

1

## **Optical Design of the Advanced LIGO Detectors with Stable Recycling Cavities**

#### Muzammil A. Arain, Guido Mueller, David B. Tanner, and David H. Reitze

Department of Physics, University of Florida, Gainesville, Florida

Amaldi 2009, Columbia University, NY June 25, 2009







## Cavity Stability 101 (Lasers, Siegman)



LIGO







## Initial LIGO Recycling Cavity Modes RF and Carrier



Phil Willems, "Thermal Compensation in LIGO," LIGO-G070146-00-Z



# **Motivation of Stable Cavities**

#### Advantages

- Well defined spatial modes in the Recycling Cavities
  - » Better coupling between RF sidebands and carrier
  - » Symmetrical RF sidebands
- Tolerance to thermal effects
  - » Higher order (spatially 02 and 20 HG) modes non-resonant
    - Less mode mismatch as we increase power
    - Less stringent requirements on TCS
- Cleaner and better gravitational signals
  - » Nice overlap between SRC mode and AC
    - No scatter to higher order modes at the dark port

The cost

- Stringent requirements on:
  - » ROC tolerances/Quality of mirrors
  - » Quality of the RC mirrors
  - » Vacuum constraints
- Last but not the least, slightly difficult alignment sensing scheme
  - » TEM<sub>10,01</sub> not resonant
  - » Details in the next talk by Lisa Barsotti











## Which Gouy Phase?



8



## Mode Matching performance to Thermal Effects

Mode matching is between RC mode and AC mode



Assumed 5 km thermal lens in the ITM at 125 W



## Optical Parameters for Advanced LIGO

**Recycling Cavity Parameters 25° PRC and 19° SRC Gouy Phase A compromise between Tolerance to Thermal variations v/s Alignment** 

#### **Optical Parameters for various IFO Configuration**

| Unit | PRC                                            |                                                                                                                       | SRC                                                                                                                                                      |                                                                                                                                                                                                                                             |
|------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Straight                                       | Folded                                                                                                                | Straight                                                                                                                                                 | Folded                                                                                                                                                                                                                                      |
| m    | -10.997                                        | 8.8691                                                                                                                | -5.6938                                                                                                                                                  | -10.4727                                                                                                                                                                                                                                    |
| m    | 16.6037                                        | 15.7971                                                                                                               | 15.726                                                                                                                                                   | 15.9357                                                                                                                                                                                                                                     |
| m    | -4.555                                         | -4.41                                                                                                                 | -6.427                                                                                                                                                   | -4.9260                                                                                                                                                                                                                                     |
| m    | 16.1558                                        | 15.2065                                                                                                               | 15.4607                                                                                                                                                  | 16.0016                                                                                                                                                                                                                                     |
| m    | 36                                             | 34                                                                                                                    | 36                                                                                                                                                       | 36                                                                                                                                                                                                                                          |
| m    | 19.5384                                        | 19.4204                                                                                                               | 19.368                                                                                                                                                   | 20.0991                                                                                                                                                                                                                                     |
| mm   | 0                                              | 0                                                                                                                     | 131.5                                                                                                                                                    | 132                                                                                                                                                                                                                                         |
| m    | 4.8497                                         | 9.4783                                                                                                                | 4.8046                                                                                                                                                   | 9.4330                                                                                                                                                                                                                                      |
| mm   | 5                                              | 5                                                                                                                     | 5                                                                                                                                                        | 5                                                                                                                                                                                                                                           |
|      | Unit<br>m<br>m<br>m<br>m<br>m<br>m<br>mm<br>mm | Unit F   Straight Straight   m -10.997   m 16.6037   m -4.555   m 16.1558   m 36   m 19.5384   mm 0   m 4.8497   mm 5 | Unit Folded   Straight Folded   m -10.997 8.8691   m 16.6037 15.7971   m -4.555 -4.41   m 16.1558 15.2065   m 36 34   m 19.5384 19.4204   mm 0 0   m 5 5 | Unit FRC SR   Straight Folded Straight   m -10.997 8.8691 -5.6938   m 16.6037 15.7971 15.726   m -4.555 -4.41 -6.427   m 16.1558 15.2065 15.4607   m 36 34 36   m 19.5384 19.4204 19.368   mm 0 0 131.5   m 4.8497 9.4783 4.8046   mm 5 5 5 |



# A few numbers for Arm Cavity

| Definition                   | Unit | PRC      |        | SRC      |        |
|------------------------------|------|----------|--------|----------|--------|
|                              |      | Straight | Folded | Straight | Folded |
| ITM ROC                      | m    | 1934     | 1934   | 1934     | 1934   |
| Reqd. beam waist size in arm | mm   | 12.0     | 12.01  | 12.0     | 12.01  |
| Spot Size at ITM             | cm   | 5.30     | 5.31   | 5.30     | 5.31   |
| Beam waist location from ITM | m    | 1884.4   | 1885   | 1884.4   | 1885   |
| Arm Cavity Length            | m    | 3994.5   | 3996.0 | 3994.5   | 3996.0 |
| ETM ROC                      | m    | 2245     | 2245   | 2245     | 2245   |
| Spot Size at ETM             | cm   | 6.2      | 6.2    | 6.2      | 6.2    |

Beam Size in the arms is unsymmetrical ITM has a lower beam size to reduce diffraction losses in the RC



# **ROC Tolerance of RC Mirrors**



# Compensation of ROC Tolerances



 Mode matching is recovered by moving PR2 mirror •This requires **PRM to be moved** twice as much to keep the RC length constant •This is a burden but is being accommodated in the design



# Summary

- Stable cavity design with PRC 25<sup>o</sup> PRC and 19<sup>o</sup> SRC
- Good 'athermal' performance with reasonable ASC
- Distance optimization for ROC tolerances
- Adaptive mode matching from mode cleaner to recycling cavity will help
- Additional mode matching between input optics and recycling cavity
- If interested in latest Advanced LIGO cavity parameters, tune in to LIGO Technical Note:

**Optical Layout and Parameters for the Advanced LIGO Cavities, LIGO-T0900043-xx** 



# Back up slides



• Option 1: Lens in the ITM [spell out]



Beam size ~ 240 micrometer

feasible



### Adaptive Mode Matching from IO to RC

- Optical element heated by four independent heaters for beam shaping
- Material (SF57) having large dn/dT and  $\alpha$
- Four heaters can be used for steering too
- We can combine beam steering with thermal lensing
- Opportunity to shape the beam using multi-element heating
- Correction of astigmatism induced by non-normal incidence triangular mode cleaner mirror cavity mirrors





## Mode Matching Improvement with Adaptive lenses





## **Details of Input Optics**

