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1 Introduction 

The purpose of this document is to describe the design equations for a cantilevered flat blade 
spring, mounted at an arbitrary tilt angle, which takes a precise circular curvature under load with 
the tip of the spring having a horizontal slope. The test results of two specimen blade spring 
designs are shown. 

2 Design Equations 

The bending and deflection of a flat blade cantilever spring are calculated from fundamental 
principles.1 

The geometry of the cantilever blade spring is shown in Figure 1. 

 



 

Figure 1: Geometry of the Cantilever Blade Spring 

                                                 
1 Design of Machine Elements, M.R. Spotts, 2nd ed. 1953, Prentice-Hall, N.J 
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2.1 Theory 

2.1.1 Beam Bending 

The maximum normal stress at any cross section of the blade occurs at the outer surface of the 
blade and is proportional to applied moment, to the distance from the neutral axis of the cross 
section to the outer surface, and inversely proportional to the area moment of inertia of the cross 
section. 

Bending moment      M 

Thickness of blade     t 

Width of blade     b 

Moment of inertia of cross section   I 

For a rectangular cross section 

I
b t

3


12
   

 

Maximium normal stress 

S

M
t

2


I
  

     

  

 

The maximum strain at the outer surface of the blade is inversely proportional to the bending radius 
of the blade at the particular cross section. 

 



t

2

R
  maximum strain 

 

Introducing the modulus of elasticity through the stress/strain relationship for a material that obeys 
Hook’s law, 

S E   
 

S E
t

2 R
   

 

In general, the width of the blade is >> than the thickness, and the effective modulus of elasticity 
must be increased to account for the additional stiffness caused by the Poisson’s ratio, μ. 

 Eeff
E

1 
2

   
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The deflected shape of the blade spring will be circular with a constant radius, R, if the stress is 
equal at every cross section. The design will use a safe working stress for the material, which does 
not exceed the elastic limit. 

 S Sw  

 

2.1.2 Vertical Bounce Frequency 

The vertical bounce frequency of a mass on a spring with a spring constant k is 

f0
1

2 

k

m
   

 

 

The spring constant is defined as the ratio of vertical force to vertical displacement. 

 
k

m g

y
   

 

Substituting the spring constant into the frequency equation, we obtain 

 

f0
1

2 

g

y
   

 

which is the equation for the frequency of a pendulum of length y. This result relies on the spring 
being linear with a single spring const.  

Strangely enough, even though the blade spring is non-linear and the spring constant varies with 
deflection, the measured vertical bounce frequency of the blade spring can be predicted precisely 
by using the pendulum formula and by choosing y = ymax, the total deflection of the blade spring 
under load. 
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2.2 Design Equations 

 
Blade spring Test 45 deg 
7/2/09 

 

 

acceleration of gravity, m/s^2 g 9.8  

BLADE SPRING TEST @ 45 deg 

Faraday upper blade spring design  

yield strength of 1095 spring steel, 
psi 

Syieldpsi 84000  

Poisson's ratio   0.30  

Epsi 30 10
6

  modulus of elasticity, psi 

E 2.0685 10
11

  modulus of elasticity, Pa E Epsi 6895  

Swpsi 2.352 10
4

  working stress of 1095 spring steel, 
psi 

Swpsi Syieldpsi 0.28  

Sw

Swpsi

1.45 10
4


  Sw 1.62207 10

8
  working stress of 1095 spring steel, 

Pa 

radius of blade spring, m Rbs 14 .0254  Rbs 0.3556  

Rbsin

Rbs

.0254
  radius of blade spring, in Rbsin 14  

t
2 Rbs Sw 1 

2
 

E
  t 5.07513 10

4
  thickness of blade spring, m 

tin
t

.0254
  thickness of blade spring, in tin 0.01998  

m


4
  arc of blade spring, rad 

blade arc angle, deg mdeg   
18

m m
0

   45mdeg m  


  
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length of blade spring, in lbsin Rbsin m  lbsin 10.99557  

length of blade spring, m lbs lbsin .0254  lbs 0.27929  

xbsin Rbsin sin m   horizontal distance of suspension point 
from blade spring mount, in 

xbsin 9.89949  

ybsin Rbsin 1 cos m    vertical height of suspension  
from blade spring mount, m 

ybsin 4.10051  

ymax lbs sin m   unloaded height of blade spring, m 

vertical distance blade moves, m yr ymax ybsin 0.0254  

yr 0.09333  

f0

g

yr

2 
  

approximate vertical resonant 
frequency based on blade 
depression, Hz 

f0 1.63085  

distance along spring, m l 0  

lin
l

.0254
  distance along spring, in 

mass supported by each 
blade spring, kg 

mbs 0.2  

load on blade spring, N P mbs 9.8  P 1.96  
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Blade Shape 

b lin 
6 P Rbs sin

lin

Rbsin











Sw t
2


  blade width at l from end, m b l( ) 0  

C
6 P Rbs

.0254 Sw t
2


  C 3.94069  

bin lin 
b lin 
.0254

  blade width at l from end, in bin l( ) 0  

bin

lbsin

4









0.76879  
lbsin

4
2.74889  

bin

lbsin

2









1.50804  
lbsin

2
5.49779  

bin lbsin 0.75  2.18933  lbsin 0.75 8.24668  

bin lbsin  2.78649  lbsin 10.99557  

binmax

3 P E
2

 sin
lbs

Rbs











2 Rbs Sw
3

 1 
2

 2 0.0254

  alternative formula binmax 2.78649  

bmax binmax0.0254  bmax 0.07078  

C

2
1.97034  Rbsin 14  tin 0.01998  

x 0  

ydown 1.97034 sin
x

14






  Solid Works equation 
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yup 1.97034sin
x

14






  

S lin 
6 P Rbs sin

lin

Rbsin











b lin  t
2


  stress at lin Pa 

Sw 1.62207 10
8

  
S

lbsin

1









1.62207 10
8

  

Spsi lbsin  S lbsin  1.45 10
4

   Spsi lbsin  2.352 10
4

  

lin 0 0.01 lbsin  

0 3 6 9 12
5.43

4.89

4.34

3.8

3.26

2.71

2.17

1.63

1.09

0.54

0

0.54

1.09

1.63

2.17

2.71

3.26

3.8

4.34

4.89

5.43

bin lin 
2

bin lin 

2

lin

 8



LIGO LIGO-T0900324-v1 

 

3 Test Results 

A drawing of the loaded blade spring was placed behind and adjacent to the spring under test to 
measure the deviation from the designed radius of curvature. A vertical scale was read to measure 
the height of the tip of the blade spring above the mounting point. The spring was loaded with mass 
until the height of the loaded spring matched the design height. With this amount of load, the 
spring was given a vertical impulse, and the oscillation period was measured with a stop watch. 

3.1 45 Degree, 11 inch Blade Spring 

3.1.1 Design Values 

Material     1095 steel 

Modulus of elasticity, psi   30 E6 

Length of flat blade, in   11.00 

Width at base, in    2.786 

Thickness, in     0.020 

Vertical height of loaded spring, in   4.10 

Mass load, kg     0.200 

Radius of curvature, in   14.00 

Vertical bounce frequency, Hz  1.63 

3.1.2 Experimental Results 

The spring loaded with mass at the design height is shown in Figure 2. With this amount of load, 
the spring was given a vertical impulse, and the oscillation frequency was determined. 

The following experimental results were obtained. 

Mass load for design height  0.186 kg  error = 0.07 

Radius of curvature   14.00 +/- 0.02 

Frequency    1.65   error = 0.01  
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Figure 2: Measured Curvature of 11 in Blade Spring under Balanced Load 

3.2 45 Degree, 6.7 inch Blade Spring 

3.2.1 Design Values 

Material     1095 steel 

Modulus of elasticity, psi   30 E6 

Length of flat blade, in   6.68 

Width at base, in    2.350 

Thickness, in     0.015 

Vertical height of loaded spring, in   2.49 

Mass load, kg     0.200 

Radius of curvature, in   8.50 

Vertical bounce frequency, Hz  2.09 
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3.2.2 Experimental Results 

The spring loaded with mass at the design height is shown in Figure 3. With this amount of load, 
the spring was given a vertical impulse, and the oscillation frequency was determined. 

The following experimental results were obtained. 

Mass load for design height  0.184 kg  error = 0.08 

Frequency    2.09   error = 0.00 

Radius of curvature   6.68 +/- 0.04 

 

The radius of curvature matched the printed design profile within twice the thickness of the blade, 
as shown in the photograph in Figure 3. 

 

Figure 3: Measured Curvature of 6.7 in Blade Spring under Balanced Load 

 

 11



LIGO LIGO-T0900324-v1 

 12

3.3 22.5 Degree, 28 inch Blade Spring 

3.3.1 Design Values 

Design Values: 

Length of flat blade   11.00 in 

Vertical height of loaded spring  4.10 in 

Mass load    0.200 kg 

Radius of curvature   14.00 in 

3.3.2 Experimental Results 

TBD 
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