combinations of the strip width and loss angle for the given thermal noise

constraints, we produced maps of strip width versus loss angle as shown in

Fig.7 and Fig.8. Each contour represents percentage thermal noise degradation

estimated at the minimum positions. These maps allow us to choose losses for

different strip widths.

The dependence of strip width on quality factor is shown in Fig. 9. Each line

represents a mode excess loss as a function of a strip width with loss angle

causing 1% thermal noise degradation. In this figure we can see 6 distinctive

patterns of Q-factor reduction, marked with letters. The modes marked A

have the greatest strain energy at the ring position while the modes E and F

have weak coupling to the ring. Because some modes have similar shapes, their

energy distributions are comparable. Figure 11 in the Appendix 6.3 shows the

strain energy on the side walls. From that plot we can easily see that for some

modes the ring damper may be very ineffective (Fig. 9 and Fig. 11F) whereas
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Fig. 6. Acoustic mode losses for different thermal noise constraints. A 1 mm strip

is located at the optimal position where thermal nose reaches minimum. The loss

angles used for sapphire were 7.3 · 10−3, 1.5 · 10−2 and 3.1 · 10−2 corresponding to

1%, 2% and 4% TN degradation, respectively. For fused silica,the loss angles were

chosen to be 9.0 · 10−3, 1.8 · 10−2 and 3.7 · 10−2. The Y-axis represents an excess

loss due to the strip. φring and φbulk is the loss angle of the strip and the substrate,

respectively.

other would be well damped (Fig.9 and Fig. 11A).

5 Discussion and Conclusion

Our numerical analysis reveals interesting aspects of ring damper design. First

of all, the minimum thermal noise location is rather a shallow minimum, and

there is no null point. Some curves show a point of inflection in the region 80 -

120 mm, and especially in sapphire with mesa beams this becomes secondary

minimum. The shallowness of the minima means that damping rings may be

wide without creating additional thermal noise as long as φ · width remains

constant. Our experience in modelling different thicknesses of damping rings

leads us to believe that for rings located at the thermal noise minimum, with
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Fig. 7. Thermal noise map for a fused silica test mass model. Figure (a) and (b)

corresponds to Gaussian and mesa laser beam profile, respectively. Each contour

represents thermal noise amplification for a given strip configuration. For example, a

5 mm wide strip in Fig. 7a with loss angle of 2·10−3 could increase test mass thermal

noise by 1% with respect to the substrate thermal noise read out by Gaussian laser

beam of 5cm.
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Fig. 8. Same as in Fig.7 but for the case of sapphire substrate.

width less than 10 mm, the thermal noise contribution and the Q-reduction

scale directly as the product of φ · ringvolume. Thus our 20 μm ring thickness

with φ ∼ 10−2 could be replaced by a 2 mm thickness with φ ∼ 10−4, as long

as it is acoustically matched to the test mass. Our results show that small

beam spots sizes appear to show lesser thermal noise degradation. While this
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is true, we must remember that thermal noise increases inversely with spot

size, so that there is no advantage in using smaller spots. The apparent disad-

vantage of mesa beams also disguises the intrinsically lower thermal noise of

this configuration. The most important conclusion of this work is that the ring

damper reduces the Q-factor of normal modes by varying degrees. A typical

practical configuration can reduce the Q-factor of 30% of the normal modes

by a factor of 5. To achieve one order of magnitude Q-reduction of more than
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Fig. 9. Normal mode losses achievable by various strip configurations giving 1%

thermal noise degradation. This plot represents 20 acoustic modes of the sapphire

mirror. The loss angle was chosen in such way that for all strip widths the thermal

noise increase was 1% compared with the bare substrate read out by a 5 cm Gaussian

beam. The Y-axis has the same meaning as in Figure 6. The curves show that

the narrowest strip gives the highest degradation, expect for mode groups E and

F where degradation is small under all circumstances. The flatness of the modal

curves between 0 and 10 mm again emphasise that strip width up to 10 mm scales

as φ × Vring.
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half of the normal modes will have a thermal noise cost of ∼ 5%. Since Q-

degradation was estimated with respect to the constant substrate loss, the

results of our analysis provides information about the effectiveness of strip

performance on the Q-value independent of the complications associated with

surface losses. As detailed in Appendix 6.2, the frequency dependence of the

loss angle in fused silica is responsible for additional decreasing of the Q-factor

as the resonant frequency increases. This means that despite the Q-reduction

due to the ring, there is an intrinsic factor which may cause additional degra-

dation. For instance, the 10th resonant mode Q-factor should be 58% smaller

than for assumed 108 value.

We recommend experimental studies of ring dampers using instruments such

as the LIGO Thermal Noise Interferometer at Caltech. Effort will be required

to identify suitable vacuum compatible, dense and hard damping materials

that can be bonded to test masses. Optical coatings, if thick enough, could be

useful candidates.

We have presented contour curves that allow the definition of damping ring

parameters in terms of thermal noise degradation. This can be used to de-

sign possible damping rings. However, because the analysis depends on the

test mass geometry, these curves are only strictly valid for the particular test

mass geometry considered here. Moreover, optical coatings, which we do not

consider here, have a significant impact on thermal noise. Such a loss source

lowers the percentage degradation of the thermal noise due to the strip itself

but also sets the higher thermal noise level due to this additional loss.

For the purpose of predicting parametric instability in advanced GW de-

tectors it is necessary to know the quality factors of ∼ 103 normal modes.

Unfortunately the solution of equation 2 is extremely computationally inten-

sive and the full solution including optical coatings is beyond our computa-
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tional resources at the moment. In future work we expect to be able to obtain

quantitive estimates of the reduction of parametric gain achievable using ring

dampers.
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6 Appendix

6.1 Derivation of the energy dissipation

Dissipation can be defined as

ΔE =<
dE

dt
>=< F · q̇ >, (3)

where q is the displacement(or strain) due to the applied force(or stress). If the

force(stress) is in the form of F = F0sin(ωt), than displacement(strain) may

be written as q = q0sin(ωt−σ) where σ is the angle by which displacement lags

behind the applied force(stress). The energy dissipation may now be written

as

ΔE =< F0ωq0sin(ωt)cos(ωt− σ) >=
1

2
F0ω0sin(σ), (4)

Because the total strain energy in an acoustic mode (an analogy to the total

energy of the spring) is Emode = 1
2
F0q0, therefore ΔE = ωEmaxsin(σ).

The definition of the loss angle in anelastic solid is

φ(ω) =
ImY (ω)

ReY (ω)
, (5)

where Y is the Young modulus. Since the angle between |Y | and ReY (ω)

corresponds to the lag angle σ we can write φ = tan(σ). It is clear that if

σ � 1 hence φ � σ and ΔE = ωEmaxφ. This is the Levin result [5]. However

for arbitrary σ we have

sin(σ) = sin(tan−1(φ)) =
φ√

φ2 + 1
, (6)
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where tan−1(x) = sin−1( x√
x2+1

).

therefore

ΔE = ωEmode(
φ√

φ2 + 1
) (7)

Substituting the energy dissipation in the Eqn.1 in Levin’s paper [5] we obtain

the displacement noise spectral density given by

S(f) =
4kBT

πf

∫
E(�r)

F0(�r)2

φ(�r)√
φ2(�r) + 1

dv, (8)

which is a more general result than that of Levin. This is the equation used

in section 3.

The quality factor is defined as

Q = 2π
Emode

Ecycle

= 2π

∫
Emode(�r)dv∫
Ecycle(�r)dv)

(9)

where Emode is the total strain energy stored in a mode and Ecycle is the total

energy dissipation per one cycle in a given mode. Ecycle = (2π/ω)ΔE thus

substituting Ecycle in above equation we get

Q =

∫
Emode(�r)dv∫

Emode(�r)[
φ(�r)√
φ2(�r)+1

]dv
. (10)

6.2 Fused silica loss frequency dependence

Recently it has been reported that fused silica loss angle may be frequency

dependent. Penn et al. [10] have shown that

φbulk = a · f b, (11)
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where a, b are constants, and f is the frequency. According to the authors these

constants vary dependent on the sample. For our consideration we adopt one

of the suggested values of 7.15 · 10−12 and 0.822 for a and b, respectively.

Therefore the substrate loss angle value in Fig. 10 corresponds to the mode

frequency in the range from 5 kHz up to few 100 kHz. Because we have studied
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Y-axis represents the excess loss due to the strip whereas the left Y-axis corresponds

to the excess loss due to the frequency dependence of the intrinsic loss. Each dashed

line corresponds to the first 10 modes of the fused silica test mass. The solid line is

the Q-degradation due to the frequency dependent intrinsic loss φbulk(f) with respect

to the fixed intrinsic loss φbulk = 10−8 used throughout in this paper. The strip is 1

mm wide with a loss angle of φring = 9.0 · 10−3. The dashed vertical line shows the

position of the 10th acoustic mode. The loss angle for this particular mode is 2.3

times bigger then the assumed value 10−8. It is clear that for some modes it could

be a dominant Q-reduction factor.

only modes in the small range from 5 kHz up to 20 kHz the bulk loss angle can

be reduced at most by a factor of 2.3 in respect to assumed constant 10−8value.

Thus for the frequency dependent loss, the Q-factor can be in fact 0.6 orders
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of magnitude smaller than our assumption. However according to Fig. 10 it

can be seen that for high frequencies Q-reduction becomes less effective as the

bulk loss increases for a given ring damper configuration. In the high frequency

regime the bulk loss plays crucial role in the Q-reduction, as shown in Fig. 10.
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6.3 Acoustic mode strain energy
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Fig. 11. Strain energy concentration in the side wall of test masses. Each plot

corresponds to a different mode family shown in Figure 9. The intensity on the

plots is related to the energy value, the lighter the spots the higher the energy at

this position. The X-axis indicates the circumferential angle of a quadrant of the

test mass.
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