

Status of the search for GW signals from high mass compact binary coalescences in LIGO S5 data

Craig Robinson

Cardiff University

On Behalf of the LIGO Scientific Collaboration and VIRGO

June 25 2009

LIGO-G0900596-v2

Outline

- Brief description of the data set and sources for which we are searching
- Waveform families used as search templates (EOBNR) and injections (EOBNR and phenomenological)
- Overview of the search pipeline

LIGO

Current status and improvements for future science
 runs

LIGO S5 Science Run

- Data taken from November 2005 November 2007
- 3 detectors operating at initial LIGO design sensitivity
- Over a year of triple coincident data

[Abbott et al, arXiv:0711.3041]

High Mass Binary Inspirals

- BH-BH and BH-NS binaries
- Total mass (25 100) M_{\odot} with component masses (1 99) M_{\odot}
- Rate of BH-BH and BH-NS merger is very uncertain, could be ~ 0.01 – 1 MWEG⁻¹ Myr⁻¹
- (10+10) M_{\odot} BH binaries are detectable out to ~ 125 Mpc
- Higher mass binaries are detectable even further
- Merger and ringdown occur in the sensitive band of LIGO

Horizon Distance vs Total Mass

Calculated with analytic noise curve

LIGO **EOBNR Inspiral-Merger-Ringdown** Waveforms

[Buonanno et al, PRD 2007]

Effective description

- The effective-one-body (EOB) approach uses a re-summed Hamiltonian of the • binary dynamics during inspiral up to the light ring
- The EOB inspiral-plunge waveform is computed along the trajectory provided by the EOB Hamiltonian ٠
- The EOB merger-ringdown waveform is a superposition of quasi-normal modes smoothly attached near the light ring
- The model was calibrated to NR • waveforms with mass ratios 1:1 - 4:1 from the NASA-Goddard group
- Used as search templates

[Ajith et al, CQG 2007]

Phenomenological Inspiral-Merger-Ringdown Waveforms

 Hybrid waveforms are created by stitching PN waveforms to NR waveforms from the final few orbits

LIGO

- Phenomenological waveforms are fit to the hybrid waveforms in the frequency domain
 - The inspiral waveform has the structure of stationary-phase approximation waveforms
 - The ringdown waveform decays as a Lorentzian
 - Undetermined coefficients are calibrated to match the hybrid waveforms
 - The waveforms are parameterized by the masses with no spurious degrees of freedom
 - The model was calibrated to AEI-Jena waveforms with mass ratios 1:1 - 4:1

• Used as injection waveforms

LIGO

Matched Filtering Pipeline

- A matched filtering approach is used to find potential signals buried in noise
- A template bank is laid out to cover the mass range so that adjacent templates nominally have an overlap > 0.97
- The data are filtered against each template
- Any triggers are tested for coincidence with other detectors
- A second coincidence test is performed with signal-based vetoes such as χ^2 applied to significantly reduce triggers due to noise

Typically ~2000 templates

LIGO

Matched Filtering Pipeline

- Analysis split into chunks of approx 2 months duration
- The loudest coincident triggers in each chunk are subjected to further scrutiny
- Upper limit will be set on the rate of binary coalescences in this mass range (subject to various caveats...)

- Time slides are used to estimate the rate of background triggers
 - Repeat the analysis, but slide the data from each site relative to one another
 - Any coincident events between sites must be accidental
- We also inject waveforms to test our efficiency at recovering signals
 - Inject EOBNR waveforms over full mass range
 - Inject phenomenological waveforms with mass ratios up to 10:1

Future Improvements

- S6/VSR2 science runs will begin this summer

 Goal is that "Enhanced" LIGO will be about twice as sensitive
 The observable volume of the universe will be about 8x larger
- EOBNR and phenomenological waveforms will be improved by calibrating them to more accurate NR simulations as they become available
- Inspiral-merger-ringdown waveforms with spin effects and higher harmonics are also being developed
- Improve template placement at higher masses
 - o Current placement depends on same metric as low mass search
 - o In the future we will explore using a metric specifically for IMR waveforms

Summary

- In the S5 run, we are searching for BH-BH or BH-NS binaries with total mass 25-100 M_{\odot} with inspiral-merger-ringdown templates
 - The LIGO interferometers operated at design sensitivity providing over a year of triple coincident data
 - The first GW search with complete I-M-R templates!
- The data analysis is nearing completion
- We expect to have public results later this year
- In S6 we will have more sensitive instruments and improved data analysis techniques
- The waveforms used for the search will also be improved as more NR simulations become available