

GW Astronomy

- Position reconstruction of sources is a "must" tool for future GW astronomy
 - identification of host galaxies
 - population studies of GW events
- Position reconstruction is part of the source parameter estimation
 - coupled to the waveform reconstruction
 - for template searches, where waveforms are known, coordinates are included into set of source parameters
 - ➤ a challenging task for un-modeled burst searches, such as supernova, SRGs, GRBs, binary mergers,... where waveforms are not well known

Multimessenger Astronomy

- observation and measurement of the same astrophysical event
 - better confidence of GW event
 - extract physics of source engine
- Externally triggered strategy
 - fold in measured time of arrival and source location into GW searches

- Look-Up strategy
 - search for EM counterpart with optical and radio telescopes
 - need development of prompt pointing capabilities for GW detectors

Reconstruction method

- Based on triangulation $(\tau_1, \tau_2, \tau_3, ...)$
 - > 3 or more sites
- Coupled to reconstruction of waveforms
 - simple triangulation assumes identical detector responses
 - in general reconstruction of burst signals requires coherent network approach

Challenges

- dependence on antenna patterns & detector noise
- dependence on GW waveforms and polarization state
- reconstruction bias due to algorithmic assumptions
- effect of calibration errors
- high computational cost (loop over o(100,000) sky locations)
-there are many ways to get it wrong
- > need "smart" algorithms
- >eventually need more detectors
- LIGO, VIRGO (operational)
- GEO600 (limited sensitivity, HF?)
- LCGT, AIGO (future detectors)

Antenna patterns & noise

network sensitivity:

$$ec{f}_{+}=\left\{ rac{F_{+1}}{\sigma_{+1}},...,rac{F_{+K}}{\sigma_{+K}}
ight\} ,\ ec{f}_{ imes}=\left\{ rac{F_{ imes 1}}{\sigma_{ imes 1}},...,rac{F_{ imes K}}{\sigma_{ imes K}}
ight\}$$

network SNR

$$SNR \approx \sqrt{\left|f_{+}\right|^{2}\left\langle h_{+}^{2}\right\rangle + \left|f_{\times}\right|^{2}\left\langle h_{\times}^{2}\right\rangle}, \left\langle h_{+,\times}^{2}\right\rangle = \int h_{+,\times}^{2}(t)dt$$

- detectors with small F/σ do not contribute to reconstruction
 - effectively deal with 2 detector network -> lose triangulation
 - desirable to have more than 3 sites for robust reconstruction

Waveforms & polarization

when $F_{+} \sim 0$

- For SGQ9 effectively lose a detector
- For WNB recover reconstruction due to the 2nd polarization
- This effect strongly depends on the sky location

4th site would be handy

Position Reconstruction Task (((())) \(\) \(\) \(\)

- **Goal:** study coordinate reconstruction with GW detectors
- **Network:** V1 L1 H1 (expected for S6/VSR2 run)
- Data Set: one week of simulated and real data (only results for simulated data are reported)
- Simulated signals:
 - several types of adhoc waveforms with different frequencies and polarization states evenly spaced on the sky
- Reconstruction Algorithms
 - Triangulation: reconstruction from measured time delays J. Markowitz et all, Phys. Rev. D 78, 122003 (2008)
 - Omega: marginalize over signal waveforms by using different Bayesian priors (see talk by A.Searle)
 - A.Searle et al Class. Quantum Grav. 25, (2008) 114038
 - Coherent WaveBurst (cWB): explicit waveform reconstruction and localization by using constrained likelihood method (see talk by M.Drago)
 - S.Klimenko et al., Class. Quantum Grav. 25, (2008) 114029

Probability Sky Map

PSM shows how consistent are reconstructed waveforms and time delays as function of θ , ϕ . Source location is at PSM max.

detector plane

probability map: coherent network analysis

constant delay rings for detector pairs

Error Regions

- Source location is characterized by a spot in the sky (error region) rather than by a (θ,ϕ) direction
 - x% error region a sky area with cumulative probability of x%

The coverage of error regions has to be validated with MonteCarlo

(see M.Drago's talk)

Probability map

- Error regions should be reported for optical/radio followup
 - may consist of disjoint sky areas

Error Angle

- Describes how well sources can be localized in the sky
- deviation from true source location
 - Not a robust measure when there is an ambiguity in the sky

- $\sqrt{A_{err}}$: A_{err} sky area with P(θ, ϕ)>P(source)
 - Handles mirror image and multiple patches of high probability in the sky.

Median Error angle

characterizes overall reconstruction performance:

 \rightarrow A_{50} – size of sky area containing 50% of simulated events

Preliminary Results

- simulation sets: 1 S5-like sensitivity,
 2 equally sensitive detectors
- sine-gausian (SGQ9) linear polarization
- white noise bursts (WNB) two polarizations
- snr total signal-to-noise ratio in the network

$\sqrt{A_{50}}$ cWB	WNB(0.1)	SGQ9	WNB(0.1)	SGQ9
	250-350 Hz	235 Hz	1-2 kHz	1035 Hz
high snr, simulation 1	1.7°	2.6°	1.10	2.5°
snr<70, simulation 1	4.00	7.0°	1.90	3.5°
snr<70, simulation 2	3.30	4.9°	1.9°	3.5°
ellipt, snr<70, simulation 2	-	3.7°	-	2.1°

- resolution is better
 - If detectors have about the same sensitivity
 - If reconstruction is constrained by signal model
 - For GW signals with two polarization

Summary

GW detectors are capable to find source location with a few degrees resolution

- at least three detectors are required
- several reconstruction algorithms are employed by LV burst group

Resolution can be significantly improved when

- source models are used during reconstruction
- more than three sites are available

Use L1H1V1 source localization capabilities during S6/VSR2

- perform reconstruction with low latency (few minutes)
- report sky coordinates and error regions for EM follow up

Still a lot to do

- comparison of different reconstruction algorithms
- better understanding of biases due to segmentation and algorithms
- improve sky discretization/resolution for high frequency searches
- obtain more uniform error region coverage
- **>**