

Search for Low Mass Binary Coalescences in LIGO's S5 and Virgo VSR1 Data.

Ruslan Vaulin, for the LIGO Scientific collaboration and the Virgo collaboration

Outline

- What are we searching for?
- How are we searching?
- Results.
- Future...

Sources the search is targeting

• Binary systems of massive compact objects in close orbits: neutron stars (NS) and/or black holes (BH) with a total mass of between 2-35M $_{\odot}$, with a minimum component mass of 1M $_{\odot}$

Separate high mass search with $25M_{\odot} < M_{TOTAL} < 100~M_{\odot}~$ – (Craig Robinson's Talk).

- Orbits decay by radiating energy as gravitational waves.
- Objects eventually collide and merge.

The LIGO S5 & Virgo VSR1 science runs

- LIGO S5 science run, November 2005 October 2007:
 - Detectors operating at design sensitivity.
 - 3 detectors at 2 sites, Hanford, WA and Livingston, LA.

- Virgo VSR1 science run coincided with the last 5 months of S5.
 - · Based in Cascina, Italy.
 - Similar sensitivity to Hanford 2km.

LIGO-G0900543

The search for low mass compact binary coalescences

- The search is divided into 3 separate searches:
 - S5 1st Year Search
 - Paper is published Phys. Rev. D 79, 122001 (2009).
 - Set new constraints on the rate upper limits.

DONE

- 0.40 years coincident and non-vetoed data.
- S5 12-18 Month Search
 - Paper available arXiv:0905.3710v1
 - The data after the first year, but before VSR1.
 - Less data, but increased sensitivity.
 - 0.25 years coincident and non-vetoed data.

Most recent results, first presented at APS 2009

- Joint S5-VSR1
 - Search in data from three LIGO and Virgo detectors

Undergoing review

LIGO-G0900543

Background estimation

- Background Estimation...
 - We time-slide the data from the non co-located sites with large enough time step $\sim\!10$ seconds, in order to remove any correlations, and run the standard pipeline.
 - This means that any coincident events between the sites is accidental.
 - After performing 100 time-slides we have measured rates of background events for different types of triggers and detector combinations:
 - BNS (1.35, 1.35) M_{\odot} , NSBH (5.0, 1.35) M_{\odot} and BBH (5.0, 5.0) M_{\odot} have different background rates.
 - Different detector combinations e.g., H1L1 and H1H2L1 have different background rates.

Detection statistic

- In S5 we introduce new detection statistic:
 - We subdivide triggers found in the search into categories:
 - by mass: BNS, NSBH and BBH mass categories;
- by combination of detectors at which a trigger with SNR above threshold was found;
- by combination of detectors which was in science mode at the time of the event.

Detection statistic

- In S5 we introduce new detection statistic:
 - We subdivide triggers found in the search into categories:
 - by mass: BNS, NSBH and BBH mass categories;
- by combination of detectors at which a trigger with SNR above threshold was found;
- by combination of detectors which was in science mode at the time of the event.
 - Based on category and amplitude (SNR) of coincident triggers, we estimate rates of background events in the same category from time-slide data.

Detection statistic

- In S5 we introduce new detection statistic:
 - We subdivide triggers found in the search into categories:
 - by mass: BNS, NSBH and BBH mass categories;
- by combination of detectors at which a trigger with SNR above threshold was found;
- by combination of detectors which was in science mode at the time of the event.
 - Based on category and amplitude (SNR) of coincident triggers, we estimate rates of background events in the same category from time-slide data.
 - In addition, for joint LIGO-Virgo analysis, due to very different sensitivities and large number of possible detector combinations, we introduce efficiency factors reflecting it.
 - Efficiency factors estimate probability that a GW will trigger certain combination of detectors during the period when these (and possible other) detectors were in science mode.

Detection statistic and ranking of the candidate events.

• For S5 12–18 months, LIGO only:

$$Detection \ Statistic = \frac{1}{Background \ Rate(category)}$$

• For \$5/V\$R1 months, joint LIGO-Virgo:

$$Detection \ Statistic = \frac{Efficiency \ Factor(detector \ combination)}{Background \ Rate(category)}$$

- We found that new detection statistics significantly improves overall efficiency of the search.
- We quote our results in terms of Inverse False Alarm Rate, IFAR:

Results from 12–18 months of S5

- NO Detection Candidates! ⊗
 - The loudest trigger in 0.25 year of data had an IFAR of 0.16 years.
 - We therefore set Bayesian rate upper limits, first individually on each month with a uniform prior before combining each month with the posterior rate limits from the S5 1^{st} year low mass search.
 - Upper limits are a combination of how much of the Universe we were sensitive to and for how long we searched.
 - Upper limit rates are quoted in units of L_{10}^{-1} yr $^{-1}$. L_{10} is 10^{10} times the blue light solar luminosity.
 - The Milky Way contains $\sim 1.7 L_{10}$.

LIGO

Rate upper limits (non-spinning) based on the first 18 months of \$5

- BNS rate 90% confidence = $1.4 \times 10^{-2} L_{10}^{-1} \text{ yr}^{-1}$.
 - Where BNS is $(1.35, 1.35) M_{\odot}$.
- BBH rate 90% confidence = $7.3 \times 10^{-4} L_{10}^{-1} \text{ yr}^{-1}$.
 - Where BBH is (5.0, 5.0) M_{\odot}.
- BHNS rate 90% confidence = $3.6 \times 10^{-3} L_{10}^{-1} \text{ yr}^{-1}$.
 - Where BHNS is $(5.0, 1.35) M_{\odot}$.

Upper limits on rate by total mass and by component mass

Rate upper limits compared with astrophysical expected rates

• New limits from 12–18 months are factor of 3 lower then those from first year of S5.

Binary type	Our upper limit, 90% confidence, L_{10}^{-1} yr $^{-1}$	Astrophysical Optimistic Rates, L ₁₀ ⁻¹ yr ⁻¹	Astrophysical most likely Rates, L_{10}^{-1} yr $^{-1}$	Comparison
BNS	1.4 x 10 ⁻²	5 x 10 ⁻⁴	5 x 10 ⁻⁵	~2-3 orders
NSBH	3.6 x 10 ⁻³	6 x 10 ⁻⁵	2 x 10 ⁻⁶	~2-3 orders
BBH	7.3 x 10 ⁻⁴	6 x 10 ⁻⁵	4 x 10 ⁻⁷	~1-3 orders

Future

- 2009...
 - The results of the LIGO-Virgo S5 low mass search to be reviewed.
 - LIGO S6 and Virgo VSR2 run, with improved sensitivity.
- 2014...
 - Advanced LIGO begins operation.
 - Factor of 1000 increase in visible volume of the Universe compared to Initial LIGO!

Thanks for listening

• Any Questions...?

4GO Detection vs False Alarm probabilities curves

ROC curve for population of BNS

