

SIS Stationary Interferometer Simulation

• Overview

- » Purpose of SIS
- » How FFT is used
- » What kind of physics are included
- Application
 - » What kind of analyses were done using SIS
- Internals
 - » The code structure
 - » User Interface

SIS Basic Motivation

- AdvLIGO design tool
- Interferometer configuration trade study
- Effect of finite size optics
 - » BS, flat, wedge angle, baffle, etc
- Tolerance of radius of curvature of COC mirrors
- Surface aberration
 - » Requirements of the surface quality to satisfy the limit of loss in arm, total of 75ppm
- Subsystem performance simulation
 - » TCS, ISC, COC, AOC, ...
- Parametric instability
 - » highly distorted field, hard to be expressed by simple functions

G0900912-v1

LIGO Stationary Interferometer Simulation - overview -

Variable FFT parameters

W for each optic, N for each propagator

FFT Basic Optics and fields

G0900912

Mirror - 1

			1) HR/AR surface	
			•Surface shape (x,y)	
AR surfac	е	HR surface	•Transmittance / reflectance (x,y)	
Γ	transmission in substrate	θ _{ΑΟΙ}	2) Transmission	
			•Phase (x,y)	
			- \bullet Loss (x,y)	
			3) Finite angle of incidence	
			• $R*\cos(\theta), R/\cos(\theta)$	
			4) Implicit small wedge angle5) Microscopic shift and rotation	

Mirror - 2

• F(x,y)

- » C-like math expression
 - Standard functions zernike, hermite, etc
 - $(x^*x+y^*y) / (2 * ITM_RH)$ for ring heater correction
- » Build-in functions
 - Hello-Vinet thermoelastic and thermalphase functions
 - Random surface generator with f⁻ⁿ spectrum
- » Data loaded from a file
 - With specified Zernike terms subtracted
 - Auto conversion of mesh structure
- » Combination of these
 - DATAFILE("data.dat", {0,1,2,3,4,10}) + 1e-8*wyko(10,r,theta)

Mirror - 3

- Hello-Vinet thermoelastic and thermalphase functions
 - » THERMOELASTIC(beamSize, Psubs, Pcoat [, T0])
 - » THERMALPHASE(beamSize, Psubs, Pcoat [, T0])
- Fused silica
- When arguments are negative, absolute absorption powers are calculated using the previous distribution
 - » Iteration to find a stationary thermal state
 - First run : no thermal effect
 - Second run : thermal effect using the power in the first run
 - Nth run : thermal effect using the power in the previous run
 - » Several times of iteration

Beam Splitter

• Mirror object

- » Without
 - Transmission property
 - Hello-Vinet thermal functions
 - Angle of incidence
- » With
 - Wedge angle

 $\mathbf{M}_{\text{prt}} = \begin{bmatrix} \frac{\cos\theta_2 \cos\theta_4}{\cos\theta_1 \cos\theta_3} & \frac{L\cos\theta_1 \cos\theta_4}{n\cos\theta_2 \cos\theta_3} \\ 0 & \frac{\cos\theta_1 \cos\theta_3}{\cos\theta_2 \cos\theta_4} \end{bmatrix}$

G0900912-v1

Dynamics Locking using CR error signal

- Error signal = imag(CR*SB)
 ~ imag(CR * promptly reflected CR)
- Adjust ETM to lock arm, adjust RM to lock recycling cavity

G0900912-v1

Dynamics Signal Sideband Generation

- Calculate stationary field in the arm in a static cavity system
- Calculate signal field generated by a stationary motion of ITM and ETM
 - » Motion = $\delta(x,y) \sin(\Omega_{AF} t)$
- Calculate stationary field in the static cavity system with this induced field ($\Omega = \omega_0 + \Omega_{AF}$) as the source

$$\begin{split} E_{ref}(x, y, t) &= \exp(2ik\delta(x, y) \cdot \sin(\Omega_{AF}t)) \cdot \exp(i\omega_0 t) \cdot E_{in}(x, y) \\ &\approx \{\exp(i(\omega_0 + \Omega_{AF})t) - \exp(i(\omega_0 - \Omega_{AF})t)\} \cdot k\delta(x, y) \cdot E_{in}(x, y) \\ &+ \exp(i\omega_0 t) \cdot E_{in}(x, y) \end{split}$$

G0900912-v1

Hiro Yamamoto at FFT Mtg @ LMA on September 30, 2009

11

TELESCOPE

- Telescope can be attached to any cavity fields by using
 - » TELE_SPACE(distance)
 - » TELE_LENS(fNumber, radius, x0, y0)
 - » TELE_MIRROR(ROC, thetaAOI, phiAOI, radius, x0, y0)
- Same Nfft
- Automatic scaling of Wfft

Analysis tool

- No data visualization
 - » Save data and use matlab
- Fit fields by effective Gaussian shape
 - » w_x , w_y , ROC_x , ROC_y , x0, y0
- Mode expansion
 - Hermite, Laguerre with arbitrary number of nodes

```
+++ Field "toRM" +++
Mode base : z = -1.707187 z0 = 0.74866
          : w = 0.001253804 R = -2.0355
Fit result : (wX, wY) = (0.0012309, 0.0015143) R(x/y) = (-1.860827, -1.770486)
            (x0,y0)=(-4.334e-09, -1.387e-10) power / HMfrac = 14.44152 / 0.07849
Amplitude = ( Re, Im ) [ subPower, fraction ]
    only those modes are listed whose powers > 10^{-8} of the total power
HG(0, 0) = (-3.6480170222451, 2.4981415189107e-05) [13.308028195214, 0.92151171216148]
HG(2, 0) = (-0.2226676904413, -0.17207008010871)
                                                     [ 0.079189012835078, 0.0054834271262119 ]
                                                     [ 0.031935713756877, 0.0022113820192973 ]
HG(0, 2) = (-0.1481305109545, 0.099965321393146)
 G0900912-v1
                       Hiro Yamamoto at FFT Mtg @ LMA on September 30, 2009
```


To be done

Implement full configuration

- » Single recycling, Dual recycling
- » Locking algorithm
- » Fast convergence algorithm
- Speed up the XR3-XR2 cavity simulation
- n(x,y,z) : 3D refractive index table to calculate the BS thermal lens effect

SIS Applications

• FP arm

- » Study of surface specification
- » Comparison of test mass surfaces polished by 3 vendors
- » Compensation Plate Thermal shied non uniformity
- » Thermal deformation and loss in the arm
- Coupled cavity
 - » Diffraction in the stable cavity
 - » Trade study of stable and marginally stable cavity
 - Wedge angle effect
 - » Astigmatism due to finite angle of incidence
 - » Surface roughness specification of recycling mirror optics
 - » Optimal Michelson cavity mode with small ITM thermal effect on going

mirror rms requirement

Thermal effect and arm power loss and signal loss

- Absorption rate vs arm power loss
- Effect of absorption imbalance
- Effect of the ITM thermal lens on the resonating mode in the arm cavity
- Signal loss due to thermal effect
- Using one ring heater vs two ring heaters

LIGO Thermoelastic bumps affect resonating mode

Large loss when absorptions

G0900912-v1

LIGO Thermal lens affects the signal loss TEM00 mode power coming out of the arm

Transient of fast lens (ring heater lens) to slow lens (compensation plate)

Thermal lens (ITM+CP)

□ perfect cancelation
△ pure 0.5ppm abs
★ 1ppm abs + RH lens

G0900912-v1

G0900912-v1

Loss under different conditions

MMT aperture (cm) ଥ	B	beam size on ITM (cm)	Coupled cavity	loss on MMT3 (ppm)	
26cm	6m + 2076	6cm	Y-arm + SRM(*)	330	
26cm 02		6cm	X-arm + SRM(*)	600	
28cm	207	6cm	Y-arm + SRM	140	
26cm 22	1 + 2191m	5.5cm (**)	Y-arm + SRM	47	
26cm		5.5cm (**)	X-arm + SRM	60	
) When a baffle is plac *) <u>http://ilog.ligo-wa.c</u> d 6.2cm on ETM.	nt of ITMY, Y-arm+SRM configuration comes very close to X-arm+SRM <u>du:7285/advligo/Test_Mass_Beam_Sizes</u> , asymmetric case with 5.5cm of				

With the baffle size of Mike's choice - 214mm x 249mm - the beam going through a baffle is cut off by 250ppm. If the baffle size of 1cm larger in both direction (224mm x 259mm), the cutoff is 55ppm. The numbers in the above table were calculated without baffles.

G0900912-v1

Astigmatism by the stable Michelson cavity

Locked and detuned case

Recycling cavity resonating mode

Field determined by the injected source field Locked case : this mode is resonant Detuned case : this mode is anti resonant

G0900912-v1

Wave front distortion by astigmatism

field from R3 to R2

LIGO vs Virgo detuned case

Hiro Yamamoto at FFT Mtg @ LMA on September 30, 2009

LIGO vs Virgo locked case

G0900912-v1

Angle dependence of HOM strong dependence on θ_3

G0900912-v1

27

SIS Internals

- Object oriented code using C++
 - » ease of modification, adding compensation plate, degenerate to nondegenerate Michelson cavity, etc
 - » e2e code reused
 - Expression parser to handle mathematical formula
- FFT with adaptive grid size
 - » fftw for FFT calculation
 - » The beam size changes in a concentric configuration
 - » Mode matching telescopes can strongly focus beams
 - » Use of different number of grids (128, ..., 2048)

Using SIS workflow

Using SIS specification file

```
ITM.opt.T = 0.005
ITM.opt.R = 1 - ITM.opt.T
ITM.opt.ROC = 1971
ITM.opt.trans_phase = THERMALPHASE( beamWidth, PsubsPwr, PcoatPwr )
ITM.opt.HR_phase = THERMOELASTIC( beamWidth, PsubsPwr, PcoatPwr ) + rr/
(2*ROC_TCS) + DATAFILE( ITMMAP.dat )
```

```
ETM.opt.ROC = 2191
ETM.oscillation.amplitude = 1e-15 % 1e-9*x for rotational oscillation
ETM.opt.HR_phase = THERMOELASTIC( beamWidth, PsubsPwr, PcoatPwr ) + rr/
(2*ROC_TCS) + DATAFILE( ETMMAP.dat )
```

```
inputBeam.beamType = "LG"
inputBeam.power = 1
inputBeam.waistSize = 0
inputBeam.waistPosition = 0
inputBeam.matchToCavity = 1 % calculate waistSize and waistPosition to match
with the cold cavity
```


Using SIS main menu of actions

g analysis Field calculation	<pre>lock calcField signalGen timeTrace telescope delL modeAmp saveField mirrorInfo storeMap summary simSpec</pre>		Lock the cavity Calculate stationary field Generate audio signal by sinusoidal motion of mirrors Move mirror and save field evolution calculate telescope outputs Print and set the cavity length Decompose a field by LG or HG Save field in a file View mirror information Store mirror maps Print summary status Set simulation parameters
setting	simSpec loadSimSpec runSpec	•	Set simulation parameters load simulation setup Set run conditions, like convergence criteria
	•		