THE MONOLITHIC SUSPENSIONS FOR THE INTERFEROMETER VIRGO+

Paola Puppo

for the Virgo Monolithic Suspension Team

INFN-Rome

VIRGO+ UPGRADES

- + New IMC mirror (bigger mass, better coating → reduced rad press effect, easier to lock, reduced optical losses)
- + Implementation of the remote control on Faraday Isolator of suspended IB → better correction of thermal effects;
- + New laser (P_{in}=50 W)→shot noise reduction
- + Thermal compensation → thermal lensing reduction
- + Electronics implementation →
 - "DAC noise" reduction of the low freq noise;
 - × Actuation control noise reduction;
- New magnets → Eddy currents and magnetic effects reduction;

WHERE WE ARE...

Actual limits:

- In the 80-200Hz range the high power gain is spoiled by the thermal noise expected for the Virgo Herasil end mirrors
- **We need to change the mirrors if we want to profit of the larger injected power.**

G0900619-v1

NEW MIRRORS AND COATINGS

- New Suprasil end and input mirrors
 - + According to the Penn's noise model the loss angle expected for this material is about 10⁻⁹, a new perspective is open in the middle frequency range;
 - + But an higher finesse is needed: F=150 instead of the current 50.

- New coatings (TiO2 dopants: lower mechanical dissipation)
- New cleanliness procedures
 - Use of a special protecting film (Lyon);

Virgo, 50W, F=150

BNS: 24.7 Mpc BBH: 126 Mpc

G0900619-v1

WHY DO WE WANT TO USE THE MONOLITHIC SUSPENSIONS?

G0900619-v1

Virgo+ with monolithic suspension

THE SUSPENSION THERMAL NOISE IS REDUCED WITH THE FS SUSPENSIONS

In the low frequency range, the mirror pendulum thermal noise plays an important role

$$\Phi_{wire} = \Phi_o + \Phi_{th}(\nu) + \Phi_e$$

Thermoelastic Loss Angle

$$\Phi_{th}(\omega) = \Delta \frac{\omega \tau}{1 + (\omega \tau)^2}$$
 d_w wire diameter $\Phi_o = 4.1 \cdot 10^{-10}$ loss angle

$$\Delta = \frac{Y_{FS}\alpha_{FS}^2T}{\rho_{FS}c_{FS}} \qquad \qquad Y_{FS} \qquad \text{Young modulus}$$

$$\alpha_{FS} \qquad \text{thermal expansi}$$

$$lpha_{\scriptscriptstyle FS}$$
 thermal expansion

$$\tau = \frac{c_{FS} d_w^2}{2.16 \cdot 2\pi \cdot k_{FS}} \qquad \begin{array}{c} c_{FS} & \text{specific heat} \\ \rho_{FS} & \text{density} \end{array}$$

density

Cagnoli G and Willems P A Phys. Rev. B, 65, 17

Φ_{e}

Eccess loss angle

Frictional losses in the marionetta-wire clamps

Frictional losses in the mirror-wire clamps

Surface losses

$$\phi_{surf} = \phi_{FS} \left(\xi \frac{d_s}{V/S} \right) \approx 2 \times 10^{-7}$$
G0900619-v1

Thanks to the lower mechanical dissipation of the fused silica, a monolithic suspension promises an excellent performance by reducing all the loss term of Φ_{wire} 10-20 h/Hz^{1/2} 10⁻²¹ 10⁻²² 10⁻²³ 100 1000

Virgo+ average sight

BNS: 53.6 Mpc BBH: 284 Mpc

A.M. Gretarsson et al, PLA 270 (2000), 108-114

THE NEW THERMAL NOISE MODEL

Monolithic suspensions payload

Branched pendulum:
FDT model with violin modes
and Normal modes model*.
Vertical modes are included

With the low dissipative monolithic suspensions, the contributions of the other last stage suspension elements to thermal noise of the mirror cannot be neglected.

A new thermal noise estimation has been done, it includes the viscous and internal dissipations of the marionette and recoil mass.

It turns out that the marionetta's mechanical losses give a non negligible effect via its recoil, in the off-resonance high-freq. range.

^{*}F. Piergiovanni, M.Punturo, P.Puppo, The thermal noise of the Virgo+ and Virgo Advanced Last Stage Suspension (The PPP effect), Virgo Note: VIR-015A-09.

THE NEW THERMAL NOISE MODEL

- The evaluation of the losses of the marionette, is crucial for the correct estimation of the sensitivity curve.
- It is not possible to measure the marionetta losses on the payload hung to the SA by simply looking at the quality factors of the modes;
- They are influenced by the whole SA chain, the quality factors of the SA modes are of order of 50-100;
- •From the measurements of the quality factor of the modes on our in-air monolithic prototype we can infer a marionette loss of 1000. (without any optimization)
- •The coupling to the SA chain can modify the marionette losses.

 For this reason a conservative marionette quality factor of 300 is chosen for our thermal noise estimations.

• The effect of the other lossy SA stages on the thermal noise have been evaluated to be negligible.

VIRGO+ UPGRADE: MONOLITHIC SUSPENSIONS

- Monolithic fused silica suspension development is an heavy activity in Virgo
 - + Joint effort of many Virgo labs (Roma, Firenze, Perugia and EGO)
- Activity progressing thanks to the full immersion of the involved group.

G0900619-v1

CLAMPS: DESIGN AND PRODUCTION

Steel box to host the upper silica clamp on the marionetta

Coupling to the mirror flats with New Ears

SILICA WIRES: FIBER PRODUCTION AND CHARACTERIZATION

- Fiber production validated
- Implemented the fiber welding with the laser on the lower and upper silica clamps;

THE PAYLOAD

Marionette (110 kg):

- amagnetic steel AISI 316L, dielectric arms (peek) → no eddy current and magnetization effects;
- designed to be fully compatible with the monolithic suspensions assembly;
- equipped with mirror for LC purposes;
- step motor to displace a balancing weight;

Recoil Mass (60 kg):

- amagnetic steel AISI 316L outer cylindric mass (500 mm diam);
- dielectric inner ring (peek CF30) → no stray currents or magnetization effects
- it carries four coils for e.m. actuation on magnets attached the mirror rear side;
- suspended with steel C85 wires (0.6 mm diam.)
- option: it can carry the markers for the LC purposes
- equipped with safety stop (peek made)

Mirror (21 kg):

- FS with lateral flats (350 mm diam), silica ears attached with silicate bonding
- suspended with silica wires (285 μm diam)
- magnets attached on rear side
- option: markers attached on front side (LC)

PAYLOADS: THE MARIONETTE

The marionette: some details

Marionette and Copper Tungsten inner mass

PAYLOAD: REACTION MASSES AND PAYLOAD FRAME

Frame for payload assembly:

- a new frame has been designed on the base of the acquired experience during the tests;
- the precisions required for the positioning of the pieces are respected;
- it is equipped by a vacuum pump clamp the mirror face during trasportation;

The reaction masses are being machined

The frame design is being finalized

II TASK: PAYLOAD SUSPENSION

- Steel AISI304 Marionetta prototype with PVC arms
- Dummy reaction mass, coils with peek supports
- A mirror is inserted in the holder, and the system is balanced.
- •All the pieces are secured by safety structures Fibers bending point placed on the marionetta's center of mass

- 1) Steel wire suspension
- 2) Fibre wire suspension
- Validation of complete payload with monolithic suspension

Electronic equipment:

- crate With ADCs/DACs, DSP, DOL and 2 timing boards

Monolithic payload prototype tests

3) Validation of complete payload with monolithic

suspension

Mechanical Assembling using a suspension frame: done in 3 steps

I) FS with AL ANCHORS

and EARS

- TF meas control design - preliminary

and FEM model

STFFL

G0900619-v1

0) STEEL WIRES

models: analytical

 assembly procedure (I) - TF meas controlled operation - model retuning (with FS) - assembly procedure (I) - Note: mario baricentre moved upwards in two steps (IIa,IIb) - TF meas - controlled operation - model retuning (with new marionette baricentre)

II) FS with FS ANCHORS and EARS

HYBRID

FULL

Example of TF meas results / model

yMa/yCorMa [um/V]	7/////	Q (if double)	Comment
(accel PCB 10V/g,	[4][1][1][1]		2.638e-2 um @ 0.2
vertical)	111111111111111		Hz
Z	0		
Z	0		
P	3.711	570	
Z	3.827	60	
P	5.316 (5.236)	950	
Z	5.518 (5.468)	300	
P	8.124	750	
Z	8.136	700	
P	8.746 (8.854)	900	
Z	15.33 (15.72)	900	
P	19.00 (18.74)	950	
Z	22.89	850	
P	23.00	950	
P	10		

Tuned parameters for lumped-impedance matrix model

PARAM	Mi	RM	Ma	comment
M [kg]	23 → 22.9	33 → 33.45	116 → 115	
Ixx [kg m2]	$0.210 \rightarrow 0.210$	1.07 → 1.085	$0.7 \rightarrow 0.690$	
Iyy [kg m2]	$0.210 \rightarrow 0.210$	$1.05 \rightarrow 1.060$	1.7 → 1.650	
Izz [kg m2]	$0.390 \rightarrow 0.390$	1.95 → 1.977	1.61 → 1.596	
1 [m]	$0.7 \rightarrow 0.6985$	$0.7 \rightarrow 0.6985$	1.130 → 1.130	
d [m]	$2.85e-4 \rightarrow 2.93e-4$	6e-4 → 6.10e-4	$1.85e-3 \rightarrow 1.85e-3$	
Sux [m]	$0.1850 \rightarrow 0.1850$	$0.22 \rightarrow 0.2215$	$0 \rightarrow 0$	
Suy [m]	$0 \to 0.0015$	$0 \rightarrow 0$	$0 \rightarrow 0$	
Suz [m]	$0. \to 0.0250$	$0.0250 \rightarrow 0.0250$	$0 \rightarrow 0$	
Sdx [m]	$0.180 \rightarrow 0.1808$	$0.243 \rightarrow 0.2437$	$0 \rightarrow 0$	
Sdy [m]	50900619-v1	$0 \to 0.0010$	$0 \rightarrow -0.0005$	
Sdz [m]	$0.0250 \rightarrow 0.0255$	$0.0250 \rightarrow 0.025$	$0 \rightarrow 0$	

Automated hierarchical activation of controls

A further check of the modeling process and possible payload optimization

microseism due to sea activity is often active in the range 0.2-0.6 Hz

Murphy law: Virgo suspension chain and actual payloads have z/p couples in the same range falls in the microseismic band=> pitch alignment suffers ...

Baricentre move tests in monolithic payload configurations I,IIa,IIb baricentre +2.7 mm Maraging wire clamp and fibre λ 4.85 kg steel inserts used to rise up **artificially** the baricentre +5.85 mm Meas/Model check - 4.85 kg The clean way to drive pitch mode in the range 250-300 mHz, reducing z/p couple + 4.85 kg +7.8 mm impact on pitch control accuracy is to bring the bending point of marionette wire closer to the baricentre. G0900619-v1

- 1) model reproduces the effect
- 2) once consistency is fulfilled full simulation of the suspension chain will assess the expected TF
- **3) the realization** of payload design will need a **fine** tuning

LC IMPLEMENTATION

lateral optical lever reading-out x position of RM (transversal pendulum)

actuation under implementation: the back coils will be used.

G0900619-v1

Paola Puppo - GWADW-

markers on the rear face of RM (to avoid markers on the mirror front side)

RMCCD/MiPSD

Mario PSD

Correction

RESISTANCE TO SHOCKS, DUST POLLUTION, TO HUMIDITY

Transportation test):

- On the dummy payload
- Mechanical vibration monitored with accelerometers
- The test was successful (no broken fibers!);

<u>Crash Test</u>: see movie on YouTube (search monolithic crash), fiber robustness tested, weight at the moment of rupture: 70kg

DUMMY MIRROR SUSPENSION FOR THE MECHANICAL LOSSES MEASUREMENTS

- Dummy Mirror suspended with NDE and silica wires in Perugia labs;
- The aim is to measure the wire mechanical losses with the new clamping system;

DUMMY MIRROR SUSPENSION FOR THE MECHANICAL LOSSES MEASUREMENTS

- The anchors are glued with water glass on the ears
- The upper clamps are tightly clamped on the dummy marionette

I TASK: DUMMY MIRROR SUSPENSION FOR THE WIRE MECHANICAL LOSSES MEASUREMENTS

- * The assembled system is positioned on very stiff legs attached to the ground so that the recoils are negligible, this is a crucial point for measuring the pendulum losses;
- The system is now ready for measurements.

Dummy payload installation in the vacuum chamber

I TASK: DUMMY MIRROR SUSPENSION FOR THE

- First preliminary measurement of the pendulum decay.
- an overall loss angle of

$$\Phi_{overall} = 2.7 \cdot 10^{-7}$$

the system losses will be identified, probably a new setup will be used.

CONCLUSIONS

- Fiber production validated;
- Design ready for clamps and ears;
- Payload design ready;
- **× Local Control:**
 - × TF measured,
 - × developed FEM and lumped-impedance matrix model,
 - × angular control & longitudinal hierarchical control implemented
 - × with markers on the recoil mass.

NEAR FUTURE STEPS:

- Measurement on the mechanical losses both of the wire clamps (new set up under assembly) and silicate bonding;
- Final design of the <u>assembly structure</u>;

Ready to install at the end of year 2009