

Reconstruction of Gravitational Wave Bursts with LIGO-Virgo network

M. Drago

S.Klimenko, G.Mitselmakher, C.Pankow, G.Prodi, V.Re, F.Salemi, G.Vedovato, I.Yakushin

http://www.virgo.Inl.infn.it/Wiki/index.php/PRC

M.Drago Amaldi 8, June 22/26 2009

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)

G0900548-v5

LIGO

UNIVERSITY OF TRENTO - Italy

Source Reconstruction

• Reconstruction of unmodeled bursts:

- Bursts parameters (time, frequency, correlated energy)
- Waveforms and Detectors Response
- Source Coordinates
- Motivations:
 - Prompt localization of GW events for followup with optical/radio instruments during S6/VSR2
- Algorithm: Coherent WaveBurst

(S.Klimenko, Class. Quantum Grav. 25 (2008))

Framework: Position Reconstruction Challenge (see talk by S.Klimenko)

G0900548-v5

M.Drago Amaldi 8, June 22/26 2009

LIGO-Virgo PRC challenge

- Network: V1 L1 H1
- Data Set: Simulated Noise (~5.7 days based on S5/VSR1 sensitivity)
- Injections:
 - Waveforms: Sine-Gaussians, and band-limited White Noise Bursts
 - SG235Q9, SG1053Q9
 - SG235Q3, SG1053Q3
 - SGC235Q9, SGC1053Q9

linear polarization

linear polarization

- Q9 circular polarization
- WNB_250_100_0d1, WNB_1000_1000_0d1

random polarizations

- Directions: 46 sky positions, evenly spaced on the sky
- Amplitudes: 14 levels logarithmically spaced

Coherent Waveburst (CWB)

 cWB uses wavelet timefrequency transformation at several resolutions for optimal characterization of GW signals.

- Energetic TF pixels are combined in clusters.
- Data from different detectors are coherently combined using a Constrained Likelihood method.

(S.Klimenko, Phys. Rev. D 72 (122002))

CWB Reconstruction

The algorithm reconstructes the gravitational detector responses, estimates burst parameters and the source coordinates.

Position Reconstruction with CWB

Likelihood Sky Map

- *Likelihood Sky Map*: for each event likelihood ratio is calculated over the sky.
- Sky Location at Maximum Likelihood: it is used as estimator of the source coordinates.

- Median Error Angle (erA0) : is the square root of the integrated area of the pixels with likelihood greater than computed likelihood for the injection pixel
- For each direction we compute the cumulative distribution of the meduan error angle. Its median (50% percentile) is taken as figure of merit for each direction and waveform

G0900548-v5

Cumulative Distribution Median Error Angle

M.Drago Amaldi 8, June 22/26 2009

Results for different sky locations Median Error Angle @ 50%

G0900548-v5

M.Drago Amaldi 8, June 22/26 2009

Results for different sky locations Median Error Angle @ 50%

G0900548-v5

M.Drago Amaldi 8, June 22/26 2009

Results summary of the MonteCarlo Median Error Angle @ 50%

MDC		Calibrated		Mis-Calibrated	
Туре	Freq (hz)	Full Set	SNR<71	TIME	AMP
WNB	250:100:0.1	1.7°	3.9°	2.2°	1.9°
	1000:1000:0.1	1.1°	1.9°	3.5°	1.2°
SGQ9	235	2.8°	7.0°	3.5°	2.8°
	1053	2.5°	3.5°	6.3°	2.6°
SGCQ9	235	3.5°	7.4°	TIME OFFSETS V1:-60us, H1:0us, L1:60us 10° at 250Hz, 42° at 1000 Hz)	
	1053	2.3°	3.2°		
SGQ3	235	2.3°	6.3°	AMPLITUDE RESCALING V1:10%, H1:0%, L1:-10%	
	1053	1.8°	2.8°		

Error Regions

When performing observations, we must have a procedure to assign to each candidate event an error region, i.e. our estimate of the possible sky position of the source.

The error region is the area in which there is a given probability to find the source direction.

Probability Sky Map is calculated converting Likelihood Sky Map.

Coverage of error region has to be measured by MonteCarlo

11

Measured mean coverage is 53%

WNB 250-100-0d1

G0900548-v5

G0900548-v5

Conclusions and Plans

- Coherent WaveBurst reconstructs unmodeled GW waveforms and source locations.
- The algorithm sky localisation performances are characterised by the Median Error Angle.
- Along the source locations CWB provides Error Regions. Montecarlo simulations have been used to test this coverage.
 - For several sky locations coverage is over/under estimated.
- We plan to use CWB for localization of GW events for followup with optical/radio instruments during S6/VSR2
- We plan to improve the CWB performances:
 - Understand problems for some sky locations.
 - Improve Median Error Angle estimation.
 - Provide more uniform coverage for Error Regions over the sky.

Extra Slides

Results summary of the MonteCarlo Percentage of detected events (Full Set)

MDC		Injected	Detected	0/_	
Туре	Freq (hz)	Injected	Deletica	70	
WNB	250:100:0.1	83832	72910	86.9	
	1000:1000:0.1	79842	39367	49.3	
SGQ9	235	80556	71048	88.2	
	1053	81676	56409	69.0	
SGCQ9	235	81494	79486	97.5	
	1053	82950	67257	81.1	
SGQ3	235	81746	71232	87.1	
	1053	82712	55973	67.6	

Cumulative Distribution Median Error Angle - Error Region 50%

M.Drago Amaldi 8, June 22/26 2009