LIGO

Aligning Advanced Detectors L. Barsotti, M. Evans, P. Fritschel LIGO/MIT

Understanding Detector Performance and Ground-Based Detector Designs

LIGO-G0900604-v1

Outline

- Alignment Sensing and Control hard(er) for Advanced Detectors
- ASC in Advanced LIGO:
 - Impact on optical design
 - Lessons from Enhanced LIGO
 - Preliminary results from modeling

Radiation pressure effects included

Why Aligning Advanced Detectors is Hard

More mirrors, more degrees of freedom

High power operation complicates the problem:

- radiation pressure modifies the opto-mechanical TFs (Sidles-Sigg instabilities)
- Thermal compensation to keep a good mode shape

Stable cavities are good... (previous talk by Muzammil Arain)

...but they make alignment error signals smaller..

Sidles-Sigg Instabilities

Physics Letters A 354 (2006) 167–172

Torque induced by radiation pressure

$$\tau = \hat{k}_{opt} (g_1, g_2, L, P) \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}$$

Modification of the pendulum resonance frequencies:

$$f_{Hard} = \frac{1}{2\pi} \sqrt{\frac{k_{Hard} + k_{pend}}{I}}$$
$$f_{Soft} = \frac{1}{2\pi} \sqrt{\frac{k_{Soft} + k_{pend}}{I}}$$

4

High Power in LIGO detectors

- ◆ Initial LIGO: maximum input power ~7 W
 → radiation pressure already important
- Enhanced LIGO: same optical parameters / suspensions as in Initial LIGO, 35 Watts input power **<u>New ASC design in the hard and soft angular mode basis</u>
- Advanced LIGO: g factors chosen for low radiation pressure impact, +50% restoring torque from Quadruple suspensions

	P_cavity (kW)	f_pend (Hz) PITCH YAW	f_hard (Hz) PITCH YAW	f_soft (Hz) PITCH YAW
Initial LIGO	15	0.6 0.5	0.69 0.60	-0.25 -0.42
Enhanced LIGO	87.5	0.6 0.5	1.00 0.95	-1.46 -1.49
Advanced LIGO	770	0.57 0.6	2.85 3.05	-0.17 -0.21

**Katherine Dooley, Controlling the Sigg-Sidles Instability in Enhanced LIGO (Poster)

ASC vs Thermal Compensation

Lesson from Enhanced LIGO: it is crucial to have a good TCS for alignment stability

TCS Annulus pattern (January 2009)

TCS Annulus pattern (March 2009)

Stable Recycling Cavities

ASC modeling for Advanced LIGO

- Hard and soft degrees of freedom for the arms
- Control loops
- ✤ ASC noise coupling to DARM due to:
 - shot noise
 - seismic noise
- Acquisition Mode (before the OMC is locked)
- ✤ Science Mode: low noise

Alignment Sensors

9

Acquisition Mode

10

Alignment Sensors

Science Mode

The Message

- Convenient to work in the basis which diagonalizes the opto-mechanical system (*hard* and *soft*)
- ♦ Greater stability \rightarrow poorer sensing
- Evaluation of the ASC scheme needs to take into account the whole system:
 - ✤ sensor noise, seismic noise
 - control bandwidth
 - ✤ stability in the presence of thermal effects
 - ✤ noise coupling to DARM

Dark Fringe

