

Exploring the Use of Numerical Relativity Waveforms in Burst Analyses of Binary Black Hole Mergers

Sebastian Fischetti¹, Laura Cadonati¹, Shourov Chatterji², James Healy³, Frank Herrmann⁴, Ian Hinder⁵, Satyanarayan Mohapatra¹, Deirdre Shoemaker⁶

^L University of Massachusetts, Amherst

² Massachusetts Institute of Technology

³ Penn State

- ⁴ University of Maryland
- ⁵ Albert Einstein Institute
- ⁶ Georgia Institute of Technology

Use numerical relativity (NR) waveforms to explore detectability of binary black hole coalescences with gravitational wave burst techniques

- Use numerical relativity (NR) waveforms to explore detectability of binary black hole coalescences with gravitational wave burst techniques
- Systematically probe the parameter space from both numerical and data analysis sides
 - Numerical: Simulation resolution, duration, inclusion of different spherical harmonic modes, etc.
 - DA: Black hole masses, spins, mass ratio, orbit eccentricity, etc.

- Use numerical relativity (NR) waveforms to explore detectability of binary black hole coalescences with gravitational wave burst techniques
- Systematically probe the parameter space from both numerical and data analysis sides
 - Numerical: Simulation resolution, duration, inclusion of different spherical harmonic modes, etc.
 - DA: Black hole masses, spins, mass ratio, orbit eccentricity, etc.
- Large parameter space; this is a work-in-progress!

Overview

LIGO-G0900572 - p. 3/11

Overview

LIGO-G0900572 - p. 3/11

 Omega-pipeline is an unmodeled search for statistically significant excess signal energy

Omega-pipeline

- Omega-pipeline is an unmodeled search for statistically significant excess signal energy
- Signal is decomposed into a basis of complex exponentials characterized by central time, frequency, and quality factor Q - equivalent to matched filtering against a basis of sine-Gaussians in whitened data

Omega-pipeline

LIGO-G0900572 - p. 4/11

Waveforms are generated with the MayaKranc code and decomposed into spin-weighted spherical harmonics

NR Waveforms

- Waveforms are generated with the MayaKranc code and decomposed into spin-weighted spherical harmonics
- Three runs presented here (all equal-mass):
 - Nonspinning, eccentric orbit (Hinder, Herrmann, Shoemaker, Laguna PRD 2008)
 - Spin a = 0.6, variable orientation (Old runs: Herrmann, Hinder, Shoemaker, Laguna, Matzner PRD 2007. New runs: James Healy 2009)
 - Spin a = 0.2, variable orientation (James Healy 2009)

Mass Range	e	50% Distance (Mpc)
$80 - 200 M_{\odot}$	0.0	241 ± 7
	0.2	305 ± 9
$200-300 M_{\odot}$	0.0	217 ± 8
	0.2	251 ± 7

LIGO-G0900572 – p. 7/11

Spinning Comparison

Focusing on $100 - 300 M_{\odot}$:

LIGO-G0900572 – p. 8/11

Conclusions

Some preliminary conclusions based on these results:

Conclusions

Some preliminary conclusions based on these results:

The eccentricity of the orbit shows an effect - we are currently planning to explore this further

Conclusions

Some preliminary conclusions based on these results:

- The eccentricity of the orbit shows an effect we are currently planning to explore this further
- Spin orientation and magnitude also show a noticeable impact on detection efficiency - distance appears to go roughly as projection of spin on orbital angular momentum

Some preliminary conclusions based on these results:

- The eccentricity of the orbit shows an effect we are currently planning to explore this further
- Spin orientation and magnitude also show a noticeable impact on detection efficiency - distance appears to go roughly as projection of spin on orbital angular momentum
- Other results (not shown here) indicate that spherical harmonic modes aside from the dominant quadrupole mode ($\ell = 2$, |m| = 2) do not have an impact on detection efficiency for the runs we've studied

Looking Ahead

For the near future, we plan to:

- Fill in more eccentricities
- Span more spin orientations
- Start to explore the effect of mass ratio
- Start to look more closely at numerical parameters (resolution, initial data, etc.)

Other goals include removing source distance as a parameter, looking at sky location, trying full-pipeline runs, using glitchy noise, etc.

LIGO-G0900572 - p. 11/11

