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Goals

Use numerical relativity (NR) waveforms to explore
detectability of binary black hole coalescences with
gravitational wave burst techniques
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Goals

Use numerical relativity (NR) waveforms to explore
detectability of binary black hole coalescences with
gravitational wave burst techniques

Systematically probe the parameter space from both
numerical and data analysis sides

Numerical: Simulation resolution, duration,
inclusion of different spherical harmonic modes, etc.

DA: Black hole masses, spins, mass ratio, orbit
eccentricity, etc.

Large parameter space; this is a work-in-progress!
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Overview
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Omega-pipeline

Omega-pipeline is an unmodeled search for
statistically significant excess signal energy
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Omega-pipeline

Omega-pipeline is an unmodeled search for
statistically significant excess signal energy

Signal is decomposed into a basis of complex
exponentials characterized by central time,
frequency, and quality factor Q - equivalent to
matched filtering against a basis of
sine-Gaussians in whitened data
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Omega-pipeline
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NR Waveforms

Waveforms are generated with the MayaKranc code and
decomposed into spin-weighted spherical harmonics
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NR Waveforms

Waveforms are generated with the MayaKranc code and
decomposed into spin-weighted spherical harmonics

Three runs presented here (all equal-mass):

Nonspinning, eccentric orbit (Hinder, Herrmann, Shoemaker, Laguna

PRD 2008)

Spin a = 0.6, variable orientation (Old runs: Herrmann, Hinder,

Shoemaker, Laguna, Matzner PRD 2007. New runs: James Healy 2009)

Spin a = 0.2, variable orientation (James Healy 2009)
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Eccentric
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Spinning, a = 0.6
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Spinning Comparison

Focusing on 100 − 300M⊙:
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Conclusions

Some preliminary conclusions based on these results:
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Conclusions

Some preliminary conclusions based on these results:

The eccentricity of the orbit shows an effect - we are
currently planning to explore this further

Spin orientation and magnitude also show a noticeable
impact on detection efficiency - distance appears to go
roughly as projection of spin on orbital angular
momentum

Other results (not shown here) indicate that spherical
harmonic modes aside from the dominant quadrupole
mode (ℓ = 2, |m| = 2) do not have an impact on
detection efficiency for the runs we’ve studied
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Looking Ahead

For the near future, we plan to:

Fill in more eccentricities

Span more spin orientations

Start to explore the effect of mass ratio

Start to look more closely at numerical
parameters (resolution, initial data, etc.)

Other goals include removing source distance as
a parameter, looking at sky location, trying
full-pipeline runs, using glitchy noise, etc.
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