Next Generation Interferometers

-

0

Shanghai 2009

G0900982-v1

Rana Adhikari Caltech

Need ~10x
 better SNR to
 make regular
 detections.

Need low
 frequency
 sensitivity for
 massive black
 holes.

LIGO Hanford

MIT

Univ of Maryland

Caltech

LIGO Livingston

Google

Image © 2006 MDA EarthSat

LIGO Hanford

LIGO Livingston

Image © 2006 MDA EarthSat

Michelson Interferometer

Interferometer Optical Layout

Interferometer Optical Layout

Interferometer Optical Layout

Parameter	LIGO I	Adv LIGO
Equivalent strain noise, minimum	3x10 ⁻²³ /rtHz	2x10 ⁻²⁴ /rtHz
Neutron star binary range	45 Mpc	600 Mpc
Omega GW	3x10 ⁻⁶	1.5-5x10 ⁻⁹
Interferometer configuration	Power-recycled MI w/ FP arm cavities	LIGO I, plus signal recycling
Laser Power in Arm Cavities	15 kW	800 kW
Test masses	Fused silica, 10 kg	Fused Silica, 40 kg
Seismic wall frequency	40 Hz	10 Hz
Beam size	4 cm	6 cm
Test mass Q	Few million	200 million
Suspension fiber Q	Few thousand	~30 million

Quad Suspensions

Quadruple pendulum:

- » ~10⁷ attenuation @10 Hz
- » Controls applied to upper layers; noise filtered from test masses

 Seismic isolation and suspension together:

» 10⁻¹⁹ m/rtHz at 10 Hz

Magnets

Electrostatic

 Fused silica fiber
 Welded to 'ears', hydroxycatalysis bonded to optic

Active Isolation Table

Active Isolation Table

- Inertial sensors for feedback (0.3 -30 Hz)
- Passive isolation (f > 1 Hz)
- Feed Forward (0.1 5 Hz)
- Stiff table (resonances > 100 Hz)

Installation of Seismic Platform

Calibrate HAM-ISI Performance 3/13/09

Large Optics

A

- Size: 34 cm wide, 20 cm thick => 40 kg
- Material: Heraeus
 Suprasil 3001 Fused
 Silica
- Bulk Absorption: 0.2 ppm/cm
- Coating absorption:0.5 ppm/bounce
- High Q -> low thermal noise

300 mm 0.35 nm rms, after subtracting tilt, astigmatism and power

Ultra Stable, High Power CW Laser

Should we consider Recycling?

Signal-recycled Interferometer

Signal-recycled Interferometer

Signal-recycled Interferometer

NS-NS Inspiral Range [Mpc]

BH-BH (30/30) Inspiral Range [Mpc]

Gravity Gradient Noise

FEA of Ground

FEA of Ground

)	Nois	se Cancellation
	\bigcirc	Accelerometers measure ground motion
		Adaptive algorithm estimates GG noise

Wiener Filter $x[n] = \sum a_i w[n-i]$

Norbert Wiener, MIT

Block Toeplitz

Input Signal (PEM) Covariance Matrix

Summary: Optimism

- Ideas + designs beginning for 3rd gen. 0
- Preliminary data in ~2014-2015 0