Advanced LIGO and Beyond: The next generations of gravitational wave detection

> Gregory Harry (for the LIGO Scientific Collaboration) Massachusetts Institute of Technology

> > Eighth Edoardo Amaldi Conference on Gravitational Waves Columbia University, New York City June 26, 2009

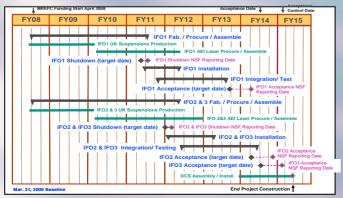
> > > LIGO-G0900535-v4

LIGO Advanced LIGO Overview

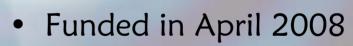
- Designed to have ~10X sensitivity of initial LIGO
 ~1000X in sensitive volume
- Higher bandwidth

 Sensitive down to 10 Hz
- Install at existing sites

LIGO Sites



Advanced LIGO Astronomical Reach


- Binary neutron star inspiral range ~200 Mpc
- Beyond detection, do gravitational astronomy

Advanced LIGO Scope and Schedule

- Reuse vacuum system and buildings
- Replace nearly all of the initial LIGO detectors
- 3 interferometers
 - All 4 km long
 - Lengthen current 2 km at Hanford
 - Likely identical, possibly one narrowband

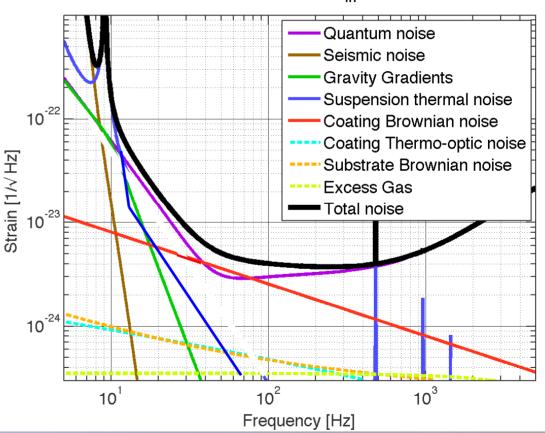
Advanced LIGO Schedule

• All subsystems in procurement/ fabrication end of 2009

vacuum systems ~ 10 000 m³

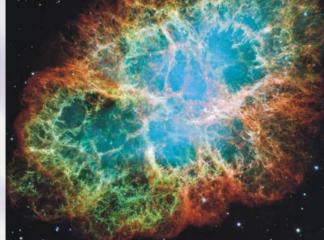
10⁻⁹ torr

Advanced LIGO Vacuum Chambers

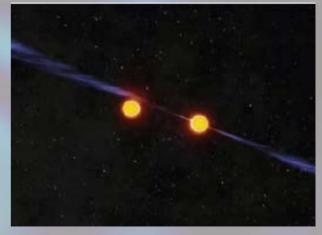

One of world's largest ultra high

- Begin installation at Livingston Feb 2011, Hanford Oct 2011
 - Right after enhanced LIGO
- Finish installation 2013-2014

LIGO Advanced LIGO Sensitivity


- RMS Strain (100 Hz BW)
 - Requirement: 10⁻²²
 - Goal: 3 10⁻²³
- Duty Cycle
 - 75% triple coincidence
- Sensitivity Limitations
 - 10-40 Hz: Radiation pressure/Suspension thermal noise/Gravity gradient
 - 40-200 Hz: Coating thermal noise/ Quantum noise
 - > 200 Hz: Shot noise

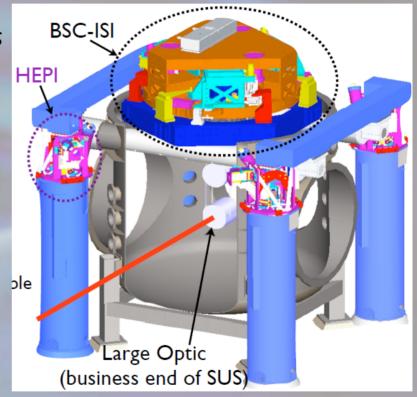
AdvLIGO Noise Curve: $P_{in} = 125.0 W$


Astrophysics

- Inspirals:
 - Neutron Stars ~ 40/yr
 - $-10 M_{\odot}$ Black Holes ~30/yr
 - Neutron Star-Black Hole ~10/yr
- Stochastic Background:
 - $\Omega \sim 10^{-9}$ in 3 months
 - Cosmic strings, defects, etc .

Crab Pulsar Nebula

Inspiralling Neutron Stars


- , etc Low Mass X-ray Binaries
 - ~500 Hz
 - Several possible in 2 years
 - Sco X-1 in narrowband
 - Multimessenger astronomy
 - Gamma ray bursts
 - Neutrinos from supernova

Seismic Isolation

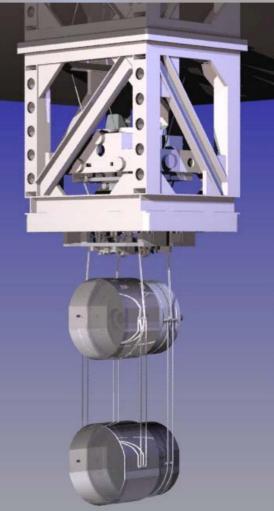
- Two related designs
 - BSC for tests masses and beamsplitters
 - HAM for supporting optics
- 3 stages of 6 degrees of freedom
 - 2 active stages
- Hydraulic external stage
- Prototyping
 - BSC in LASTI at MIT
 - HAM in enhanced LIGO

BSC Isolation Design

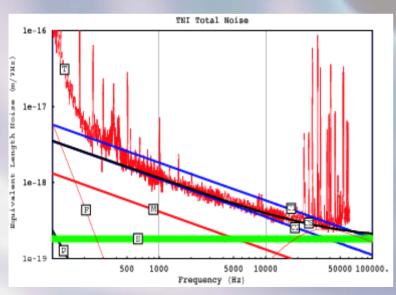
- Fabrication
 - HAM: October 2009
 - BSC: July 2010

Suspensions

- Based on GEO 600 design
 - British groups lead for Advanced LIGO
- Quadruple pendulums for test masses and beamsplitters; triples for others
- Two chains: test mass and reaction mass
- Maraging steel blades for vertical isolation
- Monolithic silica last stage
 - Dumbbell fibers (not ribbons)
 - Ears silicate bonded to optic
 - Fibers welded to ears
- Full testing in LASTI at MIT



Welded Fiber-Ear

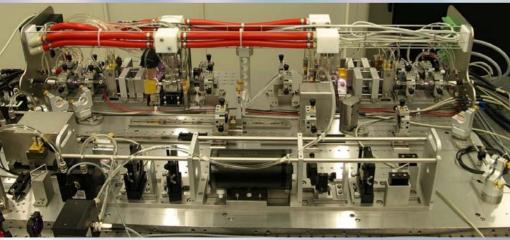

Suspension Test at LASTI

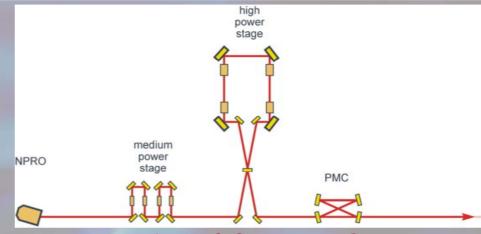
Quadruple Pendulum

Optics

- 40 kg silica substrates for test masses
- Titania doped tantala/silica coatings
 - Improved absorption and thermal noise
 - Design optimized, lower thermal noise
 - Prototyped at Caltech
 - Dichroic at 1064 and 532 nm

Coating Thermal Noise Data


Test Mass Blank


- Thermal compensation
 - Ring heaters
 - Projected 10 μm laser
 - Prototyping in enhanced LIGO
- >90% of substrate blanks received at Caltech

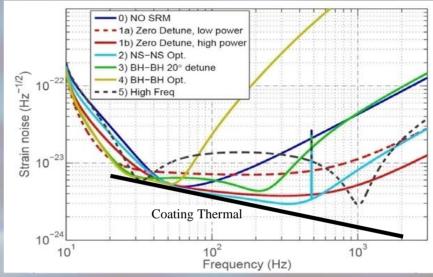
Lasers

- German Albert Einstein Institute lead
- Non-planer ring oscillator (NPRO)
- Nd:YAG 1064 nm
- 180 W after 3 gain stages

Engineering Prototype

Amplification Stages

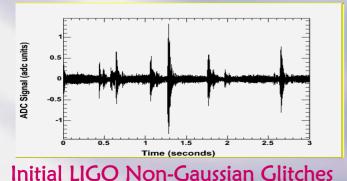
- First two stages (30 W) prototyping in enhanced LIGO
- Full power engineering
 prototype at AEI
- Squeezed light possible as enhancement to Advanced LIGO

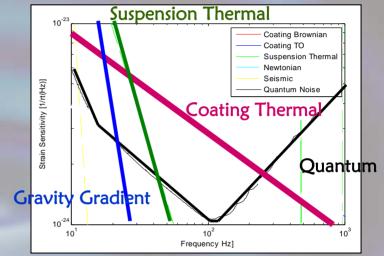

Systems

- Homodyne (DC) readout
 - Prototyping in enhanced LIGO
 - Requires output mode cleaner
- Secondary, green interferometer
 - Lock acquisition
 - Arm length stabilization
- Electrostatic drive to control test mass
- High optical power
 - Finesse of 450
 - Concerns about parametric instabilities
- Signal recycling cavity
 - Allows for tuning of quantum noise
 - Baseline is broadband

Enhanced LIGO Output Mode Cleaner

Different Tunings



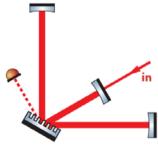

Electrostatic Drive

Sensitivity Limitations

- Gravity gradients
- Suspension thermal noise
- Mirror thermal noise
 - Coating: Brownian and Thermo-optic
 - Substrate: Silica

Estimated Noise in 3rd Generation Detectors

- Quantum noise
 - Radiation pressure
 - Shot noise
- Non-Gaussian noise
 - Important for Burst/Inspiral searches


LIGO 3rd Generation Solutions

Seismic and Gravity Gradient

- Underground
- Noise subtraction
- Testing at Homestake mine

Quantum Noise

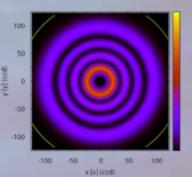
- High power
- Diffractive optics
- Squeezed light

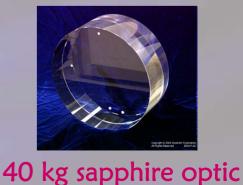
Diffractive Beamsplitter

Laguerre-Gauss

Mode 33

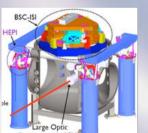
Coating Thermal Noise

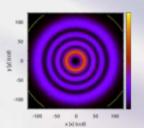

- Beam shaping
- Change wavelength
 - Shorter or 1.55 micron
- Khalili cavities, corner reflectors


Homestake Mine 1889

Suspension and Mirror Thermal Noise

- Improved materials
 - Coating, substrate, suspension
 - Sapphire, silicon
- Cryogenics
- Displacement noise free interferometers


12


Conclusions

- Advanced LIGO in progress
 - Procuring and fabricating parts
 - Installation begins in 2011
- Significant increase in sensitivity
 - Likely detections of inspirals, bursts
 - Possibility of stochastic and pulsars

- Major subsystems designed, tested, and in production
- Sensitivity limited by laser power, materials, environment, etc
- Many directions for improved 3rd generation - Need active research now