Radiation Pressure Noise Experiment in Hannover

Kazuhiro Yamamoto

Tobias Westphal, Daniel Friedrich, Stefan Gossler, Karsten Danzmann and Roman Schnabel Albert Einstein Institute Hannover

Kentaro Somiya
California Institute of Technology

Stefan Danilishin Moscow State University

12 May 2009 Gravitational-Wave Advanced Detector Workshop @Lago Mar Resort, Ft Lauderdale, Florida, U.S.A.

The state of the s

0.Abstract

Leibniz Universität Hannover

Radiation pressure noise measurement with extremely light

but translucent mechanical oscillator

New topology: Michelson-Sagnac interferometer

Theoretical outlines
Current status of experiment
Future work

Contents

- 1. Introduction
- 2. Theoretical outlines
- 3. Current status
- 4. Future work
- 5. Summary

Leibniz Universität Hannover

Interferometric gravitational wave detector

Current: First generation (LIGO, VIRGO, GEO, TAMA, CLIO)

Future: Second generation

(Advanced LIGO and VIRGO, LCGT)

Third generation (Einstein Telescope)

Quantum noise

Shot noise: Phase fluctuation

Radiation pressure noise: Amplitude fluctuation

Radiation pressure noise (1)

Leibniz Universität Hannover

Photons come at random
(amplitude fluctuation).
Back action of photon is also at random.
→ Radiation pressure noise

Radiation pressure noise

Leibniz Universität Hannover

Frequency(Hz)

102

Leibniz Universität Hannover

Standard Quantum Limit

SQL is a fundamental limit for conventional interferometer.

[Standard Quantum Limit (SQL) < Quantum noise]

Nobody observed radiation pressure noise!

Large radiation pressure noise

High laser power Light mass

Sizes of oscillators

Leibniz Universität Hannover

Membrane (Si₃N₄ in frame)

Leibniz Universität Hannover

Mechanical properties

frame: $7,5^2 \text{ mm}^2 \text{ x } 200 \text{ } \mu\text{m}$

Area: 1,5 mm x 1,5 mm

Thickness: 75 nm Effective mass: ~ 100 ng

Resonant frequency: ~73 kHz

J.D. Thompson *et al.*, Nature 452 (2008) 72-76.

102

Leibniz Universität Hannover

compare different approaches

	GEO600	LIGO ³	Adv. LIGO ³	Sakata ¹	Goßler ²	Corbitt ³	Ours ⁴
m _{eff.}	1 kg	2,5 kg	10 kg	23 mg	0,5g	1 g	50 ng
P [kW]	10	10	830	1,2	0,003	20	0,06
P/m [kW/kg]	10	4	83	52*10 ³	6	20*10 ³	1,2*10 ⁹
√P/m [√kW/kg]	3	1,3	2,9	48000	110	4500	5*10 ⁹

¹ N. Mavalvala, Elba conference (2008)

² C.M. Mow-Lowry et al., Journal of Physics:Congerence Series 32 362-367 (2006)

³ T. Corbitt, Elba conference (2008)

⁴ J.D. Thompson *et al.*, Nature 452 72-76 (2008)

Membrane (Si₃N₄ in frame)

Leibniz Universität Hannover

Mechanical properties

frame: $7,5^2 \text{ mm}^2 \times 200 \text{ } \mu\text{m}$

Area: 1,5 mm x 1,5 mm

Thickness: 75 nm

Effective mass: ~ 100 ng

Resonant frequency: ~ 73 kHz

Optical properties

Power Reflectance: ~ 33%

Absorption: ≤ 150 ppm

Flatness: 1 nm?

Micro roughness: 0,2 nm?

Scattering: \rightarrow 0

J.D. Thompson *et al.*, Nature 452 (2008) 72-76.

102

Leibniz Universität Hannover

Michelson-Sagnac interferometer(1) 100 4

Leibniz Universität Hannover

Michelson-Sagnac interferometer(2)100 4

Sagnac mode

port

Michelson mode

port (no light of Sagnac mode)

Membrane position is adjusted to keep this port dark.

Leibniz Universität Hannover

Michelson-Sagnac interferometer(3)100 4

2. Theoretical outlines

Two differences from simple Michelson

(1)Radiation pressure noise on membrane

(2) Node of Sagnac mode

and goal sensitivity and standard quantum limit.

2. Theoretical outlines
Radiation pressure noise on membrane

Leibniz

Membrane

Conclusion: Radiation pressure noise is proportional to power reflectance of membrane.

2. Theoretical outlines Node of Sagnac mode

Sagnac mode: Clockwise and counterclockwise beams There is interference between them.

Standing wave

Nodes and anti nodes

Anti symmetric port is dark.

Membrane must be on node or anti-node.

We prefer membrane on node because of absorption.

2. Theoretical outlines

Goal sensitivity

Leibniz Universität Hannover

Temperature: 1 K Q: 10⁷

Effective Mass: 125 ng Power at BS: 400 W

Resonance: 75 kHz

Radiation pressure noise is 2 and 3 times larger than shot noise and thermal noise.

Option

Signal recycling

99% amplitude reflectance

Power at BS: several W

2. Theoretical outlines Standart Quantum Limit (SQL)

SQL of Michelson-Sagnac interferometer (one membrane)

$$\sqrt{2\hbar H}$$

SQL of Fabry-Perot Michelson interferometer (four mirrors)

$$\sqrt{8\hbar H}$$

SQL of simple Michelson interferometer (two mirrors)

$$\sqrt{4\hbar H}$$

H: Mechanical responce of one oscillator

Our conjucture: SQL depends on number of mirrors (n).

$$\sqrt{2\hbar nH}$$

Membrane (Si₃N₄ in frame)

Leibniz Universität Hannover

Mechanical properties

frame: $7.5^2 \text{ mm}^2 \text{ x } 200 \text{ } \mu\text{m}$

Area: 1.5 mm x 1.5 mm

Thickness: 75 nm

Effective mass: ~ 100 ng

Resonant frequency: ~73 kHz

Q: $\sim 1.3 \times 10^6$

Optical properties

Power reflectance: ~ 33%

Absorption: ≤ 150 ppm

Flatness: 1 nm?

Micro roughness: 0,2 nm?

Scattering: \rightarrow 0

J.D. Thompson *et al.*, Nature 452 (2008) 72-76.

102

Leibniz Universität Hannover

Resonant frequencies of membrane

Frequency (kHz)

102

Leibniz Universität Hannover

Resonant frequencies of membrane

Difference between theory and measurement (~1%)

Q-values of membrane

Leibniz
Universität
Hannover

- Residual gas damping
 - → Vacuum (~ 10⁻⁶ mbar)
- · Recoil loss
 - → Estimation: Q > 10⁷
- Thermoelastic damping
- → Estimation: Q ~ 5 x 10⁷
- · Bulk loss
 - → Unknown
- Loss on surface
 - → Unknown

• Measurement of other group: Q ~ 1 x10⁷ @ 0.3 K B.M. Zwickl *et al.*, Applied Physics Letters 92(2008)103125.

Reflectance of membrane

Leibniz Universität Hannover

Membrane as etalon

Incident angle [degree]

102

Leibniz Universität Hannover

Michelson-Sagnac interferometer

Optical table

102

Leibniz Universität Hannover

102

Leibniz Universität Hannover

Michelson-Sagnac interferometer

Inside vacuum tank

102

Leibniz Universität Hannover

Membrane holder

Leibniz Universität Hannover

102

Leibniz Universität Hannover

Calibration

Photo detector output power [a.u.]

Membrane displacement [nm]

Calibration (photo detector output vs. displacement of membrane) is possible as like simple Michelson interferometer.

Measured power spectrum

Off resonance: Intensity noise

On resonance: Thermal noise

3*10⁻¹⁵ m/rtHz

Frequency[kHz]

4. Future work

Leibniz Universität Hannover

(1) Reduction of noise

(to observe off resonance thermal noise)

Laser stabilization
Output mode cleaner

- (2) Power and signal recycling
- (3) Observation of radiation pressure noise Cryogenic apparatus (about 1K: ³He evacuation) Suspension

5. Summary

Leibniz Universität Hannover

Radiation pressure noise measurement

with extremely light but translucent membrane

New topology: Michelson-Sagnac interferometer

Theoretical outlines

Nodes of Sagnac mode, Goal sensitivity

Conjecture about Standard Quantum Limit

Current status of experiment

Mechanical and optical properties of membrane

Operation without power and signal recycling

Current sensitivity (3*10⁻¹⁵ m/rtHz)

Future work

Cryogenic apparatus and so on

Vielen Dank für die Aufmerksamkeit (Thank you for your attention)

vacuum system

to reach < 10⁻⁶ mbar

Leibniz
Universität
Hannover

membrane pump

turbo pump

gauge

valve

actual pressure in experiment: **1.5·10**-7 **mbar**

backing pump pressure: 10⁻¹ mbar, not good enough to use ducted vacuum

Q-measurement

actual status of the table

Leibniz Universität Hannover

laser preparation

recoil loss

energy transfer to membraneholder limits Q

Leibniz Universität Hannover

- many unknown values
- had no verification for Harris results
 - → designed very **sturdy mount**

$$Q_{\text{osc}_{\text{recoil}}}^{-1} \approx Q_{\text{osc}}^{-1} + Q_{\text{sup}}^{-1} \frac{m_{\text{osc}}}{m_{\text{sup}}} \frac{\omega_{\text{sup}}}{\omega_{\text{osc}}}$$

it should be sufficient to **conserve Q** of the small frame to be not limited!!!

we will design a smaller mount for further experiment

Q-measurement

actual readout scheme

ringdown time:

$$Q = \frac{\text{total contained energy}}{\text{energyloss per period}} = \pi \tau f_0$$

- 10⁶ periods per ringdowntime!
- → use lock in amplifier (variable filters)
- y our lock-in amp. is too slow!
- → mixer shifts signal to some kHz

Q-measurement

actual readout scheme

10⁶ periods per ringdowntime!

- → mix signal down (shift to lower freq.)
- Lock-in amp. is too slow!
- → second mixer for some kHz

nonlinearity of the oscillation

comparison of our results to Harris`

Leibniz Universität Hannover

our results

Harris et al. APL 92, (2008)

locking scheme for PR-cavity

using Pound Drever Hall signal

Leibniz Universität Hannover

- · michelson acts as mirror
- membrane-position dependent reflectivity (and phase)

locking scheme for Michelson interferometer

102

Leibniz Universität Hannover

using Schnupp asymmetry

- need different armlength
- IFO reflecting carrier
- IFO partly transmitting sidebands
- errorsignal in transmission

problems:

- need to preserve contrast
- small asymmety
- high modulation frequency

outlook further technique

102

Leibniz Universität Hannover

further techniques

dual recycling

 frequency stabilisation with reference cavity

 suspended interferometer to isolate from seismic motion (like Tokyo- group)

Kryostat

Reduzierung thermischen Rauschens

Thermisches Rauschen erfordert Kühlung

Mehrstufiges Konzept (Zwiebelschalenmodell):

- → Interferometer durch ⁴He gekühlt
- → Membran darüber hinaus durch ³He gekühlt

Kryostat verursacht "Erschütterungen"

→ Seismische Entkopplung des Interferometers

Erwartete Empfindlichkeit

für kryogene Temperaturen

Temperatur: 1 K
Güte: 10⁷
Effektive Masse: 125

Effektive Masse: 125 ng Leistung: 400 W

Resonanz: 50 kHz

(optische Feder)

- → Schrotrauschen: Faktor 2
- → therm. Rauschen: Faktor 3

Weitere Option:

 Signal Recycling (nur gegen Schrotrauschen)

Große Überschrift kleine Überschrift

2. Theoretical outlines

Three differences from simple Michelson

- (1)Radiation pressure noise on membrane
- (2) Node of Sagnac mode
- (3)Optical spring

2. Theoretical outlines Optical spring (1)

l eihniz

Optical spring (without cavity): Light acts as spring. Radiation pressure on membrane depends on its position. Radiation pressure changes

resonant frequency of membrane.

Membrane

2. Theoretical outlines Optical spring (2)

Left side of membrane

Right side of membrane

Phase of Michelson mode: Shift

Sign of shift on right side is opposite to that on left side.

Phase of Sagnac mode: No shift

2. Theoretical outlines Optical spring (3)

Left side of membrane

Right side of membrane

Interference: Constructive (larger power) on right side **Destructive (smaller power) on left side**

→ Radiation pressure on right side becomes larger. (Optical spring effect)

2. Theoretical outlines

Goal sensitivity

Leibniz Universität Hannover

Temperature: 1K

Q: 10^7

Effective Mass: 125 ng

Power at BS: 400 W

Resonance: 75 kHz

(with optical spring)

Resonance: 50 kHz

(without optical spring)

Shot noise: Factor 2

Thermal noise: Factor 3

Option

Signal Recycling

99% power reflectance

Power at BS: about 1W