

Gravitational Waves

Prof. John T. Whelan john.whelan@astro.rit.edu

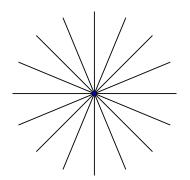
Center for Computational Relativity & Gravitation School of Mathematical Sciences

REU Lecture 2009 July 17 LIGO-G0900689

Outline

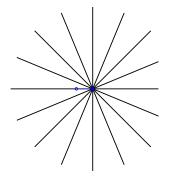
- Motivation for Gravitational Waves
- Conceptual Introduction to General Relativity
- Gravitational Waves on a Flat Background
- Gravitational Wave Detection

Motivation for Gravitational Waves Conceptual Introduction to General Relativity Gravitational Waves on a Flat Background Gravitational Wave Detection

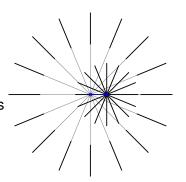

Outline

- Motivation for Gravitational Waves
- Conceptual Introduction to General Relativity
- Gravitational Waves on a Flat Background
- Gravitational Wave Detection

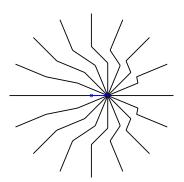
Action at a Distance


- Newtonian gravity: mass generates gravitational field
- Lines of force point towards object

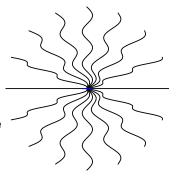
Issues with Causality


- Move object; Newton says: lines point to new location
- Relativity says: can't communicate faster than light to avoid paradoxes
- You could send me supraluminal messages via grav field

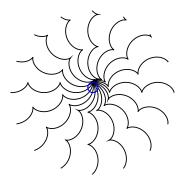
Gravitational Speed Limit


- If I'm 10 light years away, I can't know you moved the object 6 years ago
- Far away, gravitational field lines have to point to old location of the object

Gravitational Shock Wave


 Sudden motion (acceleration) of object generates gravitational shock wave expanding at speed of light

Ripples in the Gravitational Field


- Move object back & forth
 gravitational wave
- Same argument applies to electricity:
 - can derive magnetism as relativistic effect
 - accelerating charges generate electromagnetic waves propagating @ speed of light

Gravitational Wave from Orbiting Mass?

- Move around in a circle
- Still get grav wave pattern, but looks a bit funny
- Time to move beyond simple pseudo-Newtonian picture

Outline

- Motivation for Gravitational Waves
- Conceptual Introduction to General Relativity
- Gravitational Waves on a Flat Background
- Gravitational Wave Detection

The Equivalence Principle

- Funny thing about (Newtonian) gravitational forces: always proportional to an object's mass, something in a gravitational field undergoes the same acceleration, no matter what it is
- Fictitious forces (e.g., centrifugal force) in non-inertial (accelerating, rotating, etc) reference frames behave the same way
- In Einstein's general relativity, gravity is something like a fictitious force which only manifests itself because the reference frame is non-inertial
- The catch: NO (globally) inertial reference frames!

Motivation for Gravitational Waves Conceptual Introduction to General Relativity Gravitational Waves on a Flat Background Gravitational Wave Detection

A Thought Experiment

- In a freely falling elevator: Can you tell you're not in space?
- You, the elevator, and anything you drop are accelerating downwards at 9.8 m/s² → no relative acceleration

A Thought Experiment

- In a freely falling elevator: Can you tell you're not in space?
- You, the elevator, and anything you drop are accelerating downwards at 9.8 m/s² → no relative acceleration
- Actually, you can tell if the elevator is big enough:
 - Top of elevator farther from Earth → grav field weaker → stuff accelerates less ⇒ accelerates up in elevator frame
 - Bottom of elevator closer to Earth \to grav field stronger \to stuff accelerates more \Longrightarrow down in elevator frame
 - stuff @ sides accel inward bc lines to ctr of ⊕ converge
- This relative acceleration is measurable manifestation of gravity: tidal force

Spacetime Geometry

- Recall in special relativity, speed of light c same for all inertial observers
- Given pair of events, different observers measure different Δx, Δy, Δz & even Δt, but all agree on

$$(\Delta s)^{2} = -c^{2}(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

- If $(\Delta s)^2 = 0$, have lightlike or null-sep events
- If $(\Delta s)^2 > 0$, have spacelike-separated events
- If $(\Delta s)^2 < 0$, have timelike-separated events

Notational Simplifications

- Work in units where c = 1 (defines what we mean by measuring time in meters and distance in (light-)seconds)
- Four-vector $\{x^{\alpha}\} = \{x^0, x^1, x^2, x^3\} = \{t, x, y, z\}$
- Einstein summation convention: implied sum over repeated indices so for example $g_{\alpha\beta}V^{\alpha}V^{\beta}$ means $\sum_{\alpha=0}^{3}\sum_{\beta=0}^{3}g_{\alpha\beta}V^{\alpha}V^{\beta}$ & $g_{ij}V^{i}V^{j}$ means $\sum_{i=1}^{3}\sum_{j=1}^{3}g_{ij}V^{i}V^{j}$

• So
$$(\Delta s)^2 = \eta_{\alpha\beta} \Delta x^{\alpha} \Delta x^{\beta}$$
 where $\{\eta_{\alpha\beta}\} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

General Relativity in a Nutshell

- In GR, talk about infinitesimal separations $\Delta \rightarrow d$
- Geometry described by

$$(ds)^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta}$$

 $g_{lphaeta}(\{{\it x}^{\gamma}\})$ in general is not the flat Minkowski metric $\eta_{lphaeta}$

- You can always choose coördinates so that at one point $g_{\alpha\beta}=0$ & $\frac{\partial g_{\alpha\beta}}{\partial x^{\gamma}}=0$ (equivalence principle)
- Cannot get rid of $\frac{\partial^2 g_{\alpha\beta}}{\partial x^{\gamma} \partial x^{\delta}}$, even at a point (tidal effects)
- Einstein's equations describe how $\frac{\partial^2 g_{\alpha\beta}}{\partial x^\gamma \partial x^\delta}$ determined by density of matter and energy

Outline

- Motivation for Gravitational Waves
- Conceptual Introduction to General Relativity
- Gravitational Waves on a Flat Background
- Gravitational Wave Detection

Gravitational Wave as Metric Perturbation

- Full GR complicated (choice of coörds, global struct, etc)
- Far from source, much simpler:
 - ≈ a plane wave
 - GW $h_{\alpha\beta}$ is a small perturbation on top of flat metric $\eta_{\alpha\beta}$ $g_{\alpha\beta} = \eta_{\alpha\beta} + h_{\alpha\beta}$
 - Can choose coörds to leave only two polarization states;
 E.g. Plane wave propagating in z direction

$$\{\boldsymbol{h}_{\alpha\beta}\} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & \boldsymbol{h}_{\times} & 0 \\ 0 & \boldsymbol{h}_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} e^{i2\pi f(z-t)}$$

 h_{+} and h_{\times} are amplitudes of "plus" and "cross" pol states.

$$\stackrel{\leftrightarrow}{h} = \left[h_{+} \stackrel{\leftrightarrow}{e}_{+} + \frac{h_{\times}}{e} \stackrel{\leftrightarrow}{e}_{\times} \right] e^{i2\pi f(\hat{k} \cdot \vec{r} - t)}$$

Effects of Gravitational Wave

Fluctuating geom changes distances btwn particles in free-fall:

Plus (+) Polarization		
Cross (×) Polarization		

Gravitational Wave Generation

- Generated by moving/oscillating mass distribution
- Classic example: orbiting binary system

(e.g., Binary Pulsar 1913+16

Observed energy loss agrees w/GW prediction)

The Polarization Basis

• wave propagating along \hat{k} ; construct $\vec{e}_{+,\times}$ from \perp unit vectors $\hat{\ell}$ & \hat{m} :

$$\stackrel{\boldsymbol{\leftrightarrow}}{\boldsymbol{e}}_{+} = \hat{\ell} \otimes \hat{\ell} - \hat{\boldsymbol{m}} \otimes \hat{\boldsymbol{m}} \qquad \stackrel{\boldsymbol{\leftrightarrow}}{\boldsymbol{e}}_{\times} = \hat{\ell} \otimes \hat{\boldsymbol{m}} + \hat{\boldsymbol{m}} \otimes \hat{\ell}$$

• arbitrary choice of $\hat{\ell}$ within plane $\perp \hat{k}$ (fixes $\hat{m} = \hat{k} \times \hat{\ell}$) Free to choose polarization basis convenient to situation

Example: Linear polarization

- Consider binary system seen edge on: masses seen going back & forth in one direction; call that $\hat{\ell}$
- In that pol basis, $h_{\times} = 0$ and only h_{+} linear polarization

$$h_+ = A\cos\Phi(t)$$
$$h_\times = 0$$

with
$$|A_+| > |A_\times|$$

Example: Circular polarization

- Consider binary system seen face on: masses seen going in circle
- In any pol basis, h_+ & h_\times have same amp; out of phase circular polarization

$$h_+ = A\cos\Phi(t)$$

$$h_{\times} = A \sin \Phi(t)$$

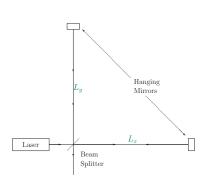
Example: Elliptical polarization

- General case: binary system seen at an angle: masses seen going around an ellipse; long axis of that ellipse picks preferred direction $\hat{\ell}$ for pol basis
- In that pol basis, h₊ & h_× out of phase; h₊ has greater amp elliptical polarization

$$h_+ = A_+ \cos \Phi(t)$$

$$h_{\times} = A_{\times} \sin \Phi(t)$$

with
$$|A_+| > |A_\times|$$



Outline

- Motivation for Gravitational Waves
- Conceptual Introduction to General Relativity
- Gravitational Waves on a Flat Background
- Gravitational Wave Detection

Measuring GWs w/Laser Interferometry

Interferometry: Measure GW-induced distance changes

Measure small change in

$$L_{x}-L_{y} = \sqrt{g_{11}L_{0}^{2}} - \sqrt{g_{22}L_{0}^{2}}$$

$$= \sqrt{(1+h_{11})L_{0}^{2}} - \sqrt{(1+h_{22})L_{0}^{2}}$$

$$\approx L_{0}\frac{h_{11}-h_{22}}{2} \sim L_{0}h_{+}$$
More son

More gen,

$$(L_1 - L_2)/L_0 = \stackrel{\leftrightarrow}{h} : \stackrel{\leftrightarrow}{d}$$
 with "response tensor"

$$\overset{\leftrightarrow}{d} = \frac{\hat{n}_1 \otimes \hat{n}_1 - \hat{n}_2 \otimes \hat{n}_2}{2}$$

Rogues' Gallery of Ground-Based Interferometers

LIGO Hanford (Wash.)

GEO-600 (Germany)

LIGO Livingston (La.)

Virgo (Italy)

Summary

- Relativistic causality implies gravitational waves
- General Relativity describes gravity as geometry
- Far from source, GWs are plane waves w/2 pol states
- GW detectors measure fluctuations in distances