

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900453-v2

LIGO

3/10/10

ETM-Telescope

Comparison of Off-axis Parabolic Telescope with Spherical Mirror Secondary, or Triplet Lens

Michael Smith

Distribution of this document: LIGO Scientific Collaboration

This is an internal working note of the LIGO Laboratory.

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory P.O. Box 1970 Mail Stop S9-02 Richland WA 99352 Phone 509-372-8106 Fax 509-372-8137 Massachusetts Institute of Technology LIGO Project – NW22-295 185 Albany St Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

LIGO Livingston Observatory P.O. Box 940 Livingston, LA 70754 Phone 225-686-3100 Fax 225-686-7189

http://www.ligo.caltech.edu/

Table of Contents

1	Intr	oduction	7
2	Phy	sical Layout of the ETM Telescope	7
	2.1	Off-axis Parabolic Design	7
	2.2	Hybrid Parabolic/Spherical Mirror Design	7
	2.3	Hybrid: Parabolic Mirror Primary with Triplet Lens Secondary	10
3	Tele	escope Performance	10
U	31	Paraholic Telescone	11
	31	1 Output Beam Contour	11
	3.1	2 Spot Diagram	11
	3.1.	3 Wavefront Aberration	12
	3.1.	4 Parabolic Telescope Case: Effect of Telescope Tilt	13
	3.2	Parabolic Primary with Spherical Secondary	13
	3.2.	1 Incidence Angle 3.9 Deg.	14
	3.2.	2 Incidence Angle 5.0 Deg.	16
	3.2.	3 Incidence Angle 6.1 Deg.	19
	3.2.	4 Incidence Angle 4.3 Deg.	21
	3.2.	5 Ellipticity and Aberration vs Incidence Angle on Secondary Spherical Mirror	24
	3.2.	4.3 Deg Incidence Angle Case: Effect of Telescope Tilt	24
	3.3	Hybrid: Parabolic Mirror Primary with 150mm EFL Triplet Lens Secondary	25
	3.3.	1 ZEMAX Sequential Model	25
	3.3.	2 Output Beam Contour	25
	3.3.	3 Spot Diagram	26
	3.3.	4 Wavefront Aberration	28
	3.3.	5 150mm EFL Triplet Lens Secondary Case: Effect of Telescope Tilt	28
	3.4	Hybrid: Parabolic Mirror Primary with 125mm EFL Triplet Lens Secondary	29
	3.4.	1 ZEMAX Sequential Model	29
	3.4.	2 Output Beam Contour	29
	3.4.	3 Spot Diagram	29
	3.4.	4 Wavefront Aberration	31
4	Con	parison of Off-axis Parabolas with the Hybrid Telescope for the Hartmann Refere	nce
B	eam		31
	4.1	Off-axis Parabolic Telescope	31
	4 2	Hybrid Telescone Suberical Secondary with 4.3 Degree Incidence Angle	33
	л. <u>2</u>	Hybrid Telescope, Spherical Secondary with 4.5 Degree medence ringe	
	4.3 Design	Hybrid: Parabolic Mirror Primary with 150mm EFL Triplet Lens Secondary	
	4.4 Deci-	Hydrid: Paradolic Mirror Primary with 125mm EFL Triplet Lens Secondary	
	Desigi	157	
	4.5	Summary	39

Figures

Figure 1: ZEMAX Sequential Model, Off-axis Parabolic	7
Figure 2: ZEMAX Sequential Model, 4.3 Deg Incidence Angle	8
Figure 3: ETM Telescope/Transmon with Suspension	9
Figure 4: ZEMAX Sequential Model. Off-axis Parabolic Primary with Triplet lens Secondary	10
Figure 5: Physical Optics Output Beam Contour. Parabolic Telescope	
Figure 6: Spot Diagrams through Focus for 0 deg Field and -0.18 deg Field. Parabolic Telesco	ne DDe
Case	12
Figure 7: Wavefront Aberration on-axis. Parabolic Telescope	13
Figure 8: ZEMAX Sequential Model. 3.9 Deg Incidence Angle	14
Figure 9: Physical Optics Output Beam Contour, for 3.9 Deg Incidence Angle	. 15
Figure 10: Wavefront Aberration, for 3.9 Deg Incidence Angle	16
Figure 11: ZEMAX Sequential Model. 5.0 Deg Incidence Angle	16
Figure 12: Physical Optics Output Ream Contour, for 5.0 Deg Incidence Angle	. 17
Figure 13. Wavefront Aberration for 5.0 Deg Incidence Angle	. 18
Figure 14: ZEMAX Sequential Model 6.1 Deg Incidence Angle	19
Figure 15: Physical Ontics Output Ream Contour for 6.1 Deg Incidence Angle	20
Figure 16: Wavefront Aberration for 6 1 Deg Incidence Angle	21
Figure 17: 7FMAX Sequential Model 43 Deg Incidence Angle	21
Figure 18: Physical Ontics Output Ream Contour for 4 3 Deg Incidence Angle	21
Figure 19: Snot Diagrams through Focus for 0 deg Field and -0 18 deg Field 4 3 Deg Incidence	יי בב יף
Anole Case	23
Figure 20: Wavefront Aberration for 4.3 Deg Incidence Angle	20
Figure 21: Physical Optics Output Beam Contour Parabolic Primary with 150mm EFL Triplet	
Lens Secondary	26
Figure 22: Spot Diagrams through Focus for 0 deg Field and -0 18 deg Field 150mm EFL Tric	n 20 olet
Lens Secondary Case	
Figure 23. Wavefront Aberration Parabolic Primary with 150mm FFL Triplet Lens Secondary	28
Figure 24: Physical Optics Output Ream Contour Parabolic Primary with 125mm EFL Triplet	
Lens Secondary	29
Figure 25: Spot Diagrams through Focus for 0 deg Field and -0 18 deg Field 125mm FFL Trir	n 2> nlet
Lens Secondary Case	30
Figure 26: Wavefront Aberration Parabolic Primary with 125mm FFL Triplet Lens Secondary	31
Figure 27: 7FMAX Sequential Model Off-axis Parabolic	32
Figure 28: Physical Optics Hartmann Ream Contour for Off-axis Parabolic	32
Figure 20: Wavefront Aberration of Hartmann Ream for Off-axis Parabolic	33
Figure 30: 7FMAX Sequential Model 4 3 Deg Incidence Angle Spherical Secondary	33
Figure 31: Physical Ontics Hartmann Ream Contour for 4 3 Deg Incidence Angle Spherical	55
Secondary	34
Figure 32: Wavefront Aberration Hartmann Ream for 4 3 Deg Incidence Angle Spherical	57
Secondary	35
Figure 33. Physical Ontics Hartmann Ream Contour for Parabolic Mirror Primary with 150m	55 m
FEI Triplet Lens Secondary	
Figure 34: Wavefront Aberration Hartmann Ream for Parabolic Mirror Primary with 150mm	50
FEI Triplet Lens Secondary	37

Figure 35: Physical Optics Hartmann Beam Contour, for Parabolic Mirror Primary with 125mn	n
EFL Triplet Lens Secondary	. 38
Figure 36: Wavefront Aberration Hartmann Beam, for Parabolic Mirror Primary with 125mm	
EFL Triplet Lens Secondary	. 39

Tables

Table 1: Ellipticity and Aberration vs Telescope Tilt, Parabolic Telescope	13
Table 2: Ellipticity and Aberration vs Incidence Angle, Spherical Secondary	24
Table 3: 4.3 Deg Incidence Angle Case: Ellipticity and Aberration vs Telescope Tilt	25
Table 4: Ellipticity and Aberration vs Telescope Tilt. 150mm EFL Triplet Lens Secondary Ca	se 28
Table 5: Ellipticity and Aberration of Hartmann Ref. Beam	39
$=\cdots + \sum_{r} \cdots +$	

Abstract

The purpose of this technical note is to describe the ellipticity and wavefront distortion of a parabolic telescope and a hybrid ETM Telescope, comprised of an off-axis parabolic primary mirror and a 1) spherical secondary mirror, or 2) triplet lens secondary. The telescope is part of the Transmon System for aLIGO.

LIG0

1 Introduction

The purpose of this technical note is to describe the ellipticity and wavefront distortion of a hybrid ETM Telescope, comprised of an off-axis parabolic primary mirror and a 1) spherical secondary mirror, or 2) triplet lens secondary.

2 Physical Layout of the ETM Telescope

A preliminary design layout of the Transmon System with the ETM Telescope placed below the Transmon optical table, is shown in Figure 3. Various designs are considered for the ETM Telescope.

2.1 Off-axis Parabolic Design

Off-axis parabolic mirrors form a reflective telescope, as shown in Figure 1. The ZEMAX layout is rotated 180 degrees from the actual position in the Transmon System. The primary focal length is 2000 mm, and the secondary focal length is 66.7 mm. The input aperture is 190 mm, and the telescope has a speed of f/11. The on-axis beam and the -1.8 deg off-axis Hartmann beam are shown.

Figure 1: ZEMAX Sequential Model, Off-axis Parabolic

2.2 Hybrid Parabolic/Spherical Mirror Design

The hybrid design of the ETM Telescope will retain the off-axis parabolic primary mirror, but will use a spherical secondary mirror, as shown in Figure 2. The spacing between the first fold mirror, F1, and the secondary mirror will be reduced to the smallest practical distance of approximately 5.5 in. (140 mm).

The spherical secondary mirror will be steered in the vertical plane to minimize the angle of incidence on the secondary mirror. The practical minimum incident angle is 4.3 degrees at the surface of the secondary mirror.

Figure 2: ZEMAX Sequential Model, 4.3 Deg Incidence Angle

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

Figure 3: ETM Telescope/Transmon with Suspension

2.3 Hybrid: Parabolic Mirror Primary with Triplet Lens Secondary

The hybrid design of the ETM Telescope will retain the off-axis parabolic primary mirror, but will use a triplet achromatic lens for the secondary element. A third fold mirror will be placed at the approximate location of the prior spherical mirror. The entire telescope assembly will be placed beneath the Transmon optical table.

In order to accommodate the 0.532nm Hartman reference beam, the clear aperture of the triplet lens must be > 25mm. A commercially available triplet lens with a 25mm clear aperture was chosen. The effective focal length is 125mm—this results in a magnification of 16 rather than the original design value of 30.0. The 1064nm beam is aligned on the axis of the triplet lens; the 0.532nm Hartmann beam is displaced from the optical axis by approximately 6mm, as shown in Figure 4.

Figure 4: ZEMAX Sequential Model, Off-axis Parabolic Primary with Triplet lens Secondary

3 Telescope Performance

The telescope was focused to obtain the smallest output spot at the focal plane of a paraxial 100mm EFL lens. This places the output beam waist approximately at the output of the telescope.

The wavefront function was calculated by the ZEMAX wavefront map analysis program.

The contour of the output beam was calculated using the Physical Optics Propagation program with an input beam waist of 11.5 mm located 2000 m in front of the telescope primary mirror.

The spot diagram is produced in ZEMAX by tracing rays and measuring the geometric spot size in the vicinity of the focal plane of the 100mm EFL paraxial lens. The black circle in the diagram is the Airy disc, which represents the diffraction spot size. The Rayleigh range can be estimated as the distance away from the focus where the geometric spot is equal to the Airy disc diameter.

3.1 Parabolic Telescope

3.1.1 Output Beam Contour

Figure 5: Physical Optics Output Beam Contour, Parabolic Telescope

The beam ellipticity was calculated by taking the ratio of the x and y widths of the beam contour.

3.1.2 Spot Diagram

The parabolic telescope exhibits negligible astigmatism on axis, and also with a -0.18 deg tilt of the input beam in the plane of the telescope.

Figure 6: Spot Diagrams through Focus for 0 deg Field and -0.18 deg Field, Parabolic Telescope Case

3.1.3 Wavefront Aberration

The parabolic telescope exhibits diffraction limited performance on-axis and at the -0.18 deg field angle.

LIGO-T0900453-v2

Figure 7: Wavefront Aberration on-axis, Parabolic Telescope

3.1.4 Parabolic Telescope Case: Effect of Telescope Tilt

The parabolic telescope retains diffraction-limited performance over the entire range of tilt angles.

Telescope Tilt, Deg	Ellipticity	Aberration,
		waves peak to valley
0	1.000	0.0001
-0.05	1.005	0.0228
-0.1	1.05	0.0842
-0.18	1.04	0.2249
0.1	1.07	0.0830
0.18	1.08	0.2245

 Table 1: Ellipticity and Aberration vs Telescope Tilt, Parabolic Telescope

3.2 Parabolic Primary with Spherical Secondary

The following analysis was made with a range of incidence angles at the secondary spherical mirror from 3.9 deg to 6.1 deg, and a wavelength of 1064 nm.

LIG0

3.2.1 Incidence Angle 3.9 Deg.

This is the smallest incidence angle that is practical with the physical constraints of the ETM Telescope/Transmon table.

3.2.1.1 ZEMAX Sequential Model

Figure 8: ZEMAX Sequential Model, 3.9 Deg Incidence Angle

LIG0

3.2.1.2 Output Beam Contour

Figure 9: Physical Optics Output Beam Contour, for 3.9 Deg Incidence Angle

LIGO

3.2.1.3 Wavefront Aberration

Figure 10: Wavefront Aberration, for 3.9 Deg Incidence Angle

3.2.2 Incidence Angle 5.0 Deg.

3.2.2.1 ZEMAX Sequential Model

Figure 11: ZEMAX Sequential Model, 5.0 Deg Incidence Angle

3.2.2.2 Output Beam Contour

Figure 12: Physical Optics Output Beam Contour, for 5.0 Deg Incidence Angle

Figure 13: Wavefront Aberration, for 5.0 Deg Incidence Angle

3.2.3 Incidence Angle 6.1 Deg.

3.2.3.1 ZEMAX Sequential Model

Figure 14: ZEMAX Sequential Model, 6.1 Deg Incidence Angle

3.2.3.2 Output Beam Contour

Figure 15: Physical Optics Output Beam Contour, for 6.1 Deg Incidence Angle

Figure 16: Wavefront Aberration, for 6.1 Deg Incidence Angle

3.2.4 Incidence Angle 4.3 Deg.

3.2.4.1 ZEMAX Sequential Model

Figure 17: ZEMAX Sequential Model, 4.3 Deg Incidence Angle

3.2.4.2 Output Beam Contour

Figure 18: Physical Optics Output Beam Contour, for 4.3 Deg Incidence Angle

3.2.4.3 Spot Diagram

The telescope exhibits considerable astigmatism on axis, and with a -0.18 deg tilt of the telescope, as shown in the spot diagram.

Figure 19: Spot Diagrams through Focus for 0 deg Field and -0.18 deg Field, 4.3 Deg Incidence Angle Case

23

3.2.4.4 Wavefront Aberration

Figure 20: Wavefront Aberration, for 4.3 Deg Incidence Angle

3.2.5 Ellipticity and Aberration vs Incidence Angle on Secondary Spherical Mirror

The ellipticity was measured from the beam contour plots and is summarized in Table 2: Ellipticity and Aberration vs Incidence Angle.

Incidence Angle, Deg	Ellipticity	Aberration,
		waves peak to valley
3.9	1.048	0.3877
4.3 (note)	1.063	0.474
5.0	1.081	0.6245
6.1	1.12	0.8931

Table 2: Ellipticity and Aberration vs Incidence Angle, Spherical Secondary

Note: The 4.3 degree case is for the proposed telescope beam configuration, which is slightly different from the other cases, with a secondary mirror focal length of 65.4 mm, instead of 66.7 mm.

3.2.6 4.3 Deg Incidence Angle Case: Effect of Telescope Tilt

Telescope Tilt, Deg	Ellipticity	Aberration,
		waves peak to valley
0	1.07	0.4771
-0.05	1.03	0.1968
-0.1	1.19	0.3586
-0.18	1.57	0.3932
0.05	1.10	0.7716
0.1	1.05	0.9126
0.18	1.09	0.5986

 Table 3: 4.3 Deg Incidence Angle Case: Ellipticity and Aberration vs Telescope Tilt

3.3 Hybrid: Parabolic Mirror Primary with 150mm EFL Triplet Lens Secondary

3.3.1 ZEMAX Sequential Model

The ZEMAX model is shown in Figure 4.

3.3.2 Output Beam Contour

Figure 21: Physical Optics Output Beam Contour, Parabolic Primary with 150mm EFL Triplet Lens Secondary

3.3.3 Spot Diagram

The telescope is well behaved on axis, but exhibits considerable astigmatism with a -0.18 deg tilt.

Figure 22: Spot Diagrams through Focus for 0 deg Field and -0.18 deg Field, 150mm EFL Triplet Lens Secondary Case

27

LIG0

3.3.4 Wavefront Aberration

Figure 23: Wavefront Aberration, Parabolic Primary with 150mm EFL Triplet Lens Secondary

3.3.5 150mm EFL Triplet Lens Secondary Case: Effect of Telescope Tilt

Table 4: Ellipticity and Aberration vs Telescope Tilt, 150mm EFL Triplet Lens Seconda	ary
Case	

Telescope Tilt, Deg	Ellipticity	Aberration,
		waves peak to valley
0	1.000	0.1095
-0.05	1.34	0.5355
-0.1	1.71	1.1001
-0.18	3.35	2.1071
0.1	1.51	0.8663
0.05	1.22	0.4472

3.4 Hybrid: Parabolic Mirror Primary with 125mm EFL Triplet Lens Secondary

3.4.1 ZEMAX Sequential Model

The ZEMAX model is shown in Figure 4.

3.4.2 Output Beam Contour

Figure 24: Physical Optics Output Beam Contour, Parabolic Primary with 125mm EFL Triplet Lens Secondary

3.4.3 Spot Diagram

The telescope is well behaved on axis, but exhibits considerable astigmatism with a -0.18 deg tilt.

LIG0

Figure 25: Spot Diagrams through Focus for 0 deg Field and -0.18 deg Field, 125mm EFL Triplet Lens Secondary Case

3.4.4 Wavefront Aberration

Figure 26: Wavefront Aberration, Parabolic Primary with 125mm EFL Triplet Lens Secondary

4 Comparison of Off-axis Parabolas with the Hybrid Telescope for the Hartmann Reference Beam

The Hartman Reference beam reflects from the outer surface of the reaction mass of the ETM mirror suspension. This beam is incident on the primary mirror of the telescope with a maximum angle of approximately -0.18 degrees in the plane of the telescope mirrors.

The green beam in the figures is the 0.532 nm Hartmann reference beam.

The contour of the Hartman reference beam at the output of the telescope was calculated using the Physical Optics Propagation program as before, by launching a Gaussian beam with a waist of 8.3mm located a distance 2E6 mm in front of the ETM telescope. The telescope was tilted by -0.18 deg about an axis located at the AR surface of the ETM mirror to simulate the input angle of the Hartmann reference beam that reflects from the 0.1 deg vertically tilted AR surface of the ETM.

4.1 Off-axis Parabolic Telescope

Figure 27: ZEMAX Sequential Model, Off-axis Parabolic

Figure 28: Physical Optics Hartmann Beam Contour, for Off-axis Parabolic

LIGO

Figure 29: Wavefront Aberration of Hartmann Beam, for Off-axis Parabolic

4.2 Hybrid Telescope, Spherical Secondary with 4.3 Degree Incidence Angle

Figure 30: ZEMAX Sequential Model, 4.3 Deg Incidence Angle Spherical Secondary

Figure 31: Physical Optics Hartmann Beam Contour, for 4.3 Deg Incidence Angle Spherical Secondary

LIGO

Figure 32: Wavefront Aberration Hartmann Beam, for 4.3 Deg Incidence Angle Spherical Secondary

4.3 Hybrid: Parabolic Mirror Primary with 150mm EFL Triplet Lens Secondary Design

Figure 33: Physical Optics Hartmann Beam Contour, for Parabolic Mirror Primary with 150mm EFL Triplet Lens Secondary

Figure 34: Wavefront Aberration Hartmann Beam, for Parabolic Mirror Primary with 150mm EFL Triplet Lens Secondary

4.4 Hybrid: Parabolic Mirror Primary with 125mm EFL Triplet Lens Secondary Design

Figure 35: Physical Optics Hartmann Beam Contour, for Parabolic Mirror Primary with 125mm EFL Triplet Lens Secondary

Figure 36: Wavefront Aberration Hartmann Beam, for Parabolic Mirror Primary with 125mm EFL Triplet Lens Secondary

4.5 Summary

The telescope performance for the Hartmann reference beam is summarized below.

Telescope	Ellipticity	Aberration, waves peak to valley
Off-axis Parabolic	1.017	0.4879
Hybrid, with 4.3 deg incidence spherical secondary	1.59	0.800
Hybrid, with 150mm EFL Triplet Lens Secondary	2.9	4.10
Hybrid, with 125mm EFL Triplet Lens Secondary	3.4	2.05

 Table 5: Ellipticity and Aberration of Hartmann Ref. Beam