LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM20P Test EngineerRMC Date24/2/11

Drive Card ID.....PUM20P Monitor Card IDMON84

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- 10. Trip Circuit tests
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

Links: Check that the links W4 is present on each channel.

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	+12.017	\checkmark	2 mV
+15v TP4	+14.873	\checkmark	2 mV
-15v TP6	-15.041	\checkmark	7 mV

	1	
All Outputs smooth DC, no oscillation?		

Some pick up present

Record Power Supply Currents

Supply	Current
+16.5v	0.702 A
-16.5v	0.522 A

If the supplies are correct, proceed to the next test.

Unit	PUM20P
Test Engineer	RMC
Date	24/2/11

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.33	3	0.33v	\checkmark
2	0.33	6	0.33v	\checkmark
3	0.33	9	0.33v	\checkmark
4	0.33	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
	-	Monitor	Value	
1	0.194	2	0.195v +/- 0.01v	\checkmark
2	0.194	5	0.195v +/- 0.01v	\checkmark
3	0.195	8	0.195v +/- 0.01v	\checkmark
4	0.194	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.200	1	0.195v +/- 0.01v	\checkmark
2	0.198	4	0.195v +/- 0.01v	\checkmark
3	0.198	7	0.195v +/- 0.01v	\checkmark
4	0.197	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

Unit	PUM20P
Test Engineer.	RMC
Date	

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.338 v
R.M.S. Current in the load	117 mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	3.7 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. Connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	2 seconds
---------------------	-----------

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.498	24.9 mA
Ch2	0.495	24.7 mA
Ch3	0.489	24.4 mA
Ch4	0.494	24.7 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.656	32.8 mA	16mA	\checkmark
Ch2	0.654	32.7 mA	16mA	\checkmark
Ch3	0.650	32.5 mA	16mA	\checkmark
Ch4	0.654	32.7 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.751	37.5 mA	16mA	\checkmark
Ch3	0.749	37.4 mA	16mA	\checkmark
Ch4	0.751	37.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.751	37.5 mA	16mA	\checkmark
Ch3	0.749	37.4 mA	16mA	\checkmark
Ch4	0.751	37.5 mA	16mA	\checkmark

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.195	9.75 mA
Ch2	0.196	9.80 mA
Ch3	0.190	9.50 mA
Ch4	0.193	9.65 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.422	21.10 mA	16mA	\checkmark
Ch2	0.423	21.15 mA	16mA	\checkmark
Ch3	0.416	20.80 mA	16mA	\checkmark
Ch4	0.420	21.00 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729	36.45 mA	16mA	\checkmark
Ch2	0.730	36.50 mA	16mA	\checkmark
Ch3	0.728	36.40 mA	16mA	\checkmark
Ch4	0.730	36.50 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.749	37.45 mA	16mA	\checkmark
Ch2	0.749	37.45 mA	16mA	\checkmark
Ch3	0.748	37.40 mA	16mA	\checkmark
Ch4	0.750	37.50 mA	16mA	\checkmark

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.18	5.91	295 mA
Ch2	4.18	5.91	295 mA
Ch3	4.16	5.88	294 mA
Ch4	4.14	5.85	292 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.57	7.87	393 mA	400mA	
Ch2	5.58	7.89	394 mA	400mA	
Ch3	5.56	7.86	393 mA	400mA	
Ch4	5.55	7.84	392 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.66	9.42	471 mA	400mA	\checkmark
Ch2	6.69	9.46	473 mA	400mA	\checkmark
Ch3	6.66	9.42	471 mA	400mA	\checkmark
Ch4	6.68	9.44	4.72 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.69	9.46	473 mA	400mA	\checkmark
Ch2	6.70	9.47	473 mA	400mA	\checkmark
Ch3	6.69	9.46	473 mA	400mA	\checkmark
Ch4	6.70	9.47	473 mA	400mA	\checkmark

Unit	PUM20P
Test Engineer .	RMC
Date	24/2/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-155.1	-99.0 dB	-159.0 dB
Ch2	-155.1	-99.4 dB	-159.4 dB
Ch3	-155.1	-97.3 dB	-157.3 dB
Ch4	-155.1	-98.7 dB	-158.7 dB

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB. Unit.....PUM20P Test EngineerRMC

Noise Monitors

- Monitor coil inputs to board were grounded for all channels. Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		2.14	2.9µV√Hz	\checkmark
2		1.95	2.9µV√Hz	\checkmark
3		2.30	2.9µV√Hz	\checkmark
4		1.77	2.9µV√Hz	\checkmark

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM20P
Driver board ID	PUM20P
Driver board Drawing No/Issue No	D070483_07_K
Driver board Serial Number	PUM20P
Monitor board ID	MON84
Monitor board Drawing No/Issue No	DO70480_05_K
Monitor board Serial Number	MON84

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297

Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM2P.....Serial No Test EngineerRMC Date25/5/10

Drive Card ID.....PUM2P Monitor Card ID MON198P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- **8.2 Current Monitors**
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- **10. Trip Circuit tests**
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

Unit.....PUM2P.....Serial No Test EngineerRMC Date26/5/10

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	287	
Voltage calibrator	Time	1044	
PSU	Farnell	30-2	
PSU	Farnell	30-2	
Scope	Tektronix	2225	
DSA	Agilent	35670	

Unit.....PUM2P.....Serial No Test EngineerRMC Date26/5/10

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

Links: Check that the links W4 is present on each channel. Unit.....PUM2P.....Serial No Test EngineerRMC Date26/5/10

4. Continuity Checks Continuity to the V, I and R.M.S Monitor (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V 🔨		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	

LED Mon

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P			8	\checkmark
		5	0V	\checkmark		
6	Im	on1N			18	\checkmark
7	Im	on2N			19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N			21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

Unit.....PUM2P.....Serial No Test EngineerRMC Date25/5/10

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.011v	\checkmark	1mV
+15v TP4	14.95v	\checkmark	1.2mV
-15v TP6	-15.08v	\checkmark	5mV

All Outputs smooth DC, no oscillation? $\sqrt{}$

Record Power Supply Currents

Supply	Current
+16.5v	0.75A
-16.5v	0.6A

If the supplies are correct, proceed to the next test.

Unit	PUM2P	Serial No
Test Engineer	.RMC	
Date	25/5/10	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	

TEST RELAYS √

Channel	Indicator		OK?
	ON	OFF	
Ch1			
Ch2			
Ch3			
Ch4			

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark

Unit	PUM2P	.Serial No
Test Engineer	.RMC	
Date	.25/5/10	

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.332v	3	0.33v	
2	0.332v	6	0.33v	
3	0.332v	9	0.33v	
4	0.332v	12	0.33v	

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.195v	2	0.195v +/- 0.01v	\checkmark
2	0.196v	5	0.195v +/- 0.01v	\checkmark
3	0.196v	8	0.195v +/- 0.01v	\checkmark
4	0.196v	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.200v	1	0.195v +/- 0.01v	\checkmark
2	0.200v	4	0.195v +/- 0.01v	
3	0.202v	7	0.195v +/- 0.01v	
4	0.198v	10	0.195v +/- 0.01v	

8.4 Noise Monitors

Using the Dynamic Signal Analyser, measure the noise monitor outputs in dBV/\sqrt{Hz} . Correct for the pre-amplifier gain (if used.)

Ch.	Pin	Output	Limit	OK?
1	1	1.66	2.9µV	\checkmark
2	2	1.24	2.9µV	\checkmark
3	3	1.94	2.9µV	\checkmark
4	4	2.42	2.9µV	\checkmark

Unit	.PUM2P	.Serial No
Test Engineer	.RMC	
Date	25/5/10	

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	

Unit.....PUM2P.....Serial No Test EngineerRMC Date25/5/10

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.3v
R.M.S. Current in the load	117mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	3 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	2.2 seconds

Unit.....PUM2P.....Serial No Test EngineerRMC Date20/5/10

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

1	00	Hz
	~~	

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.2318	11.59 mA
Ch2	0.2333	11.66 mA
Ch3	0.2319	11.59 mA
Ch4	0.2314	11.57 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.3986	19.93	16mA	\checkmark
Ch2	0.4009	20.00	16mA	\checkmark
Ch3	0.3989	19.9	16mA	\checkmark
Ch4	0.3981	19.9	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.7162	35.81 mA	16mA	\checkmark
Ch2	0.7172	35.86 mA	16mA	\checkmark
Ch3	0.7157	35.78 mA	16mA	\checkmark
Ch4	0.7144	35.72 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.7474	37.37 mA	16mA	\checkmark
Ch2	0.7480	37.4mA	16mA	\checkmark
Ch3	0.7471	37.3 mA	16mA	\checkmark
Ch4	0.7455	37.27 mA	16mA	\checkmark

Unit.....PUM2P.....Serial No Test EngineerRMC Date20/5/10

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.089	4.45		
Ch2	0.089	4.45		
Ch3	0.090	4.5		
Ch4	0.089	4.45		

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.255	12.75 mA	16mA	
Ch2	0.255	12.75 mA	16mA	
Ch3	0.257	12.85 mA	16mA	
Ch4	0.257	12.85 mA	16mA	

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.695	34.75 mA	16mA	\checkmark
Ch2	0.696	34.8 mA	16mA	\checkmark
Ch3	0.696	34.8 mA	16mA	\checkmark
Ch4	0.695	34.76 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.746	37.3 mA	16mA	\checkmark
Ch2	0.746	37.3 mA	16mA	\checkmark
Ch3	0.746	37.3 mA	16mA	\checkmark
Ch4	0.744	37.2 mA	16mA	\checkmark

Unit	PUM2P	Serial No
Test Engineer	RMC	
Date	20/5/10	

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	4.09	5.784	289.2 mA		
Ch2	4.107	5.808	290.4 mA		
Ch3	4.093	5.788	289.4 mA		
Ch4	4.127	5.836	291.8 mA		

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.587	7.901	395 mA	400mA	
Ch2	5.580	7.891	394.5 mA	400mA	
Ch3	5.563	7.867	393.3 mA	400mA	
Ch4	5.593	7.909	395.4 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.628	9.373	468.6 mA	400mA	\checkmark
Ch2	6.621	9.363	468.1 mA	400mA	\checkmark
Ch3	6.618	9.359	467.9 mA	400mA	\checkmark
Ch4	6.614	9.353	467.6 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.673	9.437	471.8 mA	400mA	\checkmark
Ch2	6.658	9.415	470.7 mA	400mA	\checkmark
Ch3	6.673	9.437	471.8 mA	400mA	\checkmark
Ch4	6.640	9.390	469.5 mA	400mA	\checkmark
Unit.....PUM2P.....Serial No Test EngineerRMC Date25/5/10

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-155.1	-98.6	-158.6
Ch2	-155.1	-100.35	-160.35
Ch3	-155.1	-99.66	-159.66
Ch4	-155.1	-101.2	-161.2

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB.

Unit	.PUM2P	Serial No
Test Engineer	RMC	
Date	26/5/10	

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-12.00	\checkmark	-12.00	\checkmark	-12.00	\checkmark	-12.00	\checkmark
-7v	-8.40	\checkmark	-8.4	\checkmark	-8.40	\checkmark	-8.40	\checkmark
-5v	-5.99	\checkmark	-5.99	\checkmark	-6.0	\checkmark	-6.0	\checkmark
-1v	-1.2	\checkmark	-1.2	\checkmark	-1.2	\checkmark	-1.2	\checkmark
0v	0.02	\checkmark	-0.017	\checkmark	-0.017	\checkmark	0.017	\checkmark
1v	1.2	\checkmark	1.21	\checkmark	1.21	\checkmark	1.21	\checkmark
5v	5.99	\checkmark	5.99	\checkmark	5.99	\checkmark	6.00	\checkmark
7v	8.44	\checkmark	8.44	\checkmark	8.44	\checkmark	8.44	\checkmark
10v	11.9	\checkmark	11.9	\checkmark	11.9	\checkmark	11.9	\checkmark

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. Not fitted

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{\text{Record below}}$:

UoB box ID	PUM2P
Driver board ID	PUM2P
Driver board Drawing No/Issue No	D070483_5_K
Driver board Serial Number	PUM2P
Monitor board ID	MON198P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON198P

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM3P.....Serial No Test EngineerRMC Date

Drive Card ID.....PUM3P Monitor Card ID MON189P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- **8.2 Current Monitors**
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- **10. Trip Circuit tests**
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

Unit.....PUM3P.....Serial No Test EngineerRMC Date

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	287	
Voltage calibrator	Time	1044	
PSU	Farnell	30-2	
PSU	Farnell	30-2	
Scope	Tektronix	2225	
DSA	Agilent	35670	

Unit.....PUM3P.....Serial No Test EngineerRMC Date26/5/10

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

Links: Check that the links W4 is present on each channel. Unit.....PUM3P.....Serial No Test EngineerRMC Date25/5/10

4. Continuity Checks Continuity to the V, I and R.M.S Monitor (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	Photodiode A+ 1	
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	Photodiode C+ 3	
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V 🗸		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		То、	J1 PIN OK?	
1	Imon1P		5	\checkmark	
2	Imon2P		6	\checkmark	
3	Imon3P		7	\checkmark	
4	Imon4P		8	\checkmark	
	5	0V	\checkmark		
6	Imon1N		18	\checkmark	
7	Imon2N		19	\checkmark	
8	Imon3N		20	$\overline{\mathbf{v}}$	
9	Imon4N		21	$\overline{\mathbf{v}}$	

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

Unit.....PUM3P.....Serial No Test EngineerRMC Date25/5/10

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.04v	\checkmark	1mV
+15v TP4	14.95v	\checkmark	1.2mV
-15v TP6	-14.95v	\checkmark	5mV

All Outputs smooth DC, no oscillation? $\sqrt{}$

Record Power Supply Currents

Supply	Current
+16.5v	0.56A
-16.5v	0.5A

If the supplies are correct, proceed to the next test.

Unit	PUM3P	Serial No
Test Engineer	.RMC	
Date	25/5/10	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4		\checkmark	

TEST RELAYS √

Channel	Indicat	or	OK?
	ON	OFF	
Ch1			
Ch2			
Ch3			
Ch4			

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	.PUM3P	Serial No
Test Engineer	RMC	
Date	25/5/10	

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.33v	3	0.33v	
2	0.33v	6	0.33v	
3	0.33v	9	0.33v	
4	0.33v	12	0.33v	

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.194v	2	0.195v +/- 0.01v	\checkmark
2	0.195v	5	0.195v +/- 0.01v	\checkmark
3	0.195v	8	0.195v +/- 0.01v	\checkmark
4	0.195v	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.198v	1	0.195v +/- 0.01v	
2	0.199v	4	0.195v +/- 0.01v	
3	0.199v	7	0.195v +/- 0.01v	
4	0.200v	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

Using the Dynamic Signal Analyser, measure the noise monitor outputs in dBV/\sqrt{Hz} . Correct for the pre-amplifier gain (if used.)

Ch.	Pin	Output	Limit	OK?
1	1	1.6	2.9µV	\checkmark
2	2	1.24	2.9µV	\checkmark
3	3	1.49	2.9µV	\checkmark
4	4	1.38	2.9µV	\checkmark

Unit.....PUM3P.....Serial No Test EngineerRMC Date25/5/10

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	

Unit.....PUM3P.....Serial No Test EngineerRMC Date24/5/10

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low. Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.3v
R.M.S. Current in the load	117mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	4.5 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	2.3 seconds

Unit.....PUM3P.....Serial No Test EngineerRMC Date2/6/10

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.233	11.65 mA
Ch2	0.233	11.65 mA
Ch3	0.231	11.55 mA
Ch4	0.230	11.50 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.400	20.00	16mA	\checkmark
Ch2	0.399	19.9	16mA	\checkmark
Ch3	0.389	19.4	16mA	\checkmark
Ch4	0.397	19.85	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.717	35.85 mA	16mA	\checkmark
Ch2	0.716	35.58 mA	16mA	\checkmark
Ch3	0.716	35.58 mA	16mA	\checkmark
Ch4	0.714	35.7 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.747	37.35 mA	16mA	\checkmark
Ch2	0.745	37.25mA	16mA	\checkmark
Ch3	0.714	37.7 mA	16mA	\checkmark
Ch4	0.745	37.25 mA	16mA	\checkmark

Unit.....PUM3P.....Serial No Test EngineerRMC Date2/6/10

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.089	4.45		
Ch2	0.089	4.45		
Ch3	0.090	4.5		
Ch4	0.088	4.4		

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.256	12.8 mA	16mA	
Ch2	0.256	12.8 mA	16mA	
Ch3	0.257	12.85 mA	16mA	
Ch4	0.255	12.75 mA	16mA	

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.648	32.4 mA	16mA	\checkmark
Ch2	0.646	32.3 mA	16mA	\checkmark
Ch3	0.646	32.3 mA	16mA	\checkmark
Ch4	0.646	32.3 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.663	33.15 mA	16mA	\checkmark
Ch2	0.691	34.55 mA	16mA	\checkmark
Ch3	0.690	34.5mA	16mA	\checkmark
Ch4	0.690	34.5 mA	16mA	\checkmark

Unit.....PUM3P.....Serial No Test EngineerRMC Date20/5/10

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	4.11	5.822	291.1 mA		
Ch2	4.107	5.808	290.4 mA		
Ch3	4.126	5.835	291.7 mA		
Ch4	4.112	5.815	290.7 mA		

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.590	7.905	395.5 mA	400mA	
Ch2	5.578	7.888	394.4 mA	400mA	
Ch3	5.592	7.908	395.4 mA	400mA	
Ch4	5.574	7.908	395.4 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.629	9.374	468.7 mA	400mA	\checkmark
Ch2	6.627	9.371	468.5 mA	400mA	\checkmark
Ch3	6.696	9.328	466.4 mA	400mA	\checkmark
Ch4	6.607	9.343	467.1 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.657	9.414	470.7 mA	400mA	\checkmark
Ch2	6.676	9.441	472.0 mA	400mA	\checkmark
Ch3	6.601	9.335	466.7 mA	400mA	\checkmark
Ch4	6.655	9.411	470.5 mA	400mA	\checkmark

Unit.....PUM3P.....Serial No Test EngineerRMC Date26/5/10

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-155.1	-98.9	-158.9
Ch2	-155.1	-101.8	-161.8
Ch3	-155.1	-101.1	-161.1
Ch4	-155.1	-99.8	-159.8

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB.

Unit	.PUM3P	Serial No
Test Engineer	RMC	
Date	25/5/10	

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-12.00	\checkmark	-12.00	\checkmark	-12.00	\checkmark	-12.00	\checkmark
-7v	-8.40	\checkmark	-8.4	\checkmark	-8.40	\checkmark	-8.40	\checkmark
-5v	-6.00	\checkmark	-6.00	\checkmark	-6.0	\checkmark	-6.0	\checkmark
-1v	-1.2	\checkmark	-1.2	\checkmark	-1.2	\checkmark	-1.2	\checkmark
0v	0.00	\checkmark	0.00	\checkmark	0.00	\checkmark	0.00	\checkmark
1v	1.2	\checkmark	1.2	\checkmark	1.2	\checkmark	1.2	\checkmark
5v	6.00	\checkmark	6.00	\checkmark	6.00	\checkmark	6.00	\checkmark
7v	8.4	\checkmark	8.4		8.4		8.4	\checkmark
10v	12.0	\checkmark	12.0		12.0		12.0	\checkmark

Unit.....PUM3P.....Serial No Test EngineerRMC Date8/6/10

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. Not fitted

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{\text{Record below}}$:

UoB box ID	PUM3P
Driver board ID	PUM3P
Driver board Drawing No/Issue No	D070483_5_K
Driver board Serial Number	PUM3P
Monitor board ID	MON189P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON189P

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM4P.....Serial No Test EngineerRMC

Drive Card ID.....PUM4P Monitor Card ID MON188P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors
- 9. Distortion

10. Trip Circuit tests

- 11 Load Tests
- 11.1 Noisy Mode
- 11.2 Low noise Mode
- **11.3 Acquisition Mode**
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	287	
Voltage calibrator	Time	1044	
PSU	Farnell	30-2	
PSU	Farnell	30-2	
Scope	Tektronix	2225	
DSA	Agilent	35670	

Unit.....PUM4P.....Serial No Test EngineerRMC Date3/6/10

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

Links: Check that the links W4 is present on each channel. Unit.....PUM4P.....Serial No Test EngineerRMC Date25/5/10

4. Continuity Checks Continuity to the V, I and R.M.S Monitor (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	Photodiode C+ 3	
4	PD4P	Photodiode D+	Photodiode D+ 4	
	5	0V 🗸		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		То、	J1 PIN OK?	
1	Imon1P		5	\checkmark	
2	Imon2P		6	\checkmark	
3	Imon3P		7	\checkmark	
4	Imon4P		8	\checkmark	
	5	0V	\checkmark		
6	Imon1N		18	\checkmark	
7	Imon2N		19	\checkmark	
8	Imon3N		20	$\overline{\mathbf{v}}$	
9	Imon4N		21	$\overline{\mathbf{v}}$	

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

Unit.....PUM4P.....Serial No Test EngineerRMC Date 24/5/10

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.035v	\checkmark	1mV
+15v TP4	14.95v	\checkmark	1.2mV
-15v TP6	-15.09v	\checkmark	5mV

All Outputs smooth DC, no oscillation? $\sqrt{}$

Record Power Supply Currents

Supply	Current
+16.5v	0.82A
-16.5v	0.5A

If the supplies are correct, proceed to the next test.

Unit	PUM4P	Serial No
Test Engineer	RMC	
Date		

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4		\checkmark	\checkmark

TEST RELAYS √

Channel	Indicat	or	OK?
	ON	OFF	
Ch1			
Ch2			
Ch3			
Ch4			

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	.PUM4P	Serial No
Test Engineer	RMC	
Date	25/5/10	

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.331v	3	0.33v	
2	0.332v	6	0.33v	
3	0.332v	9	0.33v	
4	0.332v	12	0.33v	

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
	-	Monitor	Value	
1	0.1952v	2	0.195v +/- 0.01v	\checkmark
2	0.1956v	5	0.195v +/- 0.01v	\checkmark
3	0.1956v	8	0.195v +/- 0.01v	\checkmark
4	0.1955v	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.2004v	1	0.195v +/- 0.01v	
2	0.1987v	4	0.195v +/- 0.01v	
3	0.1970v	7	0.195v +/- 0.01v	
4	0.1964v	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

Using the Dynamic Signal Analyser, measure the noise monitor outputs in dBV/\sqrt{Hz} . Correct for the pre-amplifier gain (if used.)

Ch.	Pin	Output	Limit	OK?
1	1	1.6	2.9µV	\checkmark
2	2	1.69	2.9µV	\checkmark
3	3	1.59	2.9µV	\checkmark
4	4	2.57	2.9µV	\checkmark

Unit.....PUM4P.....Serial No Test EngineerRMC Date25/5/10

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	

Unit.....PUM4P.....Serial No Test EngineerRMC Date24/5/10

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low. Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.34v
R.M.S. Current in the load	117mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	4.0 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. Connect the signal generator, and measure the time taken for the trip to operate.

	Time taken to trip?	2.4 seconds
--	---------------------	-------------

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)		
Ch1	0.231	11.5 mA		
Ch2	0.233	11.6 mA		
Ch3	0.230	11.5 mA		
Ch4	0.231	11.5 mA		

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.398	19.9	16mA	\checkmark
Ch2	0.400	20.0	16mA	\checkmark
Ch3	0.397	19.8	16mA	\checkmark
Ch4	0.398	19.9	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.715	35.7 mA	16mA	\checkmark
Ch2	0.716	35.8 mA	16mA	\checkmark
Ch3	0.714	35.7 mA	16mA	\checkmark
Ch4	0.713	35.6 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.745	37.25 mA	16mA	\checkmark
Ch2	0.747	37.35mA	16mA	\checkmark
Ch3	0.746	37.30 mA	16mA	\checkmark
Ch4	0.743	37.15 mA	16mA	\checkmark
Unit.....PUM4P.....Serial No Test EngineerRMC Date26/5/10

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.090	4.5		
Ch2	0.089	4.45		
Ch3	0.088	4.4		
Ch4	0.090	4.5		

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.257	12.85 mA	16mA	
Ch2	0.256	12.8 mA	16mA	
Ch3	0.253	12.65 mA	16mA	
Ch4	0.258	12.9 mA	16mA	

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.695	34.75 mA	16mA	\checkmark
Ch2	0.696	34.8 mA	16mA	\checkmark
Ch3	0.694	34.7 mA	16mA	\checkmark
Ch4	0.694	34.7 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.745	37.25 mA	16mA	\checkmark
Ch2	0.746	37.3 mA	16mA	\checkmark
Ch3	0.745	37.25mA	16mA	\checkmark
Ch4	0.743	37.15 mA	16mA	\checkmark

Unit.....PUM4P.....Serial No Test EngineerRMC Date20/5/10

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	4.108	5.809	290 mA		
Ch2	4.085	5.777	288 mA		
Ch3	4.097	5.794	289 mA		
Ch4	4.064	5.747	278 mA		

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.584	7.896	394.8 mA	400mA	
Ch2	5.545	7.841	392.0 mA	400mA	
Ch3	5.573	7.881	394.0 mA	400mA	
Ch4	5.542	7.837	391.8 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.633	9.38	469 mA	400mA	\checkmark
Ch2	6.600	9.33	466.5 mA	400mA	\checkmark
Ch3	6.628	9.37	468.5 mA	400mA	\checkmark
Ch4	6.604	9.34	466.9 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.663	9.423	471.1 mA	400mA	\checkmark
Ch2	6.637	9.386	469.3 mA	400mA	\checkmark
Ch3	6.657	9.414	470.7 mA	400mA	\checkmark
Ch4	6.677	9.442	472.1 mA	400mA	\checkmark

Unit.....PUM4P.....Serial No Test EngineerRMC Date25/5/10

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-155.1	-100.13	-160.13
Ch2	-155.1	-101	-161.0
Ch3	-155.1	-101.6	-161.6
Ch4	-155.1	-101.5	-161.5

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB.

Unit	.PUM4P	Serial No
Test Engineer	RMC	
Date	25/5/10	

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-11.99	\checkmark	-12.00	\checkmark	-12.01	\checkmark	-12.01	\checkmark
-7v	-8.38	\checkmark	-8.37	\checkmark	-8.39	\checkmark	-8.40	\checkmark
-5v	-5.99	\checkmark	-6.00	\checkmark	-6.00	\checkmark	-6.00	\checkmark
-1v	-1.212	\checkmark	-1.218	\checkmark	-1.212	\checkmark	-1.212	\checkmark
0v	0.00	\checkmark	0.00	\checkmark	0.00	\checkmark	0.00	\checkmark
1v	1.217	\checkmark	1.217	\checkmark	1.217	\checkmark	1.217	\checkmark
5v	5.91	\checkmark	5.96	\checkmark	5.98	\checkmark	6.00	\checkmark
7v	8.39	\checkmark	8.40	\checkmark	8.40	\checkmark	8.40	\checkmark
10v	11.83	\checkmark	11.93	\checkmark	11.97	\checkmark	11.98	\checkmark

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. Not fitted

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. \checkmark

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{\text{Record below}}$:

UoB box ID	PUM4P
Driver board ID	PUM4P
Driver board Drawing No/Issue No	D070483_5_K
Driver board Serial Number	PUM4P
Monitor board ID	MON188P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON188P

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. \checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM5P Test EngineerRMC Date11/1/11

Drive Card ID.....PUM5P Monitor Card IDMON267

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- **10. Trip Circuit tests**
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
Power supply	TTI	EL302RD
Power supply	Farnell	LT30-1
Oscilloscope	Tektronix	2225
Function	Agient	33250A
Generator		

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

ΟΚ

Links: Check that the links W4 is present on each channel.

Unit	PUM5P
Test Engineer	RMC
Date	11/1/11

4. Continuity Checks Continuity to the PD in from SAT

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.057v	\checkmark	2mV
+15v TP4	14.94v	\checkmark	2mV
-15v TP6	-15.15v	\checkmark	6mV

Differential readings – high common mode

All Outputs smooth DC, no oscillation?	\mathbf{r}	

Record Power Supply Currents

Supply	Current
+16.5v	0.510 A
-16.5v	0.466 A

If the supplies are correct, proceed to the next test.

Unit	PUM5P
Test Engineer	RMC
Date	11/1/11

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?		
	ON	OFF			
Ch1					
Ch2					
Ch3	\checkmark	\checkmark			
Ch4	\checkmark	\checkmark			

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1			
Ch2			
Ch3			\checkmark
Ch4			

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark		
Ch3			
Ch4			

Unit	PUM5P
Test Engineer	RMC
Date	11/1/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.333v	3	0.33v	\checkmark
2	0.333v	6	0.33v	\checkmark
3	0.333v	9	0.33v	\checkmark
4	0.333v	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
	_	Monitor	Value	
1	0.195 v	2	0.195v +/- 0.01v	\checkmark
2	0.195 v	5	0.195v +/- 0.01v	\checkmark
3	0.195 v	8	0.195v +/- 0.01v	\checkmark
4	0.196 v	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.198 v	1	0.195v +/- 0.01v	\checkmark
2	0.201 v	4	0.195v +/- 0.01v	\checkmark
3	0.198 v	7	0.195v +/- 0.01v	\checkmark
4	0.198 v	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark	\checkmark	
Ch4	\checkmark		

Unit	PUM5P
Test Engineer	RMC
Date	11/1/11

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?		
------------	--	--

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.35v
R.M.S. Current in the load	117 mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	4.5 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.491 v	24.5 mA
Ch2	0.494 v	24.7 mA
Ch3	0.501 v	25.0 mA
Ch4	0.495 v	24.7 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.651 v	32.55 mA	16mA	\checkmark
Ch2	0.654 v	32.7 mA	16mA	\checkmark
Ch3	0.657 v	32.8 mA	16mA	\checkmark
Ch4	0.654 v	32.7 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.749 v	37.45 mA	16mA	\checkmark
Ch2	0.750 v	37.5 mA	16mA	\checkmark
Ch3	0.750 v	37.5 mA	16mA	\checkmark
Ch4	0.750 v	37.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.749 v	37.45 mA	16mA	\checkmark
Ch2	0.750 v	37.5 mA	16mA	\checkmark
Ch3	0.750 v	37.5 mA	16mA	\checkmark
Ch4	0.750 v	37.5 mA	16mA	\checkmark

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.192 v	9.6 mA
Ch2	0.193 v	9.65 mA
Ch3	0.200 v	10.0 mA
Ch4	0.194 v	9.7 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.417 v	20.85 mA	16mA	\checkmark
Ch2	0.420 v	21.0 mA	16mA	\checkmark
Ch3	0.429 v	21.45 mA	16mA	\checkmark
Ch4	0.420 v	21.0 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.728 v	36.4 mA	16mA	\checkmark
Ch2	0.729 v	36.45 mA	16mA	\checkmark
Ch3	0.730 v	36.5 mA	16mA	\checkmark
Ch4	0.727 v	36.35 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748 v	37.4 mA	16mA	\checkmark
Ch2	0.749 v	37.45 mA	16mA	\checkmark
Ch3	0.749 v	37.45 mA	16mA	\checkmark
Ch4	0.749 v	37.45 mA	16mA	\checkmark

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.18	5.91	295 mA
Ch2	4.16	5.88	294 mA
Ch3	4.13	5.84	292 mA
Ch4	4.15	5.86	293 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.57	7.87	393 mA	400mA	
Ch2	5.56	7.86	393 mA	400mA	
Ch3	5.55	7.85	392 mA	400mA	
Ch4	5.55	7.85	392 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.67	9.43	471 mA	400mA	\checkmark
Ch2	6.66	9.42	470 mA	400mA	\checkmark
Ch3	6.67	9.43	471 mA	400mA	\checkmark
Ch4	6.66	9.42	470 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.70	9.475	473 mA	400mA	\checkmark
Ch2	6.70	9.475	473 mA	400mA	\checkmark
Ch3	6.70	9.475	473 mA	400mA	\checkmark
Ch4	6.68	9.44	472 mA	400mA	\checkmark

Unit	PUM5P
Test Engineer	RMC
Date	11/1/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-155.1	-102.9	-162.9
Ch2	-155.1	-100.0	-160.0
Ch3	-155.1	-99.33	-159.3
Ch4	-155.1	-99.9	-159.9

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB. Unit.....PUM5P Test EngineerRMC

Noise Monitors

- Monitor coil inputs to board were grounded for all channels. Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.4	2.9µV√Hz	\checkmark
2		2.0	2.9µV√Hz	\checkmark
3		1.6	2.9µV√Hz	\checkmark
4		2.0	2.9µV√Hz	\checkmark

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. $\sqrt{\text{(left hand only)}}$

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM5
Driver board ID	PUM5P
Driver board Drawing No/Issue No	D070483_07_K
Driver board Serial Number	PUM5P
Monitor board ID	MON267
Monitor board Drawing No/Issue No	D070480_5_K
Monitor board Serial Number	MON267

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM6P EngineerRMC Date12/1/11

Drive Card ID.....PUM6P Monitor Card IDMON268.

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- **10. Trip Circuit tests**
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

Unit	PUM6P
Engineer	RMC
Date	12/1/11

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

Unit	PUM6P
Engineer	RMC
Date	12/1/11

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

ΟΚ

WIRE ADDED to connect reset pulse to pin 5 on J7 11/1/11

Links: Check that the links W4 is present on each channel.

Unit	PUM6P
Engineer	RMC
Date	12/1/11

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

Unit	PUM6F
Engineer	RMC
Date	12/1/11

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05 v	\checkmark	1.2 mV
+15v TP4	14.91 v	\checkmark	1.2 mV
-15v TP6	-15.15 v	\checkmark	2.5 mV

All Outputs smooth DC, no oscillation? $\sqrt{}$

Record Power Supply Currents

Supply	Current
+16.5v	0.767 A
-16.5v	0.526 A

If the supplies are correct, proceed to the next test.

Unit	PUM6P
Engineer	RMC
Date	12/1/11

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

-	-		
Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	
Ch4	\checkmark		

Unit	PUM6P
Engineer	RMC
Date	12/1/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1v r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.332	3	0.33v	\checkmark
2	0.332	6	0.33v	\checkmark
3	0.332	9	0.33v	\checkmark
4	0.332	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.195	2	0.195v +/- 0.01v	\checkmark
2	0.195	5	0.195v +/- 0.01v	\checkmark
3	0.195	8	0.195v +/- 0.01v	\checkmark
4	0.195	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.195	1	0.195v +/- 0.01v	\checkmark
2	0.196	4	0.195v +/- 0.01v	\checkmark
3	0.195	7	0.195v +/- 0.01v	\checkmark
4	0.199	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.
Unit.....PUM6P EngineerRMC Date12/1/11

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark	\checkmark	
Ch4	\checkmark		

Unit	PUM6F
Engineer	RMC
Date	12/1/11

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.34 v
R.M.S. Current in the load	117 mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	4 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	1.5 seconds

Unit	PUM6P
Engineer	RMC
Date	12/1/11

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.492	24.6 mA
Ch2	0.498	24.9 mA
Ch3	0.496	24.8 mA
Ch4	0.494	24.7 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.653	32.6 mA	16mA	\checkmark
Ch2	0.656	32.8 mA	16mA	\checkmark
Ch3	0.655	32.75 mA	16mA	\checkmark
Ch4	0.653	32.6 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.751	37.5 mA	16mA	\checkmark
Ch2	0.751	37.5 mA	16mA	\checkmark
Ch3	0.750	37.5 mA	16mA	\checkmark
Ch4	0.750	37.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.751	37.5 mA	16mA	\checkmark
Ch2	0.751	37.5 mA	16mA	\checkmark
Ch3	0.750	37.5 mA	16mA	\checkmark
Ch4	0.750	37.5 mA	16mA	\checkmark

Unit	PUM6P
Engineer	RMC
Date	12/1/11

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.194	9.7 mA
Ch2	0.194	9.7 mA
Ch3	0.195	9.75 mA
Ch4	0.193	9.65 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.422	21.1 mA	16mA	\checkmark
Ch2	0.422	21.1 mA	16mA	\checkmark
Ch3	0.422	21.1 mA	16mA	\checkmark
Ch4	0.419	20.95 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.730	36.6 mA	16mA	\checkmark
Ch2	0.730	36.6 mA	16mA	\checkmark
Ch3	0.729	36.45 mA	16mA	\checkmark
Ch4	0.729	36.45 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.749	37.45 mA	16mA	\checkmark
Ch3	0.749	37.45 mA	16mA	\checkmark
Ch4	0.749	37.45 mA	16mA	\checkmark

Unit	PUM6P
Engineer	RMC
Date	12/1/11

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.17	5.89	294 mA
Ch2	4.18	5.91	295 mA
Ch3	4.15	5.87	293 mA
Ch4	4.22	5.96	284 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.57	7.87	393 mA	400mA	
Ch2	5.58	7.89	394 mA	400mA	
Ch3	5.56	7.86	393 mA	400mA	
Ch4	5.62	7.94	397 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.67	9.43	471 mA	400mA	\checkmark
Ch2	6.68	9.44	472 mA	400mA	\checkmark
Ch3	6.67	9.43	471 mA	400mA	\checkmark
Ch4	6.69	9.46	473 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.70	9.47	473 mA	400mA	\checkmark
Ch2	6.71	9.49	474 mA	400mA	\checkmark
Ch3	6.70	9.47	473 mA	400mA	\checkmark
Ch4	6.72	9.50	475 mA	400mA	\checkmark

Unit	PUM6P
Engineer	RMC
Date	12/1/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-155.1	-98.9	-158.9
Ch2	-155.1	-100.5	-160.5
Ch3	-155.1	-100.7	-160.7
Ch4	-155.1	-101.1	-161.1

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB.

Unit	PUM6P
Engineer	RMC
Date	

Noise Monitors

- Monitor coil inputs to board were grounded for all channels. Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		2.07	2.9µV√Hz	\checkmark
2		1.75	2.9µV√Hz	\checkmark
3		1.98	2.9µV√Hz	\checkmark
4		1.57	2.9µV√Hz	\checkmark

Unit	PUM6P
Engineer	RMC
Date	12/1/11

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

Unit	PUM6P
Engineer	RMC
Date	12/1/11

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. (Left side only)

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM6P
Driver board ID	PUM6P
Driver board Drawing No/Issue No	D070483_07_K
Driver board Serial Number	PUM6P
Monitor board ID	MON268
Monitor board Drawing No/Issue No	D070480_05_K
Monitor board Serial Number	MON268

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM7P Test EngineerRMC Date12/1/11

Drive Card ID.....PUM7P Monitor Card IDMON269

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- **10. Trip Circuit tests**
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

Unit.....PUM7P Test EngineerRMC Date12/1/11

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

Unit	PUM7P
Test Engineer	RMC
Date	12/1/11

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

ΟΚ

WIRE ADDED to connect reset pulse to pin 5 on J7 11/1/11

Links:

Check that the links W4 is present on each channel.

Unit.....PUM7P Test EngineerRMC Date12/1/11

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

Unit	PUM7P
Test Engineer	RMC
Date	17/1/11

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05 v	\checkmark	1.2 mV
+15v TP4	14.93 v	\checkmark	1.2 mV
-15v TP6	-15.01 v	\checkmark	5 mV

All Outputs smooth DC, no oscillation? $\sqrt{}$

Record Power Supply Currents

Supply	Current
+16.5v	0.568 A
-16.5v	0.522 A

If the supplies are correct, proceed to the next test.

Unit	PUM7P
Test Engineer	RMC
Date	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	
Ch4	\checkmark		

Unit	PUM7P
Test Engineer	RMC
Date	17/1/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.335	3	0.33v	\checkmark
2	0.334	6	0.33v	\checkmark
3	0.335	9	0.33v	\checkmark
4	0.334	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.196	2	0.195v +/- 0.01v	\checkmark
2	0.197	5	0.195v +/- 0.01v	\checkmark
3	0.197	8	0.195v +/- 0.01v	\checkmark
4	0.197	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.197	1	0.195v +/- 0.01v	\checkmark
2	0.199	4	0.195v +/- 0.01v	\checkmark
3	0.198	7	0.195v +/- 0.01v	\checkmark
4	0.198	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.

Unit.....PUM7P Test EngineerRMC Date17/1/11

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark	\checkmark	
Ch4	\checkmark		

Unit	PUM7P
Test Engineer	RMC
Date	17/1/11

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.338
R.M.S. Current in the load	116.9

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	4.2 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	1.8 seconds

Unit.....PUM7P Test EngineerRMC Date17/1/11

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.498	24.9 mA
Ch2	0.494	24.7 mA
Ch3	0.496	24.8 mA
Ch4	0.498	24.9 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.655	32.75 mA	16mA	\checkmark
Ch2	0.653	32.65 mA	16mA	\checkmark
Ch3	0.655	32.75 mA	16mA	\checkmark
Ch4	0.656	32.8 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5	16mA	\checkmark
Ch2	0.749	37.4	16mA	\checkmark
Ch3	0.751	37.5	16mA	\checkmark
Ch4	0.752	37.6	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5	16mA	\checkmark
Ch2	0.7598	37.9	16mA	\checkmark
Ch3	0.750	37.5	16mA	\checkmark
Ch4	0.751	37.5	16mA	\checkmark

Unit.....PUM7P Test EngineerRMC Date17/1/11

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.197	9.58 mA
Ch2	0.194	9.7 mA
Ch3	0.195	9.75 mA
Ch4	0.195	9.75 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.424	21.2 mA	16mA	\checkmark
Ch2	0.422	21.1 mA	16mA	\checkmark
Ch3	0.423	21.1 mA	16mA	\checkmark
Ch4	0.422	21.1 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729	36.45 mA	16mA	\checkmark
Ch2	0.729	36.45 mA	16mA	\checkmark
Ch3	0.730	36.50 mA	16mA	\checkmark
Ch4	0.731	36.55 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748	37.40 mA	16mA	\checkmark
Ch2	0.748	37.40 mA	16mA	\checkmark
Ch3	0.749	73.45 mA	16mA	\checkmark
Ch4	0.750	37.50 mA	16mA	\checkmark

Unit	PUM7P
Test Engineer	RMC
Date	17/1/11

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.13	5.84	293 mA
Ch2	4.14	5.85	292 mA
Ch3	4.15	5.86	294 mA
Ch4	4.15	5.86	294 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.55	7.84	392 mA	400mA	
Ch2	5.55	7.84	392 mA	400mA	
Ch3	5.55	7.84	392 mA	400mA	
Ch4	5.55	7.84	392 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.67	9.43	471 mA	400mA	\checkmark
Ch2	6.67	9.43	471 mA	400mA	\checkmark
Ch3	6.68	9.44	472 mA	400mA	\checkmark
Ch4	6.66	9.42	471 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.70	9.47	473 mA	400mA	\checkmark
Ch2	6.70	9.47	473 mA	400mA	\checkmark
Ch3	6.71	9.49	474 mA	400mA	\checkmark
Ch4	6.69	9.46	473 mA	400mA	\checkmark

Unit	PUM7P
Test Engineer	RMC
Date	17/1/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-155.1	-98.62	-158.6
Ch2	-155.1	-98.78	-158.8
Ch3	-155.1	-99.21	-159.2
Ch4	-155.1	-94.90	-154.9

Ch4 out of spec by 0.2dB

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB.

Unit	PUM7P
Test Engineer .	RMC
Date	17/1/11

Noise Monitors

- Monitor coil inputs to board were grounded for all channels. Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.79	2.9µV√Hz	\checkmark
2		1.87	2.9µV√Hz	\checkmark
3		1.88	2.9µV√Hz	\checkmark
4		1.98	2.9µV√Hz	\checkmark

Unit.....PUM7P Test EngineerRMC Date17/1/11

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

Unit.....PUM7P Test EngineerRMC Date12/1/11

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box.

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM7P
Driver board ID	PUM07P
Driver board Drawing No/Issue No	D070483_07_K
Driver board Serial Number	PUM07P
Monitor board ID	MON269
Monitor board Drawing No/Issue No	D070480_5_K
Monitor board Serial Number	MON269

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM8P Test EngineerRMC Date18/1/11

Drive Card ID.....PUM8P Monitor Card IDMON270

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- 10. Trip Circuit tests
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

Unit.....PUM8P Test EngineerRMC Date18/1/11

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

Unit	PUM8P
Test Engineer	RMC
Date	18/1/11

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

ΟΚ

Pin 2 on J7 connected to reset pulse

Links: Check that the links W4 is present on each channel. Unit.....PUM8P Test EngineerRMC Date18/1/11

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	
10	V+ (TP1)	+17v Supply	
11	V- (TP2)	-17v Supply	
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		
22	0V (TP3)		
23	0V (TP3)		
24	0V (TP3)		
25	0V (TP3)		
5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

Unit	PUM8P
Test Engineer	RMC
Date	18/1/11

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.05	\checkmark	1.5 mV
+15v TP4	14.90	\checkmark	1.5 mV
-15v TP6	-15.00	\checkmark	5 mV

All Outputs smooth DC, no oscillation?	\checkmark
--	--------------

Record Power Supply Currents

Supply	Current
+16.5v	0.546 A
-16.5v	0.487 A

If the supplies are correct, proceed to the next test.

Unit	PUM8P
Test Engineer	RMC
Date	18/1/11

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1		\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3		\checkmark	\checkmark
Ch4		\checkmark	\checkmark

TEST RELAYS

-					
Channel	Indicator		OK?		
	ON	OFF			
Ch1	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark		

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	PUM8P
Test Engineer	RMC
Date	18/1/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.33	3	0.33v	
2	0.331	6	0.33v	
3	0.331	9	0.33v	
4	0.331	12	0.33v	

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.194	2	0.195v +/- 0.01v	\checkmark
2	0.194	5	0.195v +/- 0.01v	\checkmark
3	0.194	8	0.195v +/- 0.01v	\checkmark
4	0.194	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.195	1	0.195v +/- 0.01v	\checkmark
2	0.199	4	0.195v +/- 0.01v	\checkmark
3	0.197	7	0.195v +/- 0.01v	\checkmark
4	0.198	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.

Unit.....PUM8P Test EngineerRMC Date18/1/11

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	

Unit	PUM8P
Test Engineer	RMC
Date	18/1/11

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.366	
R.M.S. Current in the load	118 mA	

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	3.7seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	1.7 seconds

Unit.....PUM8P Test EngineerRMC Date18/1/11

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s lo r.m.s (Vo/20)	
Ch1	0.496	24.8 mA
Ch2	0.492	24.6 mA
Ch3	0.498	24.9 mA
Ch4	0.496	24.8 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.65	32.5 mA	16mA	\checkmark
Ch2	0.65	32.5 mA	16mA	\checkmark
Ch3	0.65	32.5 mA	16mA	\checkmark
Ch4	0.65	32.5 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.75	37.5 mA	16mA	\checkmark
Ch2	0.75	37.5 mA	16mA	\checkmark
Ch3	0.75	37.5 mA	16mA	\checkmark
Ch4	0.75	37.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.75	37.5 mA	16mA	\checkmark
Ch2	0.75	37.5 mA	16mA	\checkmark
Ch3	0.75	37.5 mA	16mA	\checkmark
Ch4	0.75	37.5 mA	16mA	\checkmark

Unit.....PUM8P Test EngineerRMC Date18/1/11

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s lo r.m.s (Vo/2		
Ch1	0.194	9.7 mA	
Ch2	0.193	9.65 mA	
Ch3	0.196	9.8 mA	
Ch4	0.195	9.75 mA	

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.420	21 mA	16mA	\checkmark
Ch2	0.420	21 mA	16mA	\checkmark
Ch3	0.423	21 mA	16mA	\checkmark
Ch4	0.421	21 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729	36.45 mA	16mA	\checkmark
Ch2	0.729	36.45 mA	16mA	\checkmark
Ch3	0.729	36.45 mA	16mA	\checkmark
Ch4	0.73	36.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748	37.4 mA	16mA	\checkmark
Ch2	0.749	37.45 mA	16mA	\checkmark
Ch3	0.748	37.4 mA	16mA	\checkmark
Ch4	0.75	37.5 mA	16mA	\checkmark

Unit	PUM8P
Test Engineer	RMC
Date	18/1/11

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz	
-------	--

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.19	5.92	296
Ch2	4.13	5.84	292
Ch3	4.15	5.86	293
Ch4	4.17	5.89	294

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.59	7.90	395	400mA	
Ch2	5.54	7.83	391	400mA	
Ch3	5.55	7.84	392	400mA	
Ch4	5.57	7.78	393	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.66	9.42	470	400mA	\checkmark
Ch2	6.66	9.42	470	400mA	\checkmark
Ch3	6.66	9.42	470	400mA	\checkmark
Ch4	6.68	9.44	472	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.69	9.46	473	400mA	\checkmark
Ch2	6.69	9.46	473	400mA	\checkmark
Ch3	6.68	9.44	472	400mA	\checkmark
Ch4	6.70	9.47	473	400mA	\checkmark

Unit	PUM8P
Test Engineer	RMC
Date	18/1/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-155.1	-98.6	-158.8
Ch2	-155.1	-97.4	-157.4
Ch3	-155.1	-97.4	-157.4
Ch4	-155.1	-97.3	-157.3

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB. Unit.....PUM8P Test EngineerRMC

Noise Monitors

- Monitor coil inputs to board were grounded for all channels. Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		2.17	2.9µV√Hz	\checkmark
2		1.83	2.9µV√Hz	\checkmark
3		2.53	2.9µV√Hz	\checkmark
4		1.83	2.9µV√Hz	\checkmark

Unit.....PUM8P Test EngineerRMC Date18/1/11

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

Unit.....PUM8P Test EngineerRMC Date18/1/11

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM8P
Driver board ID	PUM 08P
Driver board Drawing No/Issue No	D070463_07_K
Driver board Serial Number	PUM 08P
Monitor board ID	MON270
Monitor board Drawing No/Issue No	D070480_05_K
Monitor board Serial Number	MON270

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM9P Test EngineerRMC Date19/1/11

Drive Card ID.....PUM9P Monitor Card IDMON265

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- **10. Trip Circuit tests**
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

Unit.....PUM9P Test EngineerRMC Date19/1/11

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

Unit.....PUM9P Test EngineerRMC Date19/1/11

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

Wire added to link pin 2 on J7 with the reset pulse.

Channel 3 IC3 and IC4 changed due to offsets

Chanel 1 IC3 and IC4 changed because of output noise

Channel 4 IC4 changed because of oscillation

Links:

Check that the links W4 is present on each channel.

√Unit	PUM9P
Test Engineer	RMC
Date	19/1/11

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	
9	Imon4N		21	

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

Unit	PUM9P
Test Engineer	RMC
Date	19/1/11

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	+12.02 v	\checkmark	1.2 mV
+15v TP4	+14.96 v	\checkmark	2 mV
-15v TP6	-15.10 v	\checkmark	5 mV

All Outputs smooth DC, no oscillation? $\sqrt{}$

Pick up at about 50KHz intermittently seen – thought to be environmental

Record Power Supply Currents

Supply	Current
+16.5v	0.566 A
-16.5v	0.519 A

If the supplies are correct, proceed to the next test.

Unit	PUM9P
Test Engineer	RMC
Date	19/1/11

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit.....PUM9P Test EngineerRMC Date19/1/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.331 v	3	0.33v	\checkmark
2	0.332 v	6	0.33v	\checkmark
3	0.332 v	9	0.33v	\checkmark
4	0.331 v	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
	-	Monitor	Value	
1	0.195 v	2	0.195v +/- 0.01v	\checkmark
2	0.195 v	5	0.195v +/- 0.01v	\checkmark
3	0.195 v	8	0.195v +/- 0.01v	\checkmark
4	0.195 v	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.197 v	1	0.195v +/- 0.01v	\checkmark
2	0.198 v	4	0.195v +/- 0.01v	\checkmark
3	0.197 v	7	0.195v +/- 0.01v	\checkmark
4	0.197 v	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.

Unit.....PUM9P Test EngineerRMC Date19/1/11

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	
Ch4			

Unit	PUM9P
Test Engineer	RMC
Date	19/1/11

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low? √

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.33 v
R.M.S. Current in the load	116.5 mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	2.7 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	1.4 seconds

Unit.....PUM9P Test EngineerRMC Date19/1/11

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.488 v	24.4 mA
Ch2	0.497 v	24.8 mA
Ch3	0.499 v	24.9 mA
Ch4	0.494 v	24.7 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.649 v	32.4 mA	16mA	\checkmark
Ch2	0.655 v	32.7 mA	16mA	\checkmark
Ch3	0.656 v	32.8 mA	16mA	\checkmark
Ch4	0.654 v	32.7 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.749 v	37.45 mA	16mA	\checkmark
Ch2	0.751 v	37.5 mA	16mA	\checkmark
Ch3	0.750 v	37.5 mA	16mA	\checkmark
Ch4	0.751 v	37.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748 v	37.4 mA	16mA	\checkmark
Ch2	0.751 v	37.5 mA	16mA	\checkmark
Ch3	0.750 v	37.5 mA	16mA	\checkmark
Ch4	0.751 v	37.5 mA	16mA	\checkmark

Unit.....PUM9P Test EngineerRMC Date19/1/11

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.191 v	9.55 mA
Ch2	0.195 v	9.75 mA
Ch3	0.196 v	9.80 mA
Ch4	0.195 v	9.75 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.417 v	20.85 mA	16mA	\checkmark
Ch2	0.422 v	21.10 mA	16mA	\checkmark
Ch3	0.423 v	21.15 mA	16mA	\checkmark
Ch4	0.421 v	21.05 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.727 v	36.5 mA	16mA	\checkmark
Ch2	0.730 v	36.5 mA	16mA	\checkmark
Ch3	0.729 v	36.4 mA	16mA	\checkmark
Ch4	0.730 v	36.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.747 v	37.3 mA	16mA	\checkmark
Ch2	0.750 v	37.5 mA	16mA	\checkmark
Ch3	0.748 v	37.4 mA	16mA	\checkmark
Ch4	0.749 v	37.4 mA	16mA	\checkmark

Unit	PUM9P
Test Engineer	RMC
Date	19/1/11

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.155	5.876	293 mA
Ch2	4.176	5.905	295 mA
Ch3	4.191	5.926	296 mA
Ch4	4.197	5.935	296 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.553	7.853	392 mA	400mA	\checkmark
Ch2	5.577	7.887	394 mA	400mA	\checkmark
Ch3	5.582	7.894	394 mA	400mA	\checkmark
Ch4	5.584	7.896	395 mA	400mA	\checkmark

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.66	9.418	471 mA	400mA	\checkmark
Ch2	6.68	9.446	472 mA	400mA	\checkmark
Ch3	6.68	9.446	472 mA	400mA	\checkmark
Ch4	6.66	9.418	471 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.69	9.461	473 mA	400mA	\checkmark
Ch2	6.71	9.489	474 mA	400mA	\checkmark
Ch3	6.70	9.475	473 mA	400mA	\checkmark
Ch4	6.69	9.461	473 mA	400mA	\checkmark

Unit	PUM9P
Test Engineer	RMC
Date	2/3/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-155.1	-101.5	-161.5
Ch2	-155.1	-100.8	-160.8
Ch3	-155.1	-99.9	-159.9
Ch4	-155.1	-100.1	-160.1

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB. Unit.....PUM9P Test EngineerRMC Date2/3/11

Noise Monitors

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give $2.9\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.91	2.9µV√Hz	\checkmark
2		1.87	2.9µV√Hz	\checkmark
3		2.00	2.9µV√Hz	\checkmark
4		1.98	2.9µV√Hz	\checkmark

Unit.....PUM9P Test EngineerRMC Date2/3/11

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

Unit.....PUM9P Test EngineerRMC Date2/3/11

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM9P
Driver board ID	PUM9P
Driver board Drawing No/Issue No	D070483_07_K
Driver board Serial Number	PUM9P
Monitor board ID	Mon265
Monitor board Drawing No/Issue No	D070480_05_K
Monitor board Serial Number	Mon265

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. \checkmark

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.ukDepartment of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM10P Test EngineerRMC Date25/1/11

Drive Card ID.....PUM10P Monitor Card IDMon266

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- **10. Trip Circuit tests**
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

Wire added to link pin 2 on J7 with the reset pulse.

IC 15 (40106) in trip circuit failed during test.

Replaced. Some unconnected pads lifted during removal.

Works well on retest (23/2/11)

Links:

Check that the links W4 is present on each channel.

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	+12.01 v	\checkmark	2 mV
+15v TP4	+14.92 v	\checkmark	2 mV
-15v TP6	-14.88 v	\checkmark	5 mV

All Outputs smooth DC, no oscillation? **No oscillations**

Common mode pick up present.

Record Power Supply Currents

Supply	Current
+16.5v	0.696 A
-16.5v	0.442 A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3			\checkmark
Ch4			\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	
Ch2			
Ch3			
Ch4			

Unit	PUM10P
Test Engineer	RMC
Date	

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.331	3	0.33v	\checkmark
2	0.331	6	0.33v	\checkmark
3	0.331	9	0.33v	\checkmark
4	0.330	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.194	2	0.195v +/- 0.01v	\checkmark
2	0.194	5	0.195v +/- 0.01v	\checkmark
3	0.194	8	0.195v +/- 0.01v	\checkmark
4	0.193	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.198	1	0.195v +/- 0.01v	\checkmark
2	0.199	4	0.195v +/- 0.01v	\checkmark
3	0.198	7	0.195v +/- 0.01v	\checkmark
4	0.197	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark	\checkmark	
Ch4	\checkmark		

Unit......PUM10P Test EngineerRMC Date25/1/11 – retest 23/2/11

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

40106 failed during test. Replaced. Results below are for retest.

Stays low?	\checkmark	

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.36 v
R.M.S. Current in the load	118 mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	3.7 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	1.7 seconds

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.493	24.6 mA
Ch2	0.496	24.8 mA
Ch3	0.496	24.8 mA
Ch4	0.493	24.6 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.652	32.6 mA	16mA	\checkmark
Ch2	0.655	32.7 mA	16mA	\checkmark
Ch3	0.655	32.7 mA	16mA	\checkmark
Ch4	0.653	32.6 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.751	37.5 mA	16mA	\checkmark
Ch3	0.751	37.5 mA	16mA	\checkmark
Ch4	0.750	37.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.750	37.5 mA	16mA	\checkmark
Ch3	0.751	37.5 mA	16mA	\checkmark
Ch4	0.750	37.5 mA	16mA	\checkmark

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.193	9.65 mA
Ch2	0.195	9.75 mA
Ch3	0.195	9.75 mA
Ch4	0.194	9.70 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.420	21.0 mA	16mA	\checkmark
Ch2	0.422	21.1 mA	16mA	\checkmark
Ch3	0.422	21.1 mA	16mA	\checkmark
Ch4	0.422	21.1 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729	39.6 mA	16mA	\checkmark
Ch2	0.725	36.2 mA	16mA	\checkmark
Ch3	0.730	36.5 mA	16mA	\checkmark
Ch4	0.730	36.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748	37.4 mA	16mA	\checkmark
Ch2	0.749	37.4 mA	16mA	\checkmark
Ch3	0.749	37.4 mA	16mA	\checkmark
Ch4	0.749	37.4 mA	16mA	\checkmark

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.19	5.92	296 mA
Ch2	4.18	5.91	295 mA
Ch3	4.19	5.92	296 mA
Ch4	4.19	5.92	296 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.56	7.86	393 mA	400mA	
Ch2	5.58	7.89	394 mA	400mA	
Ch3	5.58	7.89	394 mA	400mA	
Ch4	5.59	7.90	395 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.66	9.42	471 mA	400mA	\checkmark
Ch2	6.68	9.44	472 mA	400mA	\checkmark
Ch3	6.68	9.44	472 mA	400mA	\checkmark
Ch4	6.68	9.44	472 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.69	9.46	473 mA	400mA	\checkmark
Ch2	6.71	9.49	474 mA	400mA	\checkmark
Ch3	6.71	9.49	474 mA	400mA	\checkmark
Ch4	6.72	9.50	475 mA	400mA	\checkmark

Unit	PUM10P
Test Engineer	RMC
Date	

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-155.1	-99.8	-159.8
Ch2	-155.1	-98.2	-158.2
Ch3	-155.1	-100.3	-160.3
Ch4	-155.1	-98.5	-158.5

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = $17.6 \text{ nV}/\sqrt{\text{Hz}}$ $17.6 \text{ nV}/\sqrt{\text{Hz}} = -155.1 \text{ dB}/\sqrt{\text{Hz}}$ The noise floor is about -133dB.

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V/\sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V\sqrt{Hz}$ out.

Ch.	Output (µV/√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.92	2.9µV√Hz	\checkmark
2		1.74	2.9µV√Hz	\checkmark
3		1.66	2.9µV√Hz	\checkmark
4		1.32	2.9µV√Hz	\checkmark

Note high levels of 50 Hz interference made it necessary to make differential measurements.

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM10P
Driver board ID	PUM10P
Driver board Drawing No/Issue No	D070483_07_K
Driver board Serial Number	PUM10P
Monitor board ID	MON266
Monitor board Drawing No/Issue No	D070480_05_K
Monitor board Serial Number	MON266

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM11P Test EngineerRMC Date26/1/11

Drive Card ID.....PUM11P Monitor Card IDMON263

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- **10. Trip Circuit tests**
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

Wire added to link pin 2 on J7 with the reset pulse.

Links:

Check that the links W4 is present on each channel.

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

Unit.....PUM11P Test EngineerRMC

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	+12.03	\checkmark	1.2 uV
+15v TP4	+14.92	\checkmark	1.15 uV
-15v TP6	-15.07	\checkmark	4 uV

All Outputs smooth DC, no oscillation?	
--	--

Record Power Supply Currents

Supply	Current
+16.5v	0.72 A
-16.5v	0.46 A

If the supplies are correct, proceed to the next test.

Unit	PUM11P
Test Engineer	RMC
Date	26/1/11

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.332 v	3	0.33v	\checkmark
2	0.332 v	6	0.33v	\checkmark
3	0.331 v	9	0.33v	\checkmark
4	0.331 v	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.195 v	2	0.195v +/- 0.01v	\checkmark
2	0.196 v	5	0.195v +/- 0.01v	\checkmark
3	0.195 v	8	0.195v +/- 0.01v	\checkmark
4	0.195 v	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.200 v	1	0.195v +/- 0.01v	\checkmark
2	0.194 v	4	0.195v +/- 0.01v	\checkmark
3	0.195 v	7	0.195v +/- 0.01v	\checkmark
4	0.195 v	10	0.195v +/- 0.01v	\checkmark

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark	\checkmark	
Ch4	\checkmark		

Unit	PUM11P
Test Engineer .	RMC
Date	

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.31 v	
R.M.S. Current in the load	115.5 mA	

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	4 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	1.7 seconds

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

Vo r.m.s		lo r.m.s (Vo/20)	
Ch1 0.498 v		24.9 mA	
Ch2	0.496 v	24.8 mA	
Ch3	0.498 v	24.9 mA	
Ch4	0.493 v	24.6 mA	

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.655v	32.75 mA	16mA	\checkmark
Ch2	0.655 v	32.75 mA	16mA	\checkmark
Ch3	0.656 v	32.80 mA	16mA	\checkmark
Ch4	0.653 v	32.60 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.751 v	37.5 mA	16mA	\checkmark
Ch2	0.751 v	37.5 mA	16mA	\checkmark
Ch3	0.752 v	37.6 mA	16mA	\checkmark
Ch4	0.751 v	37.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.751 v	37.5 mA	16mA	\checkmark
Ch2	0.750 v	37.5 mA	16mA	\checkmark
Ch3	0.751 v	37.5 mA	16mA	\checkmark
Ch4	0.750 v	37.5 mA	16mA	\checkmark

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.195 v	9.75 mA
Ch2	0.195 v	9.75 mA
Ch3	0.196 v	9.80 mA
Ch4	0.191 v	9.55 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.421 v	21.05 mA	16mA	\checkmark
Ch2	0.421 v	21.05 mA	16mA	\checkmark
Ch3	0.423 v	21.15 mA	16mA	\checkmark
Ch4	0.416 v	20.80 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729 v	36.4 mA	16mA	\checkmark
Ch2	0.730 v	36.5 mA	16mA	\checkmark
Ch3	0.730 v	36.5 mA	16mA	\checkmark
Ch4	0.729 v	36.4 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.749 v	37.4 mA	16mA	\checkmark
Ch2	0.749 v	37.4 mA	16mA	\checkmark
Ch3	0.749 v	37.4 mA	16mA	\checkmark
Ch4	0.749 v	37.4 mA	16mA	\checkmark

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.15	5.868	393 mA
Ch2	4.17	5.897	295 mA
Ch3	4.14	5.854	292 mA
Ch4	4.18	5.911	295 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.55	7.848	392 mA	400mA	
Ch2	5.57	7.877	393 mA	400mA	
Ch3	5.55	7.848	392 mA	400mA	
Ch4	5.58	7.891	394 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.67	9.432	471 mA	400mA	\checkmark
Ch2	6.67	9.432	471 mA	400mA	\checkmark
Ch3	6.67	9.432	471 mA	400mA	\checkmark
Ch4	6.67	9.432	471 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.69	9.461	473 mA	400mA	\checkmark
Ch2	6.69	9.461	473 mA	400mA	\checkmark
Ch3	6.70	9.475	473 mA	400mA	\checkmark
Ch4	6.70	9.475	473 mA	400mA	\checkmark

Unit	PUM11P
Test Engineer	RMC
Date	26/1/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-155.1	-99.1	-159.1
Ch2	-155.1	-100.2	-160.2
Ch3	-155.1	-100.9	-160.9
Ch4	-155.1	-99.3	-159.3

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB. Unit.....PUM11P Test EngineerRMC

Noise Monitors

- Monitor coil inputs to board were grounded for all channels. Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.86	2.9µV√Hz	\checkmark
2		1.56	2.9µV√Hz	\checkmark
3		1.77	2.9µV√Hz	\checkmark
4		1.89	2.9µV√Hz	\checkmark

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

Some fluctuations observed on positive inputs on channels 3 & 4, probably due to a test equipment contact around 3v and 9v.

Problem did not recur on repeated retests.
14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections.

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place.

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM11P
Driver board ID	PUM11P
Driver board Drawing No/Issue No	D070480_05_K
Driver board Serial Number	PUM11P
Monitor board ID	Mon263
Monitor board Drawing No/Issue No	D070480_05_K
Monitor board Serial Number	Mon263

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM12P Test EngineerRMC Date27/1/11

Drive Card ID.....PUM12P Monitor Card IDMon264P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- **10. Trip Circuit tests**
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

Wire added to link pin 2 on J7 with the reset pulse.

Links:

Check that the links W4 is present on each channel.

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	
9	Imon4N		21	

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

Unit.....PUM12P Test EngineerRMC

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	+12.03 v	\checkmark	1.4 mV
+15v TP4	+14.89 v	\checkmark	1.5 mV
-15v TP6	-15.157 v	\checkmark	6 mV

All Outputs smooth DC, no oscillation? $\sqrt{}$

Record Power Supply Currents

Supply	Current
+16.5v	0.574 A
-16.5v	0.527 A

If the supplies are correct, proceed to the next test.

Unit	PUM12P
Test Engineer	RMC
Date	27/1/11

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	PUM12P
Test Engineer	RMC
Date	27/1/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.331	3	0.33v	\checkmark
2	0.332	6	0.33v	\checkmark
3	0.332	9	0.33v	\checkmark
4	0.332	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.196	2	0.195v +/- 0.01v	\checkmark
2	0.196	5	0.195v +/- 0.01v	\checkmark
3	0.195	8	0.195v +/- 0.01v	\checkmark
4	0.195	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.197	1	0.195v +/- 0.01v	\checkmark
2	0.196	4	0.195v +/- 0.01v	\checkmark
3	0.197	7	0.195v +/- 0.01v	\checkmark
4	0.199	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	

Unit	PUM12P
Test Engineer	RMC
Date	

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.34 v
R.M.S. Current in the load	117 mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	4.6 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

|--|

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.494 v	24.7 mA
Ch2	0.493 v	24.65 mA
Ch3	0.496 v	24.8 mA
Ch4	0.492 v	24.6 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.654 v	32.70 mA	16mA	\checkmark
Ch2	0.653 v	32.65 mA	16mA	\checkmark
Ch3	0.655 v	32.75 mA	16mA	\checkmark
Ch4	0.653 v	32.65 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.751 v	37.55 mA	16mA	\checkmark
Ch2	0.751 v	37.55 mA	16mA	\checkmark
Ch3	0.751 v	37.55 mA	16mA	\checkmark
Ch4	0.751 v	37.55 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.751 v	37.55 mA	16mA	\checkmark
Ch2	0.751 v	37.55 mA	16mA	\checkmark
Ch3	0.751 v	37.55 mA	16mA	\checkmark
Ch4	0.751 v	37.55 mA	16mA	\checkmark

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.194 v	9.70 mA
Ch2	0.192 v	9.60 mA
Ch3	0.197 v	9.85 mA
Ch4	0.195 v	9.75 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.421 v	21.5 mA	16mA	\checkmark
Ch2	0.418 v	20.9 mA	16mA	\checkmark
Ch3	0.424 v	21.2 mA	16mA	\checkmark
Ch4	0.424 v	21.2 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.730 v	36.5 mA	16mA	\checkmark
Ch2	0.730 v	36.5 mA	16mA	\checkmark
Ch3	0.730 v	36.5 mA	16mA	\checkmark
Ch4	0.731 v	36.6 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.749 v	37.4 mA	16mA	\checkmark
Ch2	0.749 v	37.4 mA	16mA	\checkmark
Ch3	0.749 v	37.4 mA	16mA	\checkmark
Ch4	0.750 v	37.5 mA	16mA	\checkmark

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.13	5.89	292 mA
Ch2	4.16	5.88	294 mA
Ch3	4.14	5.85	293 mA
Ch4	4.14	5.85	293 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.54	7.83	392 mA	400mA	
Ch2	5.55	7.85	392.5	400mA	
Ch3	5.55	7.85	392.5	400mA	
Ch4	5.54	7.83	392 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.65	9.40	470 mA	400mA	\checkmark
Ch2	6.58	9.30	465 mA	400mA	\checkmark
Ch3	6.66	9.41	471 mA	400mA	\checkmark
Ch4	6.68	9.44	472 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.66	9.41	471 mA	400mA	\checkmark
Ch2	6.69	9.46	473 mA	400mA	\checkmark
Ch3	6.67	9.43	471 mA	400mA	\checkmark
Ch4	6.69	9.46	473 mA	400mA	\checkmark

Unit	PUM12P
Test Engineer .	RMC
Date	

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-155.1	-98.5	-158.5
Ch2	-155.1	-99.8	-159.8
Ch3	-155.1	-98.2	-158.2
Ch4	-155.1	-98.9	-158.9

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB. Unit.....PUM12P Test EngineerRMC

Noise Monitors

- Monitor coil inputs to board were grounded for all channels. Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1	(P====//	1.6	2.9µV√Hz	\checkmark
2		1.4	2.9µV√Hz	\checkmark
3		1.7	2.9µV√Hz	\checkmark
4		1.6	2.9µV√Hz	\checkmark

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM12P
Driver board ID	PUM12P
Driver board Drawing No/Issue No	D070483_7_K
Driver board Serial Number	PUM12P
Monitor board ID	MON264
Monitor board Drawing No/Issue No	D070480_5_K
Monitor board Serial Number	MON264

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail av@star.sr.bham.ac.ukDepartment of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM13P Test EngineerRMC Date21/2/11

Drive Card ID.....PUM13P Monitor Card IDMON84

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- 10. Trip Circuit tests
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Ok

On initial tests, channel 1 of the original monitor board was found to be noisy. The monitor board (Mon 61) was removed, and replaced by MON78.

Relevant tests (Section 8 and the noise monitor part of section 12) were re-run.

Buffer IC10 channel 1 on driver board was found to be noisy and changed.

Links:

Check that the links W4 is present on each channel.

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.039	\checkmark	2 mV
+15v TP4	14.79	\checkmark	2 mV
-15v TP6	-15.08	\checkmark	7 mV

All Outputs smooth DC, no oscillation? $\sqrt{}$

Record Power Supply Currents

Supply	Current
+16.5v	0.574 A
-16.5v	0.528 A

If the supplies are correct, proceed to the next test.

Unit	PUM13P
Test Engineer	RMC
Date	21/2/11

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	PUM13P
Test Engineer .	RMC
Date	21/2/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.33	3	0.33v	\checkmark
2	0.33	6	0.33v	\checkmark
3	0.33	9	0.33v	\checkmark
4	0.33	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.195	2	0.195v +/- 0.01v	\checkmark
2	0.195	5	0.195v +/- 0.01v	\checkmark
3	0.195	8	0.195v +/- 0.01v	\checkmark
4	0.195	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.199	1	0.195v +/- 0.01v	\checkmark
2	0.201	4	0.195v +/- 0.01v	\checkmark
3	0.195	7	0.195v +/- 0.01v	\checkmark
4	0.201	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark	\checkmark	
Ch4	\checkmark		

Unit	PUM13P
Test Engineer	RMC
Date	21/2/11

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.26 v
R.M.S. Current in the load	113 mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	4.2 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	1.5 seconds

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.494	24.70 mA
Ch2	0.493	24.65 mA
Ch3	0.497	24.85 mA
Ch4	0.501	25.05 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.653	32.6 mA	16mA	\checkmark
Ch2	0.654	32.7 mA	16mA	\checkmark
Ch3	0.656	32.8 mA	16mA	\checkmark
Ch4	0.658	32.9 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.75	37.5 mA	16mA	\checkmark
Ch2	0.75	37.5 mA	16mA	\checkmark
Ch3	0.75	37.5 mA	16mA	\checkmark
Ch4	0.75	37.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.75	37.5 mA	16mA	\checkmark
Ch2	0.75	37.5 mA	16mA	\checkmark
Ch3	0.75	37.5 mA	16mA	\checkmark
Ch4	0.75	37.5 mA	16mA	\checkmark

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s lo r.m.s (Vo/	
Ch1	0.193	9.65 mA
Ch2	0.194	9.70 mA
Ch3	0.194	9.70 mA
Ch4	0.197	9.85 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.420	21 mA	16mA	\checkmark
Ch2	0.421	21 mA	16mA	\checkmark
Ch3	0.421	21 mA	16mA	\checkmark
Ch4	0.423	21 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.728	36.35 mA	16mA	\checkmark
Ch2	0.731	36.55 mA	16mA	\checkmark
Ch3	0.726	36.3 mA	16mA	\checkmark
Ch4	0.730	36.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748	37.4 mA	16mA	\checkmark
Ch2	0.750	37.5 mA	16mA	\checkmark
Ch3	0.750	37.5 mA	16mA	\checkmark
Ch4	0.750	37.5 mA	16mA	\checkmark
11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.15 v	5.87 v	293 mA
Ch2	4.14 v	5.85 v	292 mA
Ch3	4.16 v	5.88 v	294 mA
Ch4	4.13 v	5.84 v	292 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.55 v	7.85 v	392 mA	400mA	
Ch2	5.55 v	7.85 v	392 mA	400mA	
Ch3	5.46 v	7.72 v	386 mA	400mA	
Ch4	5.53 v	7.82 v	391 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.66 v	9.42 v	470 mA	400mA	\checkmark
Ch2	6.68 v	9.44 v	472 mA	400mA	\checkmark
Ch3	6.67 v	9.43 v	471 mA	400mA	\checkmark
Ch4	6.66 v	9.42 v	470 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.68 v	9.44 v	472 mA	400mA	\checkmark
Ch2	6.72 v	9.50 v	465 mA	400mA	\checkmark
Ch3	6.70 v	9.47 v	473 mA	400mA	\checkmark
Ch4	6.69 v	9.46 v	473 mA	400mA	\checkmark

Unit	PUM13P
Test Engineer	RMC
Date	21/2/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-155.1	-101.5 dB	-161.5 dB
Ch2	-155.1	-99.49 dB	-159.5 dB
Ch3	-155.1	-99.86 dB	-159.8 dB
Ch4	-155.1	-100.6 dB	-161.6 dB

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB. Unit.....PUM13P Test EngineerRMC

Noise Monitors

- Monitor coil inputs to board were grounded for all channels. Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.88	2.9µV√Hz	\checkmark
2		1.71	2.9µV√Hz	\checkmark
3		1.75	2.9µV√Hz	\checkmark
4		1.91	2.9µV√Hz	\checkmark

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM13P
Driver board ID	PUM13P
Driver board Drawing No/Issue No	D070483_07_K
Driver board Serial Number	PUM13P
Monitor board ID	MON178
Monitor board Drawing No/Issue No	D070480_05_K
Monitor board Serial Number	MON178

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM14P Test EngineerRMC Date3/2/11

Drive Card ID.....PUM14P Monitor Card IDMON193

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- 10. Trip Circuit tests
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

Unit	PUM14P
Test Engineer	RMC
Date	3/2/11

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

ok

Links: Check that the links W4 is present on each channel.

Unit	PUM14P
Test Engineer	RMC
Date	3/2/11

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

Unit.....PUM14P Test EngineerRMC

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	+12.04	\checkmark	2 mV
+15v TP4	+14.93	\checkmark	2 mV
-15v TP6	-15.02	\checkmark	5 mV

All Outputs smooth DC, no oscillation? **OK** Some pick up.

Record Power Supply Currents

Supply	Current
+16.5v	0.553
-16.5v	0.482

If the supplies are correct, proceed to the next test.

Unit	PUM14P
Test Engineer	RMC
Date	3/2/11

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	PUM14P
Test Engineer	RMC
Date	3/2/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.33	3	0.33v	\checkmark
2	0.33	6	0.33v	\checkmark
3	0.33	9	0.33v	\checkmark
4	0.33	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.195	2	0.195v +/- 0.01v	\checkmark
2	0.195	5	0.195v +/- 0.01v	\checkmark
3	0.195	8	0.195v +/- 0.01v	\checkmark
4	0.195	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.195	1	0.195v +/- 0.01v	\checkmark
2	0.195	4	0.195v +/- 0.01v	\checkmark
3	0.196	7	0.195v +/- 0.01v	\checkmark
4	0.198	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark	\checkmark	
Ch4	\checkmark		

Unit	PUM14P
Test Engineer	RMC
Date	3/2/11

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.37 v
R.M.S. Current in the load	18.5 mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	4.5 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

	Time taken to trip?	2 seconds
--	---------------------	-----------

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.495	24.7 mA
Ch2	0.499	24.9 mA
Ch3	0.501	25.0 mA
Ch4	0.496	24.8 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.654	32.7 mA	16mA	\checkmark
Ch2	0.657	32.8 mA	16mA	\checkmark
Ch3	0.658	32.9 mA	16mA	\checkmark
Ch4	0.655	32.7 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.751	37.5 mA	16mA	\checkmark
Ch3	0.751	37.5 mA	16mA	\checkmark
Ch4	0.751	37.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.751	37.5 mA	16mA	\checkmark
Ch3	0.751	37.5 mA	16mA	\checkmark
Ch4	0.751	37.5 mA	16mA	\checkmark

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.195	9.75 mA
Ch2	0.196	9.8 mA
Ch3	0.196	9.8 mA
Ch4	0.195	9.75 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.421	21.0 mA	16mA	\checkmark
Ch2	0.423	21.1 mA	16mA	\checkmark
Ch3	0.422	21.1 mA	16mA	\checkmark
Ch4	0.422	21.1 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729	36.4 mA	16mA	\checkmark
Ch2	0.730	36.5 mA	16mA	\checkmark
Ch3	0.729	36.4 mA	16mA	\checkmark
Ch4	0.730	36.4 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748	37.4 mA	16mA	\checkmark
Ch2	0.749	37.4 mA	16mA	\checkmark
Ch3	0.748	37.4 mA	16mA	\checkmark
Ch4	0.749	37.4 mA	16mA	\checkmark

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.17 v	5.89	294 mA
Ch2	4.17 v	5.89	294 mA
Ch3	4.16 v	5.88	294 mA
Ch4	4.20 v	5.93	297 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.57 v	7.87	394 mA	400mA	
Ch2	5.57 v	7.87	394 mA	400mA	
Ch3	5.57 v	7.87	394 mA	400mA	
Ch4	5.59 v	7.90	395 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.67 v	9.43	471 mA	400mA	\checkmark
Ch2	6.68 v	9.44	472 mA	400mA	\checkmark
Ch3	6.68 v	9.44	472 mA	400mA	\checkmark
Ch4	6.68 v	9.44	472 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.70 v	9.47	474 mA	400mA	\checkmark
Ch2	6,71 v	9.48	474 mA	400mA	\checkmark
Ch3	6.71 v	9.48	474 mA	400mA	\checkmark
Ch4	6.70 v	9.47	474 mA	400mA	\checkmark

Unit	PUM14P
Test Engineer	RMC
Date	3/2/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-155.1	-99 dB	-159 dB
Ch2	-155.1	-96.8	-156.8
Ch3	-155.1	-98.7	-158.7
Ch4	-155.1	-96.8	-156.8

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB. Unit.....PUM14P Test EngineerRMC

Noise Monitors

- Monitor coil inputs to board were grounded for all channels. Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V/\sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 μ V \sqrt{Hz} out.

Ch.	Output	÷ (Pre-amplifier	Expected	Comparison
	(µV√Hz)	gain)	Value	
1		1.7	2.9µV√Hz	\checkmark
2		1.4	2.9µV√Hz	\checkmark
3		1.7	2.9µV√Hz	\checkmark
4		1.5	2.9µV√Hz	\checkmark

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM14P
Driver board ID	PUM14P
Driver board Drawing No/Issue No	D070483_07_K
Driver board Serial Number	PUM14P
Monitor board ID	MON193
Monitor board Drawing No/Issue No	D070480_05_K
Monitor board Serial Number	MON193

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM15P Test EngineerRMC Date3/2/11

Drive Card ID.....PUM15P Monitor Card IDMON195

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- **10. Trip Circuit tests**
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

Unit	PUM15P
Test Engineer	RMC
Date	3/2/11

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

ΟΚ

Links: Check that the links W4 is present on each channel.

Unit	PUM15P
Test Engineer	RMC
Date	3/2/11

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

Unit.....PUM15P Test EngineerRMC

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	+11.99	\checkmark	2 mV
+15v TP4	+14.92	\checkmark	2 mV
-15v TP6	-15.02	\checkmark	5 mV

All Outputs smooth DC, no oscillation?	\checkmark
Some external interference present	

Record Power Supply Currents

Supply	Current
+16.5v	0.564
-16.5v	0.502

If the supplies are correct, proceed to the next test.

Unit	PUM15P
Test Engineer	RMC
Date	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4			\checkmark

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.33	3	0.33v	\checkmark
2	0.33	6	0.33v	\checkmark
3	0.33	9	0.33v	\checkmark
4	0.33	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
	_	Monitor	Value	
1	0.195	2	0.195v +/- 0.01v	\checkmark
2	0.196	5	0.195v +/- 0.01v	\checkmark
3	0.195	8	0.195v +/- 0.01v	\checkmark
4	0.194	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.196	1	0.195v +/- 0.01v	\checkmark
2	0.198	4	0.195v +/- 0.01v	\checkmark
3	0.198	7	0.195v +/- 0.01v	\checkmark
4	0.195	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.
9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark	\checkmark	
Ch4	\checkmark		

Unit	PUM15P
Test Engineer .	RMC
Date	3/2/11

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.33 v	
R.M.S. Current in the load	116.5 mA	

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	4.5 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	2.2 seconds

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s lo r.m.s (Vo/20)	
Ch1	0.502	25.1 mA
Ch2	0.498	24.9 mA
Ch3	0.493	24.6 mA
Ch4	0.493	24.6 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.658	32.9 mA	16mA	\checkmark
Ch2	0.656	32.8 mA	16mA	\checkmark
Ch3	0.653	32.6 mA	16mA	\checkmark
Ch4	0.653	32.6 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.749	37.4 mA	16mA	\checkmark
Ch3	0.750	37.5 mA	16mA	\checkmark
Ch4	0.751	37.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.749	37.4 mA	16mA	\checkmark
Ch3	0.751	37.5 mA	16mA	\checkmark
Ch4	0.751	37.5 mA	16mA	\checkmark

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s lo r.m.s (Vo/20)	
Ch1	0.198	9.90 mA
Ch2	0.197	9.85 mA
Ch3	0.194	9.70 mA
Ch4	0.194	9.70 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.425	21.25 mA	16mA	\checkmark
Ch2	0.424	21.20 mA	16mA	\checkmark
Ch3	0.420	21.00 mA	16mA	\checkmark
Ch4	0.421	21.05 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729	36.45 mA	16mA	\checkmark
Ch2	0.729	36.45 mA	16mA	\checkmark
Ch3	0.729	36.45 mA	16mA	\checkmark
Ch4	0.730	36.50 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.749	37.45 mA	16mA	\checkmark
Ch2	0.748	37.40 mA	16mA	\checkmark
Ch3	0.749	37.45 mA	16mA	\checkmark
Ch4	0.750	37.50 mA	16mA	\checkmark

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.12	5.82	291 mA
Ch2	4.15	5.86	293 mA
Ch3	4.14	5.85	292 mA
Ch4	4.11	5.81	290 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.53	7.82	391 mA	400mA	
Ch2	5.55	7.85	392 mA	400mA	
Ch3	5.55	7.85	392 mA	400mA	
Ch4	5.52	7.80	390 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.68	9.44	472 mA	400mA	\checkmark
Ch2	6.67	9.43	471 mA	400mA	\checkmark
Ch3	6.68	9.44	472 mA	400mA	\checkmark
Ch4	6.67	9.43	471 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.70	9.47	473 mA	400mA	\checkmark
Ch2	6.70	9.47	473 mA	400mA	\checkmark
Ch3	6.71	9.49	474 mA	400mA	\checkmark
Ch4	6.70	9.47	473 mA	400mA	\checkmark

Unit	PUM15P
Test Engineer	RMC
Date	3/2/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-155.1	-98.5	-158.5
Ch2	-155.1	-100	-160
Ch3	-155.1	-100.7	-160.7
Ch4	-155.1	-99.7	-159.7

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB. Unit.....PUM15P Test EngineerRMC

Noise Monitors

- Monitor coil inputs to board were grounded for all channels. Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.55	2.9µV√Hz	\checkmark
2		1.87	2.9µV√Hz	\checkmark
3		1.74	2.9µV√Hz	\checkmark
4		1.88	2.9µV√Hz	\checkmark

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM15P
Driver board ID	PUM15P
Driver board Drawing No/Issue No	D070483_07_K
Driver board Serial Number	PUM15P
Monitor board ID	MON195
Monitor board Drawing No/Issue No	D070480_05_K
Monitor board Serial Number	MON195

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM16P Test EngineerRMC Date8/2/11

Drive Card ID.....PUM16P Monitor Card IDMON180

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors
- 9. Distortion

10. Trip Circuit tests

- 11 Load Tests
- 11.1 Noisy Mode
- 11.2 Low noise Mode
- 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

ΟΚ

Wire added to link pin 2 on J7 with the reset pulse.

Links: Check that the links W4 is present on each channel. Unit.....PUM16P Test EngineerRMC

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output. Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.08 v	\checkmark	2 mV
+15v TP4	14.96 v	\checkmark	2 mV
-15v TP6	-15.01 v	\checkmark	5 mV

All Outputs smooth DC, no oscillation?	~	

Around 2mV of interference present.

Record Power Supply Currents

Supply	Current
+16.5v	0.582A
-16.5v	0.536A

If the supplies are correct, proceed to the next test.

7. Relay Operation

Operate each relay in turn.

Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicat	OK?	
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.331	3	0.33v	\checkmark
2	0.332	6	0.33v	\checkmark
3	0.332	9	0.33v	\checkmark
4	0.332	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.195	2	0.195v +/- 0.01v	\checkmark
2	0.195	5	0.195v +/- 0.01v	\checkmark
3	0.195	8	0.195v +/- 0.01v	\checkmark
4	0.195	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.198	1	0.195v +/- 0.01v	\checkmark
2	0.196	4	0.195v +/- 0.01v	\checkmark
3	0.202	7	0.195v +/- 0.01v	\checkmark
4	0.195	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?	١	

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.385 v
R.M.S. Current in the load	119.25 mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	4.5 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. Connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	1.8 seconds

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.501	25 mA
Ch2	0.500	25 mA
Ch3	0.498	24.9 mA
Ch4	0.496	24.8 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.657	32.8 mA	16mA	\checkmark
Ch2	0.657	32.8 mA	16mA	\checkmark
Ch3	0.656	32.8 mA	16mA	\checkmark
Ch4	0.655	32.7 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.751	37.5 mA	16mA	\checkmark
Ch3	0.751	37.5 mA	16mA	\checkmark
Ch4	0.751	37.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.750	37.5 mA	16mA	\checkmark
Ch3	0.751	37.5 mA	16mA	\checkmark
Ch4	0.751	37.5 mA	16mA	\checkmark

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.196	9.8 mA
Ch2	0.195	9.75 mA
Ch3	0.192	9.6 mA
Ch4	0.195	9.75 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.422	21.1 mA	16mA	\checkmark
Ch2	0.421	21.0 mA	16mA	\checkmark
Ch3	0.423	21.1 mA	16mA	\checkmark
Ch4	0.422	21.1 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729	36.4 mA	16mA	\checkmark
Ch2	0.729	36.4 mA	16mA	\checkmark
Ch3	0.730	36.5 mA	16mA	\checkmark
Ch4	0.730	36.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748	37.4 mA	16mA	\checkmark
Ch2	0.749	37.4 mA	16mA	\checkmark
Ch3	0.749	37.4 mA	16mA	\checkmark
Ch4	0.750	37.5 mA	16mA	\checkmark

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

100112			
	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.12	5.82	291.0 mA
Ch2	4.11	5.81	290.6 mA
Ch3	4.15	5.87	293.4 mA
Ch4	4.17	5.89	294.8 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.58	7.89	394 mA	400mA	
Ch2	5.53	7.82	391 mA	400mA	
Ch3	5.56	7.86	393 mA	400mA	
Ch4	5.57	7.87	393 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.66	9.41	470 mA	400mA	\checkmark
Ch2	6.68	9.44	472 mA	400mA	\checkmark
Ch3	6.68	9.44	472 mA	400mA	\checkmark
Ch4	6.68	9.44	472 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.69	9.46	473 mA	400mA	\checkmark
Ch2	6.71	9.49	474 mA	400mA	\checkmark
Ch3	6.71	9.49	474 mA	400mA	\checkmark
Ch4	6.69	9.46	473 mA	400mA	\checkmark

Unit	PUM16P
Test Engineer	RMC
Date	8/2/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-155.1	-98.9	-158.9
Ch2	-155.1	-99.9	-159.9
Ch3	-155.1	-100.18	-160.18
Ch4	-155.1	-100.28	-160.28

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB.

Noise Monitors

- Monitor coil inputs to board were grounded for all channels.

Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V/\sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V\sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.82	2.9µV√Hz	\checkmark
2		1.87	2.9µV√Hz	\checkmark
3		1.77	2.9µV√Hz	\checkmark
4		1.79	2.9µV√Hz	\checkmark

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

- 7. Check that all the LEDs are nicely centred. \checkmark
- 8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM16P
Driver board ID	PUM16P
Driver board Drawing No/Issue No	D070483_07_p
Driver board Serial Number	PUM16P
Monitor board ID	MON180
Monitor board Drawing No/Issue No	D070480_05_K
Monitor board Serial Number	Mon180

10. Check the security of any modification wires. \checkmark

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. \checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM17P Test EngineerRMC Date9/2/11

Drive Card ID.....PUM17P Monitor Card IDMON147

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- **10. Trip Circuit tests**
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

ΟΚ

Reset wire present between J7/2 and J7/18

Links: Check that the links W4 is present on each channel.

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		
5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

Unit.....PUM17P Test EngineerRMC

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.01	\checkmark	1 mV
+15v TP4	14.78	\checkmark	1mV
-15v TP6	-15.078	\checkmark	6 mV

All Outputs smooth DC, no oscillation?	\checkmark
Some pick up present	

Record Power Supply Currents

Supply	Current
+16.5v	0.705
-16.5v	0.526

If the supplies are correct, proceed to the next test.

Unit	PUM17P
Test Engineer	RMC
Date	9/2/11

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	PUM17P
Test Engineer .	RMC
Date	9/2/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.33	3	0.33v	\checkmark
2	0.33	6	0.33v	\checkmark
3	0.33	9	0.33v	\checkmark
4	0.33	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.194	2	0.195v +/- 0.01v	\checkmark
2	0.194	5	0.195v +/- 0.01v	\checkmark
3	0.194	8	0.195v +/- 0.01v	\checkmark
4	0.194	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.197	1	0.195v +/- 0.01v	\checkmark
2	0.199	4	0.195v +/- 0.01v	\checkmark
3	0.199	7	0.195v +/- 0.01v	\checkmark
4	0.200	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

Unit	PUM17P
Test Engineer	RMC
Date	9/2/11

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.318
R.M.S. Current in the load	115.9 mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	3.9 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	1.6 seconds

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

Vo r.m.s		lo r.m.s (Vo/20)
Ch1	0.494	24.7 mA
Ch2	0.491	24.5 mA
Ch3	0.490	24.5 mA
Ch4	0.497	24.8 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.653	32.65 mA	16mA	\checkmark
Ch2	0.652	32.6 mA	16mA	\checkmark
Ch3	0.651	32.5 mA	16mA	\checkmark
Ch4	0.655	32.75 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.750	37.5 mA	16mA	\checkmark
Ch3	0.749	37.4 mA	16mA	\checkmark
Ch4	0.749	37.4 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.750	37.5 mA	16mA	\checkmark
Ch3	0.750	37.5 mA	16mA	\checkmark
Ch4	0.749	34.4 mA	16mA	\checkmark

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

Vo r.m.s Io r.m.s (Vo/		
Ch1	0.194	9.7 mA
Ch2	0.191	9.55 mA
Ch3	0.192	9.6 mA
Ch4	0.196	9.8 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.421	21.0 mA	16mA	\checkmark
Ch2	0.417	20.8 mA	16mA	\checkmark
Ch3	0.419	20.9 mA	16mA	\checkmark
Ch4	0.423	21.15 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.730	36.5 mA	16mA	\checkmark
Ch2	0.729	36.45	16mA	\checkmark
Ch3	0.728	36.4 mA	16mA	\checkmark
Ch4	0.729	36.45	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.749	37.45 mA	16mA	\checkmark
Ch2	0.749	37.45 mA	16mA	\checkmark
Ch3	0.748	37.4 mA	16mA	\checkmark
Ch4	0.748	37.4 mA	16mA	\checkmark

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.16	5.88	294 mA
Ch2	4.14	5.85	292 mA
Ch3	4.16	5.88	294 mA
Ch4	4.14	5.85	292 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.55	7.85	392 mA	400mA	
Ch2	5.55	7.85	392 mA	400mA	
Ch3	5.56	7.86	393 mA	400mA	
Ch4	5.54	7.83	391 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.67	9.43	471 mA	400mA	\checkmark
Ch2	6.67	9.43	471 mA	400mA	\checkmark
Ch3	6.67	9.43	471 mA	400mA	\checkmark
Ch4	6.66	9.42	471 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.70	9.47	473 mA	400mA	\checkmark
Ch2	6.70	9.47	473 mA	400mA	\checkmark
Ch3	6.70	9.47	473 mA	400mA	\checkmark
Ch4	6.69	9.46	473 mA	400mA	\checkmark

Unit	PUM17P
Test Engineer .	RMC
Date	9/2/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-155.1	-98.8	-158.8
Ch2	-155.1	-100.69	-160.6
Ch3	-155.1	-98.66	-158.6
Ch4	-155.1	-98.4	-158.4

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB. Unit.....PUM17P Test EngineerRMC

Noise Monitors

- Monitor coil inputs to board were grounded for all channels. Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.52	2.9µV√Hz	\checkmark
2		1.53	2.9µV√Hz	\checkmark
3		1.56	2.9µV√Hz	\checkmark
4		1.97	2.9µV√Hz	\checkmark

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM17P
Driver board ID	D070483_07_K
Driver board Drawing No/Issue No	PUM17P
Driver board Serial Number	PUM17P
Monitor board ID	MON147
Monitor board Drawing No/Issue No	D070480_05_K
Monitor board Serial Number	MON147

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM18P Test EngineerRMC Date14/2/11

Drive Card ID.....PUM18P Monitor Card IDMON85

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- 10. Trip Circuit tests
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Ok

Reset link added between J7/2 and J7/18

Links: Check that the links W4 is present on each channel.

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	+11.98 v	\checkmark	1.2 mV
+15v TP4	+14.96 v	\checkmark	1.2 mV
-15v TP6	-14.96 v	\checkmark	7 mV

All Outputs smooth DC, no oscillation? $\sqrt{}$

Some pick up present on incoming power lines

Record Power Supply Currents

Supply	Current
+16.5v	0.736 A
-16.5v	0.553 A

If the supplies are correct, proceed to the next test.

Unit	PUM18P
Test Engineer .	RMC
Date	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	PUM18P
Test Engineer	RMC
Date	14/2/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.33	3	0.33v	\checkmark
2	0.33	6	0.33v	\checkmark
3	0.33	9	0.33v	\checkmark
4	0.33	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.194	2	0.195v +/- 0.01v	\checkmark
2	0.195	5	0.195v +/- 0.01v	\checkmark
3	0.195	8	0.195v +/- 0.01v	\checkmark
4	0.195	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.198	1	0.195v +/- 0.01v	\checkmark
2	0.197	4	0.195v +/- 0.01v	\checkmark
3	0.198	7	0.195v +/- 0.01v	\checkmark
4	0.198	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.35 v
R.M.S. Current in the load	117.5 mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	3.75 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	1.75 seconds

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

Vo r.m.s		lo r.m.s (Vo/20)
Ch1	0.496	24.8 mA
Ch2	0.499	24.95 mA
Ch3	0.494	24.7 mA
Ch4	0.491	24.5 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.654	32.70 mA	16mA	\checkmark
Ch2	0.656	32.80 mA	16mA	\checkmark
Ch3	0.653	32.65 mA	16mA	\checkmark
Ch4	0.652	31.25 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.750	37.5 mA	16mA	\checkmark
Ch3	0.750	37.5 mA	16mA	\checkmark
Ch4	0.750	37.5 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.5 mA	16mA	\checkmark
Ch2	0.750	37.5 mA	16mA	\checkmark
Ch3	0.750	37.5 mA	16mA	\checkmark
Ch4	0.750	37.5 mA	16mA	\checkmark

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)		
Ch1	0.193	9.65 mA		
Ch2	0.196	9.8 mA		
Ch3	0.194	9.7 mA		
Ch4	0.193	9.65 mA		

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.419	20.95 mA	16mA	\checkmark
Ch2	0.423	21.15 mA	16mA	\checkmark
Ch3	0.421	21.05 mA	16mA	\checkmark
Ch4	0.419	20.95 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729	36.45 mA	16mA	\checkmark
Ch2	0.729	36.45 mA	16mA	\checkmark
Ch3	0.729	36.45 mA	16mA	\checkmark
Ch4	0.729	36.45 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748	37.4 mA	16mA	\checkmark
Ch2	0.749	36.45 mA	16mA	\checkmark
Ch3	0.748	37.4 mA	16mA	\checkmark
Ch4	0.749	36.45 mA	16mA	\checkmark

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.16	5.88	294 mA
Ch2	4.16	5.88	294 mA
Ch3	4.14	5.85	293 mA
Ch4	4.15	5.86	293 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.56	7.86	393 mA	400mA	
Ch2	5.56	7.86	393 mA	400mA	
Ch3	5.55	7.85	392 mA	400mA	
Ch4	5.55	7.85	392 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.66	9.42	471 mA	400mA	\checkmark
Ch2	6.66	9.42	471 mA	400mA	\checkmark
Ch3	6.66	9.42	471 mA	400mA	\checkmark
Ch4	6.65	9.40	470 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.69	9.46	473 mA	400mA	\checkmark
Ch2	6.69	9.46	473 mA	400mA	\checkmark
Ch3	6.69	9.46	473 mA	400mA	\checkmark
Ch4	6.68	9.45	472 mA	400mA	\checkmark

Unit	PUM18P
Test Engineer	RMC
Date	14/2/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB	Measured @	-60dB =
	V/√HZ	10Hz	
Ch1	-155.1	-101.2	-161.2
Ch2	-155.1	-101.56	-161.5
Ch3	-155.1	-100.54	-161.5
Ch4	-155.1	-100.29	-161.2

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB.

Noise Monitors

- Monitor coil inputs to board were grounded for all channels. Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (µV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		1.73	2.9µV√Hz	\checkmark
2		1.71	2.9µV√Hz	\checkmark
3		1.70	2.9µV√Hz	\checkmark
4		1.79	2.9µV√Hz	\checkmark

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM18P
Driver board ID	PUM18P
Driver board Drawing No/Issue No	D070483_
Driver board Serial Number	PUM18P
Monitor board ID	MON85
Monitor board Drawing No/Issue No	D070480_5_K
Monitor board Serial Number	MON85

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory

Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM19P Test EngineerRMC Date16/2/11

Drive Card ID.....PUM19P Monitor Card IDMON162

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- 8.2 Current Monitors
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- **10. Trip Circuit tests**
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	Fluke	287
Voltage calibrator	Time	1044
PSU	Farnell	30-2
PSU	Farnell	30-2
Scope	Tektronix	2225
DSA	Agilent	35670
Precision Amp	Stanford	SR560

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Ok

Reset link added between J7/2 and J7/18

IC7 on channel 2 was changed because it was faulty

Links:

Check that the links W4 is present on each channel.

4. Continuity Checks Continuity to the PD in from SAT (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

LED Mon

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	\checkmark
2	Imon2P		6	\checkmark
3	Imon3P		7	\checkmark
4	Imon4P		8	\checkmark
5	0V	\checkmark		
6	Imon1N		18	\checkmark
7	Imon2N		19	\checkmark
8	Imon3N		20	\checkmark
9	Imon4N		21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		
25	0V (TP3)		

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.00	\checkmark	2 mV
+15v TP4	14.82	\checkmark	2 mV
-15v TP6	-15.10	\checkmark	7 mV

All Outputs smooth DC, no oscillation? \checkmark

Some pick up

Record Power Supply Currents

Supply	Current
+16.5v	0.560
-16.5v	0.481

If the supplies are correct, proceed to the next test.

Unit	PUM19P
Test Engineer	RMC
Date	16/2/11

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

TEST RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark

Unit	.PUM19P
Test Engineer	.RMC
Date	.16/2/11

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.33	3	0.33v	\checkmark
2	0.33	6	0.33v	\checkmark
3	0.33	9	0.33v	\checkmark
4	0.33	12	0.33v	\checkmark

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.195	2	0.195v +/- 0.01v	\checkmark
2	0.194	5	0.195v +/- 0.01v	\checkmark
3	0.195	8	0.195v +/- 0.01v	\checkmark
4	0.194	11	0.195v +/- 0.01v	\checkmark

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.200	1	0.195v +/- 0.01v	\checkmark
2	0.200	4	0.195v +/- 0.01v	\checkmark
3	0.200	7	0.195v +/- 0.01v	\checkmark
4	0.199	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

See Monitor re-test report.

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Distortion Free?	Mode:
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark	\checkmark	
Ch4	\checkmark		

Unit	PUM19P
Test Engineer	RMC
Date	16/2/11

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.32
R.M.S. Current in the load	116 mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	\checkmark
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	\checkmark

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	3.6 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	1.3 seconds

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

100Hz

Vo r.m.s		lo r.m.s (Vo/20)	
Ch1	0.494	24.70 mA	
Ch2	0.494	24.70 mA	
Ch3	0.495	24.75 mA	
Ch4	0.493	44.65 mA	

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.653	32.65 mA	16mA	\checkmark
Ch2	0.653	32.65 mA	16mA	\checkmark
Ch3	0.654	32.70 mA	16mA	\checkmark
Ch4	0.653	32.65 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.50 mA	16mA	\checkmark
Ch2	0.751	37.55 mA	16mA	\checkmark
Ch3	0.750	37.50 mA	16mA	\checkmark
Ch4	0.750	37.50 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.750	37.50 mA	16mA	\checkmark
Ch2	0.751	37.55 mA	16mA	\checkmark
Ch3	0.750	37.50 mA	16mA	\checkmark
Ch4	0.750	37.50 mA	16mA	\checkmark

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.193	9.65 mA
Ch2	0.194	9.70 mA
Ch3	0.196	9.80 mA
Ch4	0.195	9.75 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.419	20.95 mA	16mA	\checkmark
Ch2	0.420	21.0 mA	16mA	\checkmark
Ch3	0.424	21.2 mA	16mA	\checkmark
Ch4	0.422	21.1 mA	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.729	36.45 mA	16mA	\checkmark
Ch2	0.730	36.50 mA	16mA	\checkmark
Ch3	0.730	36.50 mA	16mA	\checkmark
Ch4	0.730	36.50 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.748	37.40 mA	16mA	\checkmark
Ch2	0.750	37.50 mA	16mA	\checkmark
Ch3	0.749	37.45 mA	16mA	\checkmark
Ch4	0.749	37.45 mA	16mA	\checkmark

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)
Ch1	4.16	5.88	294 mA
Ch2	4.14	5.85	292 mA
Ch3	4.15	5.86	293 mA
Ch4	4.13	5.84	292 mA

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.56	7.86	393 mA	400mA	\checkmark
Ch2	5.55	7.85	392 mA	400mA	\checkmark
Ch3	5.55	7.85	392 mA	400mA	\checkmark
Ch4	5.53	7.82	391 mA	400mA	\checkmark

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.67	9.43	471 mA	400mA	\checkmark
Ch2	6.68	9.44	472 mA	400mA	\checkmark
Ch3	6.66	9.42	470 mA	400mA	\checkmark
Ch4	6.66	9.42	470 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.70	9.47	473 mA	400mA	\checkmark
Ch2	6.71	9.46	473 mA	400mA	\checkmark
Ch3	6.69	9.46	473 mA	400mA	\checkmark
Ch4	6.69	9.46	473 mA	400mA	\checkmark

Unit	PUM19P
Test Engineer	RMC
Date	16/2/11

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-155.1	-99.73	-159 dB
Ch2	-155.1	-100.61	-160 dB
Ch3	-155.1	-100.27	-160 dB
Ch4	-155.1	-101.01	-161 dB

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB. Unit.....PUM19P Test EngineerRMC

Noise Monitors

- Monitor coil inputs to board were grounded for all channels. Using the Pre-Amplifier with a gain of 10 and Dynamic Signal Analyser, measure the noise monitor outputs in $\mu V \sqrt{Hz}$ on the noise monitor outputs. Correct for the pre-amplifier gain. 10pA \sqrt{Hz} should give 2.9 $\mu V \sqrt{Hz}$ out.

Ch.	Output (μV√Hz)	÷(Pre-amplifier gain)	Expected Value	Comparison
1		2.14	2.9µV√Hz	\checkmark
2		1.81	2.9µV√Hz	\checkmark
3		1.82	2.9µV√Hz	\checkmark
4		1.87	2.9µV√Hz	\checkmark

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 stable ?	Ch2 stable ?	Ch3 stable ?	Ch4 stable ?
-10v	\checkmark	\checkmark	\checkmark	\checkmark
-7v	\checkmark	\checkmark	\checkmark	\checkmark
-5v	\checkmark	\checkmark	\checkmark	\checkmark
-1v	\checkmark	\checkmark	\checkmark	\checkmark
0v	\checkmark	\checkmark	\checkmark	\checkmark
1v	\checkmark	\checkmark	\checkmark	\checkmark
5v	\checkmark	\checkmark	\checkmark	\checkmark
7v	\checkmark	\checkmark	\checkmark	\checkmark
10v	\checkmark	\checkmark	\checkmark	\checkmark

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	PUM19P
Driver board ID	PUM19P
Driver board Drawing No/Issue No	D070483_07_K
Driver board Serial Number	PUM19P
Monitor board ID	MON62
Monitor board Drawing No/Issue No	D070480_05_K
Monitor board Serial Number	MON62

10. Check the security of any modification wires. $\sqrt{}$

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T0900292

Advanced LIGO UK

December 2009

PUM Driver Unit Test Report

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297

Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/

http://www.physics.gla.ac.uk/igr/sus/

http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

PUM DRIVER UNIT BOARD TEST REPORT

Unit.....PUM1P.....Serial No Test EngineerRMC Date19/5/10

Drive Card ID.....PUM1P Monitor Card ID MON60P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Monitor Outputs
- 8.1 Voltage Monitors
- **8.2 Current Monitors**
- 8.3 RMS Monitors
- 8.4 Noise Monitors

9. Distortion

- **10. Trip Circuit tests**
- 11 Load Tests 11.1 Noisy Mode 11.2 Low noise Mode 11.3 Acquisition Mode
- **12 Noise Measurements**
- 13. DC Stability
- 14. Final Assembly Tests

1. Description

Block diagram

Description

The PUM unit consists of four identical channels and the power regulators which provide regulated power to the four channels.

Each channel consists of a coil drive channel, and monitor circuitry. There is also a time delayed trip circuit, which protects the OSEMs from being over driven for long periods.

The driver ha 3 main modes of operation, selectable by two external relay commands: Noisy Mode, Quiet Mode and Acquisition Mode. There is also a Test Mode which routes the inputs to the Test Connector.

The current limit during acquisition is controlled by a circuit which is common to all driver channels (described below).

Acquisition Mode Current Limit

The current limit during acquisition mode is controlled by an OSEM protection circuit which is common to all channels.

The RMS output currents are measured on the monitor board, then fed into the OSEM Protection Circuit. This circuit is designed to trip if the r.m.s current into an OSEM exceeds the preset limit for more than a predetermined time.

The OSEM Protection Circuit

The OSEM coils must not be allowed to overheat, as this causes out-gassing. However, during Acquisition, a high current is required for a short period. This period is not long enough to allow the coil to become hot and outgas significantly. However the coils require protection against excessive currents for prolonged periods.

The inputs to the OSEM protection circuit monitor the r.m.s current flowing in each Osem coil. A voltage proportional to the r.m.s current is passed through a delay network. If an OSEM current exceeds the limit by more than a certain time, the threshold level is reached, and the corresponding bistable is set.

The outputs of the four bistables are combined in an OR gated, energising a level shifting circuit which switches off all the drivers. The use of a bistable ensures that oscillation is prevented.

All bistables are reset at power on, and may be reset by a single command line.

2. Test equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	287	
Voltage calibrator	Time	1044	
PSU	Farnell	30-2	
PSU	Farnell	30-2	
Scope	Tektronix	2225	
DSA	Agilent	35670	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

OK

Links: Check that the links W4 is present on each channel.

4. Continuity Checks Continuity to the V, I and R.M.S Monitor (J1)

PD out to AA

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
	5	0V 🗸		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	

LED Mon

PIN	SI	GNAL			To J1 PIN	OK?
1	Im	on1P			5	\checkmark
2	Im	on2P			6	\checkmark
3	Im	on3P			7	\checkmark
4	Im	on4P			8	\checkmark
		5	0V	\checkmark		
6	Im	on1N			18	\checkmark
7	Im	on2N			19	\checkmark
8	Im	on3N			20	\checkmark
9	Im	on4N			21	\checkmark

Pd from Sat

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	\checkmark
10	V+ (TP1)	+17v Supply	\checkmark
11	V- (TP2)	-17v Supply	\checkmark
12	V- (TP2)	-17v Supply	\checkmark
13	0V (TP3)		\checkmark
22	0V (TP3)		\checkmark
23	0V (TP3)		\checkmark
24	0V (TP3)		\checkmark
25	0V (TP3)		\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: Drive Input J3 pins 1, 2, 3, 4 = positive input Drive Input J3 pins 6, 7, 8, 9 = negative input Drive Input J3 pin 5 = ground

Power

DC IN J1 pin 9, 10 = +16.5v DC IN J1 pin 11,12 = -16.5 DC IN J1 pins 22, 23, 24, 25 = 0v

Outputs

Coil Out to Sat (J4)Ch1+ = J4 pin 1Ch1- = J4 pin 9Ch2+ = J4 pin 3Ch2- = J4 pin 11Ch3+ = J4 pin 5Ch3- = J4 pin 13Ch4+ = J4 pin 7Ch4- = J4 pin 15

6. Power

Check that the 3 pin power connector is wired correctly: A1 positive, A2 return, A3 Negative.

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct on TP1 and TP2.

If they are, increase input voltages to +/- 16.5v.

Record the output voltages, measured on a DVM with 4 or more digits, from each regulator

Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each regulator output.

Record regulator outputs:

Regulator	Output voltage	Nominal +/- 0.5v?	Output noise
+12v TP5	12.008v	\checkmark	1mV
+15v TP4	14.902v	\checkmark	1.2mV
-15v TP6	-15.141	\checkmark	5mV

All Outputs smooth DC, no oscillation? $\sqrt{}$

Record Power Supply Currents

Supply	Current
+16.5v	0.5A
-16.5v	0.48A

If the supplies are correct, proceed to the next test.

Unit	PUM1P	.Serial No
Test Engineer	RMC	
Date	19/5/10	

7. Relay Operation

Operate each relay in turn. Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	

TEST RELAYS √

Channel	Indicator		OK?
	ON	OFF	
Ch1			
Ch2			
Ch3			
Ch4			

ACQUISITION RELAYS

Channel	Indicator		OK?
	ON	OFF	
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark

Unit	.PUM1P	.Serial No
Test Engineer	RMC	
Date	19/5/10	

8. Monitor Outputs

Switch out the filters and set the unit to Acquisition Mode.

With a 20 ohm dummy load on each channel, apply an input from the signal generator at 1 KHz, and adjust the amplitude until the output is 1vr r.m.s as measured between TP10 and TP12.

Measure the Voltage Monitor outputs with respect to 0v for each channel.

8.1 Voltage Monitors

Ch.	Output:	V, I and R.M.S Monitor	Expected value	OK?
1	0.33v	3	0.33v	
2	0.33v	6	0.33v	
3	0.33v	9	0.33v	
4	0.33v	12	0.33v	

8.2 Current Monitors

Ch.	Output	V, I and R.M.S	Expected	OK?
		Monitor	Value	
1	0.195v	2	0.195v +/- 0.01v	
2	0.195v	5	0.195v +/- 0.01v	
3	0.195v	8	0.195v +/- 0.01v	
4	0.195v	11	0.195v +/- 0.01v	

8.3 R.M.S Monitors

Ch.	Output	V, I and R.M.S Monitor	Expected Value	OK?
1	0.200v	1	0.195v +/- 0.01v	
2	0.201v	4	0.195v +/- 0.01v	
3	0.197v	7	0.195v +/- 0.01v	
4	0.199v	10	0.195v +/- 0.01v	\checkmark

8.4 Noise Monitors

Using the Dynamic Signal Analyser, measure the noise monitor outputs in dBV/\sqrt{Hz} . Correct for the pre-amplifier gain (if used.)

Ch.	Pin	Output	Limit	OK?
1	1	1.11	2.9µV	\checkmark
2	2	1.34	2.9µV	\checkmark
3	3	1.39	2.9µV	\checkmark
4	4	1.43	2.9µV	\checkmark

Unit	PUM1P	.Serial No
Test Engineer	.RMC	
Date	26/5/10	

9. Distortion

Switch the filters out. Increase input voltage to 10v peak, f = 1KHz. Use 20 Ohm loads. Observe the voltage across each load with an oscilloscope in both Acquisition and Non-Acquisition modes.

The trip circuit must be disconnected by unplugging the ribbon cable P3 for these tests.

	Acquisition Mode: Distortion Free?	Non-Acquisition Mode Distortion Free?	
Ch1	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	

10. Trip Circuit Tests

Switch the filters out.

Both the 16 way ribbon cables between the Drive Board and the Voltage Monitor board need to be connected as usual, for this test.

Observe TP25, and the channel outputs. It should initially be at 0v. If not, turn off all signal inputs and cycle the power supply.

Connect the signal generator to the unit with a frequency of 200Hz. Put the unit in Acquisition Mode. Adjust the amplitude of the sine wave until the output current is 100mA r.m.s, which gives 2v r.m.s across the 20 ohm load resistor, The signal generator will be set at around 3.6v. Run the unit for a few minutes. It should keep running without tripping, and TP25 should remain low.

Stays low?

Very slowly increase the voltage, and observe the level at which it trips.

R.M.S. Volts across the load	2.35v
R.M.S. Current in the load	117mA

Check that all output coil drive voltages disappear after the circuit has tripped.

Ch1 o/p disappeared?	\checkmark
Ch2 o/p disappeared?	
Ch3 o/p disappeared?	\checkmark
Ch4 o/p disappeared?	

Reduce the input voltage to 0v, and wait for the capacitors to discharge. Cycle the power supply.

Disconnect the signal generator. Adjust the signal generator to 5.4v, giving an output current of around 150mA. Monitor TP25 and TP13. Connect the signal generator and measure the time taken for the circuit to trip..

Time taken to trip?	4.4 seconds

Disconnect the signal generator, and wait for the capacitors to discharge. Cycle the power supply. Adjust the signal generator to 10v. connect the signal generator, and measure the time taken for the trip to operate.

Time taken to trip?	2.2 seconds

11 Load tests

Plug in the 20 Ohm 5W loads. Ensure the links W4 are in place.

11.1 Noisy Mode

With the acquisition mode switched out, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter, at the frequencies below.

Calculate the output current in each case (Vout/20).

	1	00	Hz
--	---	----	----

	Vo r.m.s	lo r.m.s (Vo/20)
Ch1	0.2309	11.5 mA
Ch2	0.2307	11.53 mA
Ch3	0.2331	11.65 mA
Ch4	0.2317	11.58 mA

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.397	19.85	16mA	\checkmark
Ch2	0.397	19.85	16mA	\checkmark
Ch3	0.400	20.00	16mA	\checkmark
Ch4	0.398	19.90	16mA	\checkmark

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.715	35.75 mA	16mA	\checkmark
Ch2	0.715	35.75 mA	16mA	\checkmark
Ch3	0.716	35.80 mA	16mA	\checkmark
Ch4	0.713	35.65 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.746	37.3 mA	16mA	\checkmark
Ch2	0.746	37.3 mA	16mA	\checkmark
Ch3	0.746	37.3 mA	16mA	\checkmark
Ch4	0.744	37.2 mA	16mA	\checkmark

11.2 Low noise Mode

With the acquisition mode switched out and filters switched in, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s, at the frequencies below. Calculate the output current in each case (Vout/20).

100Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.088	4.4		
Ch2	0.088	4.4		
Ch3	0.090	4.5		
Ch4	0.089	4.45		

200Hz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.253	12.65 mA	16mA	
Ch2	0.253	12.65 mA	16mA	
Ch3	0.256	12.85 mA	16mA	
Ch4	0.257	12.8 mA	16mA	

1KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.694	34.7 mA	16mA	\checkmark
Ch2	0.694	34.7 mA	16mA	\checkmark
Ch3	0.696	34.8 mA	16mA	\checkmark
Ch4	0.693	34.65 mA	16mA	\checkmark

5KHz

	Vo r.m.s	lo r.m.s (Vo/20)	Specification	Pass/Fail
Ch1	0.746	37.3 mA	16mA	\checkmark
Ch2	0.746	37.3 mA	16mA	\checkmark
Ch3	0.746	37.3 mA	16mA	\checkmark
Ch4	0.744	37.2 mA	16mA	\checkmark

Unit	PUM1P	Serial No	
Test Engineer	RMC		
Date	20/5/10		

11.3 Acquisition Mode

With the acquisition mode switched in, and filters switched out, apply 10v peak at the input to the drive unit. Measure the r.m.s differential voltage across each load resistor in turn using a true r.m.s meter at the frequencies below. Calculate the peak voltages, then the peak output current in each case (Vout/20). Do not leave the unit running with a 10v input for too long, especially if the heat sink is not fitted. R.M.S feedback ribbon cable P3 must be disconnected for this test, to prevent tripping, and replaced by the grounded test ribbon cable.

100Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	4.108	5.809	290.4 mA		
Ch2	4.119	5.825	291.2 mA		
Ch3	4.091	5.785	289.2 mA		
Ch4	4.113	5.816	290.8 mA		

200Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	5.58	7.791	394.5 mA	400mA	
Ch2	5.59	7.905	395.2 mA	400mA	
Ch3	5.57	7.877	393.8 mA	400mA	
Ch4	5.57	7.877	393.8 mA	400mA	

1K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.63	9.376	468.8 mA	400mA	\checkmark
Ch2	6.64	9.390	469.5 mA	400mA	\checkmark
Ch3	6.64	9.390	469.5 mA	400mA	\checkmark
Ch4	6.61	9.348	467.3 mA	400mA	\checkmark

5K Hz

	Vo r.m.s	Vo pk.	lo pk. (Vo/20)	Specification	Pass/Fail
Ch1	6.67	9.432	471.6 mA	400mA	\checkmark
Ch2	6.66	9.418	470.9 mA	400mA	\checkmark
Ch3	6.68	9.447	472.3 mA	400mA	\checkmark
Ch4	6.66	9.418	470.9 mA	400mA	\checkmark

12 Noise Measurements

As the previous test involves non – representative temperature rises, allow the unit to cool before performing this test.

Replace the filter link W4 on each channel.

Connect the filter test box, and switch in all filters.

Switch it out of Test Mode and out of the Acquisition mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 20 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs (TP10 and TP12). The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

Measure the noise output at 10 Hz.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-155.1	-100.6	-160.6
Ch2	-155.1	-100.3	-160.3
Ch3	-155.1	-100.5	-160.5
Ch4	-155.1	- 99.1	-159.1

Notes:

Specified noise output current at 10 Hz = 4pA/root Hz Total resistance at 10Hz, in Low noise mode = 4.4K Amplifier noise voltage should therefore be = 17.6 nV/ \sqrt{Hz} 17.6 nV/ \sqrt{Hz} = -155.1 dB/ \sqrt{Hz} The noise floor is about -133dB.

Unit	PUM1P	.Serial No
Test Engineer	RMC	
Date	26/5/10	

13. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP10 and TP12. Check stability while slowly increasing the output voltage. (Link W2 in)

	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-12.00	\checkmark	-12.00	\checkmark	-12.00	\checkmark	-12.00	\checkmark
-7v	-8.40	\checkmark	-8.40	\checkmark	-8.40	\checkmark	-8.40	\checkmark
-5v	-5.97	\checkmark	-5.98	\checkmark	-5.99	\checkmark	-5.99	\checkmark
-1v	-1.19	\checkmark	-1.2	\checkmark	-1.2	\checkmark	-1.2	\checkmark
0 v	0.00	\checkmark	-0.01	\checkmark	-0.01	\checkmark	0.01	\checkmark
1v	1.19	\checkmark	1.19	\checkmark	1.19	\checkmark	1.20	\checkmark
5v	6.00	\checkmark	6.00	\checkmark	6.00	\checkmark	6.00	\checkmark
7v	8.40	\checkmark	8.40	\checkmark	8.40	\checkmark	8.40	\checkmark
10v	12.00	\checkmark	12.00	\checkmark	12.00	\checkmark	12.00	\checkmark

Unit.....Serial No Test Engineer Date

14. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

4. Check that all internal connectors are firmly mated. $\sqrt{}$

5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$

6. Check that the nuts holding the tabs of the power drivers are secure – tighten as necessary. Test with a DVM that none of the tabs are shorted to chassis. \checkmark

7. Check that all the LEDs are nicely centred. $\sqrt{}$

8. Check that all links W4 are in place. $\sqrt{}$

9. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. $\sqrt{\text{Record below}}$:

UoB box ID	PUM1P
Driver board ID	PUM1P
Driver board Drawing No/Issue No	D070483_5_K
Driver board Serial Number	PUM1P
Monitor board ID	MON60P
Monitor board Drawing No/Issue No	D070480_4_K
Monitor board Serial Number	MON60P

10. Check the security of any modification wires. None

11. Visually inspect. √

12. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$