

Characterisation of LTP

M Hewitson for the LTP Team

Monday, 11 May 2009

G0900658-v1

Outline

- Physics of LTP
- Data Analysis Tools
- Experiment Master Plan
- Mock Data Challenges

Mission Goals

- Technology demonstration for LISA
- Characterisation of the instrument subsystems
- Noise reduction and noise budget

Mission Goals

- Technology demonstration for LISA
- Characterisation of the instrument subsystems
- Noise reduction and noise budget

Free-falling test-mass at the level of about $3 \times 10^{-14} \,\mathrm{m\,s}^{-2}/\sqrt{\mathrm{Hz}} \, @1 \,\mathrm{mHz}$

G0900658-v1

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

G0900658-v1

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

G0900658-v1

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

4

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

 $A_{\rm N}$

A

 $m_1 = m_2 = 1.96 \,\mathrm{kg}$

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

A

 $m_1 = m_2 = 1.96 \,\mathrm{kg}$

 Spring couplings between SC and TMs (actuation stiffness)

|A|

 $m_1 = m_2 = 1.96 \,\mathrm{kg}$

- Spring couplings between SC and TMs (actuation stiffness)
- Spring coupling between TMs (gravitational attraction)

A

 $m_1 = m_2 = 1.96 \,\mathrm{kg}$

- Spring couplings between SC and TMs (actuation stiffness)
- Spring coupling between TMs (gravitational attraction)
- Loop gains (actuation calibrations, etc)

 A_{T}

 $A_{\rm N}$

A

 $m_1 = m_2 = 1.96 \,\mathrm{kg}$

 $M = 475 \,\mathrm{kg}$

- Spring couplings between SC and TMs (actuation stiffness)
- Spring coupling between TMs (gravitational attraction)
- Loop gains (actuation calibrations, etc)
- Cross-couplings (various)

TM1 O_1 IFO/DMU O_{12} TM2

Monday, 11 May 2009

Thruster force noise

Force noise of the thrusters couples directly to the TM-SC measurement. Also couples to TM-TM measurement via differences in the stiffness of each TM to SC.

Thruster force noise

Force noise of the thrusters couples directly to the TM-SC measurement. Also couples to TM-TM measurement via differences in the stiffness of each TM to SC.

Thruster force noise

Force noise of the thrusters couples directly to the TM-SC measurement. Also couples to TM-TM measurement via differences in the stiffness of each TM to SC.

Residual force noise on TMs

Environment forces acting on testmasses: radiometer, actuation, thermal, charging, magnetic, etc

Thruster force noise

Force noise of the thrusters couples directly to the TM-SC measurement. Also couples to TM-TM measurement via differences in the stiffness of each TM to SC.

Residual force noise on TMs

Environment forces acting on testmasses: radiometer, actuation, thermal, charging, magnetic, etc

Monday, 11 May 2009

Noise Budget - XI2

Monday, 11 May 2009

Experiment Master Plan

Experiment Master Plan

- Mission will consist of about 90 runs
 - Each run lasts 24H
 - Each run may contain more or less than one investigation
 - Each run will be planned and tested in advance of the mission
 - A run may affect following run configurations
 - Analysis of each run must be carried out promptly to allow the mission time-line to be changed

Experiment Master Plan

- Mission will consist of about 90 runs
 - Each run lasts 24H
 - Each run may contain more or less than one investigation
 - Each run will be planned and tested in advance of the mission
 - A run may affect following run configurations
 - Analysis of each run must be carried out promptly to allow the mission time-line to be changed
- Designing a run involves
 - defining the experiment and goals
 - defining the state of instrument
 - design the analysis
 - calculate the expected result/sensitivity
 - perform simulations / MDCs

Data Analysis - Requirements

- Analysis is typical of commissioning and characterisation of ground-based detectors (except with limited/no access to the instrument)
- Multiple scientists to analyse data concurrently
 - centralised data access
- Analysis results need to have a long life to carry forward to LISA
 - an analysis result should contain a full processing history
- Mission will generate a large number of 'results'
 - searching for these with meta-data must be possible
- Graphical User Interface
 - avoid the need for 'programming' experts during the mission

Introducing LTPDA

- Object-oriented data analysis toolbox for MATLAB
- Concept of 'Analysis Objects' which track their processing history
- Toolbox contains a large number of 'standard' signal processing algorithms which all work on AOs
- LTPDA Repository for storing AOs
- Client/server system allows access to AOs in repository directly from within MATLAB
- Graphical programming via drag-n-drop pipeline construction

G0900658-v1

Analysis Objects

Not results:

Analysis Objects

Not results:

Monday, 11 May 2009

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

Reliving history

- rebuild objects
- produce block-diagrams from objects
- produce scripts from objects
- view history tree

Reliving history

rebuild objects

produce block-diagrams from objects

Classes of objects

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

Classes of objects

AO

Objects containing different data series: time-series, frequency-series, x-y data, etc

acos

rms ifft

corr

psd

curvefit downsample

polyfit

report

abs	gapfilling
angle	rebuild
resample	asin
heterodyne	sDomainFit
interp	iplot
lincom	cpsd
spectrogram	detrend
filter	whiten1D
zDomainFit	zeropad

ssm

Objects describing state-space systems

ltpdamodel

Objects which describe parametric models, eg, y=ax+b

pzmodel

Objects describing a pole/zero system

miir/mfir

Objects describing an IIR/FIR filters

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

Use a drag-n-drop based pipeline construction method

 Pipeline just executes underlying LTPDA functions

G0900658-v1

Monday, 11 May 2009

G0900658-v1

Get it now!

We use mock data challenges (MDCs) to

- We use mock data challenges (MDCs) to
 - examine/understand the proposed experiments in the EMP

- We use mock data challenges (MDCs) to
 - examine/understand the proposed experiments in the EMP
 - test/exercise the analysis tools

- We use mock data challenges (MDCs) to
 - examine/understand the proposed experiments in the EMP
 - test/exercise the analysis tools
 - train scientists

1 Define MDC model(s), assumptions, etc

1 Define MDC model(s), assumptions, etc

2 Produce data sets based on 1)

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

1 Define MDC model(s), assumptions, etc

2

Analyse data
 (based on some details from 1)

Produce data sets based on 1)

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

2

³ Analyse data
(based on some details from 1)

4

Produce data sets based on 1)

Compare results to expected

M Hewitson, Characterisation of LTP, GWADW, 2009

MDC

Simple model of LTP (x-axis dynamics)

MDC

- Simple model of LTP (x-axis dynamics)
- Data generation
 - Model is based on 5 parameters of the system
 - stiffness of two test-masses, gains of two control servos, cross-coupling in IFO from X1 to X12
 - Generate two IFO output time-series

G0900658-v1

MDC

- Simple model of LTP (x-axis dynamics)
- Data generation
 - Model is based on 5 parameters of the system
 - stiffness of two test-masses, gains of two control servos, cross-coupling in IFO from X1 to X12
 - Generate two IFO output time-series
- Data analysis
 - convert the two IFO outputs to out-of-loop acceleration
 - convert each to in-loop acceleration
 - account for control forces

G0900658-v1

Monday, 11 May 2009

Data generation

- Frequency-domain analytical model of transfer functions
- Fit sets of digital filters to the transfer functions
- Filter white-noise time-series to produce simulated IFO outputs

 $m_1 = m_2 = 1.96 \,\mathrm{kg}$

Monday, 11 May 2009

G0900658-v1

M Hewitson, Characterisation of LTP, GWADW, 2009

 $m_1 = m_2 = 1.96 \,\mathrm{kg}$

 $M=475\,\mathrm{kg}$

 $k_1 x$

TM1

M Hewitson, Characterisation of LTP, GWADW, 2009

A

Monday, 11 May 2009

 $m_1 = m_2 = 1.96 \,\mathrm{kg}$

 $M=475\,\mathrm{kg}$

 $k_1 x$

TM1

M Hewitson, Characterisation of LTP, GWADW, 2009

G0900658-v1

M Hewitson, Characterisation of LTP, GWADW, 2009

M Hewitson, Characterisation of LTP, GWADW, 2009

Double differentiation

M Hewitson, Characterisation of LTP, GWADW, 2009

Double differentiation

Filter with controller transfer functions

Double differentiation

Results

Parameter estimation

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

27

Model same as MDCI

Parameter estimation

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

27

Model same as MDCI
Analysis team does not know exact parameter values for the model

Parameter estimation

Model same as MDCI

- Analysis team does not know exact parameter values for the model
- Instead, they must be determined from a series of experiments where the system is excited

Parameter estimation

The experiments

Monday, 11 May 2009

G0900658-v1

- Experiment I
 - inject signals into both control loops and measure at the outputs
 - il->ol and il2->ol2
 - Gdf, Gsus (stiffnesses?)

The experiments

• Experiment I

- inject signals into both control loops and measure at the outputs
 - il->ol and il2->ol2
 - Gdf, Gsus (stiffnesses?)
- Experiment 2
 - Match stiffness of two TMs
 - Inject in drag-free loop, measure in X12 loop
 - il->ol2
 - IFO cross-coupling

The experiments

• Experiment I

- inject signals into both control loops and measure at the outputs
 - il->ol and il2->ol2
 - Gdf, Gsus (stiffnesses?)
- Experiment 2
 - Match stiffness of two TMs
 - Inject in drag-free loop, measure in X12 loop
 - il->ol2
 - IFO cross-coupling
- Experiment 3
 - Un-matched stiffness
 - Same injection
 - il->o|2
 - difference of stiffness

The experiments

Experiment 3

Whitening data
Measuring Transfer function
Building the model to fit
Fitting the model to the data
Calibrate to acceleration

Whiten data

Whiten data

M Hewitson, Characterisation of LTP, GWADW, 2009

Measure TF

ao 012 miir o12 filters

M Hewitson, Characterisation of LTP, GWADW, 2009

Build the model

Model is built with various ltpdamodel objects

Fit model to data

Monday, 11 May 2009

Fit model to data

een to the the total the total total

Calibration to acceleration 📎

- Perform MDCI-like calibration using the experiment 3 data
 - for perfect parameter estimation and calibration process the injected signals should subtract!

Calibration to acceleration

Perform MDCL-like calibration using the experime
 for perfect calibration signals shot

Calibration to acceleration

 Perform MD the experiment $G_{\rm sus}$ $D(\omega_3^2)$ $C_{\rm sus}$ for perfect calibration interferometer signals shou

Calibration to acceleration

• Perform MDC L-like calibration using the experime • for perfect calibration signals shot

Monday, 11 May 2009

Time-domain fitting

 Try to generate template signals in time-domain and fit these to the measured data

 use ltpdamodel objects with FFT filtering technique
Time-domain fitting

te signals in se to the

with FFT

Time-domain fitting

M Hewitson, Characterisation of LTP, GWADW, 2009

Monday, 11 May 2009

Monte Carlo Analyses

Do our error estimates on the parameters make sense?

Are there any systematic errors?

Monte Carlo Analyses

 Do our error es parameters mak
Are there any sy

Monte Carlo Analyses

 Do our error es parameters mak
Are there any sy

M Hewitson, Characterisation of LTP, GWADW, 2009

Future MDCs

MDC3

- aim to demonstrate the proposed system-identification runs for x-axis dynamics
- Further MDCs
 - demonstrate other planned experiments
 - working through technical notes of the EMP

G0900658-v1