LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM19 Test EngineerXEN Date14/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- **10. Distortion**
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM19
Test Engineer	XEN
Date	14/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Model Unit (e.g. Manufacturer DVM) DVM FLUKE 115 TIME ELECTRONICS V/C calibrator 1044 Signal Agilent 332504 Generator Oscilloscope Iso Tech **ISR622** PSU LR39-2 Farnell PSU Farnell LR39-2

Record the Models and serial numbers of the test equipment used below.

Unit	UIM19
Test Engineer	XEN
Date	14/8/9

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM19
Test Engineer	XEN
Date	14/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	
25	0V	Return	

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM19
Test Engineer	XEN
Date	14/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.01	1mV
+15v	TP4	14.97	1mV
-15v	TP6	14.92	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM19
Test Engineer	XEN
Date	14/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2				er 2
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Unit.....UIM19 Test EngineerXEN Date14/8/9

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.5	3.5	3.5	3.3v to 3.7v	\checkmark
Ch2	3.5	3.5	3.5	3.3v to 3.7v	\checkmark
Ch3	3.5	3.5	3.5	3.3v to 3.7v	\checkmark
Ch4	3.5	3.5	3.5	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit.....UIM19 Test EngineerXEN Date14/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Fre	e?
Ch1	N	
Ch2	N	
Ch3	N	
Ch4	N	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark	-27.1	\checkmark
-7v	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark
-5v	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark	-13.6	\checkmark
-1v	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.7	\checkmark	2.8	\checkmark	2.7	\checkmark	2.8	\checkmark
5v	13.2	\checkmark	13.5	\checkmark	13.5	\checkmark	13.0	\checkmark
7v	18.8	\checkmark	19.0	\checkmark	18.9	\checkmark	19.5	\checkmark
10v	26.9	\checkmark	27.0	\checkmark	27.0	\checkmark	26.7	\checkmark

Unit	UIM19
Test Engineer	XEN
Date	14/8/9

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@ Freq
Channel 1	Channel 2	-104dB	-96dB	758Hz
Channel 2	Channel 1	-102dB	-93dB	1KHz
Channel 2	Channel 3	-102dB	-95dB	1KHz
Channel 3	Channel 2	-102dB	-95dB	933Hz
Channel 3	Channel 4	-101dB	-95dB	933Hz
Channel 4	Channel 3	-100dB	-95dB	1KHz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM1 Test EngineerXEN Date29/7/09

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM1
Test Engineer	XEN
Date	29/7/09

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Unit (e.g. Manufacturer Model DVM) DVM **FLUKE** 115 TIME ELECTRONICS V/C calibrator 1044 Signal Agilent 332504 Generator Oscilloscope **ISR622** Iso Tech PSU LR39-2 Farnell LR39-2 PSU Farnell

Record the Models and serial numbers of the test equipment used below.

Unit	UIM1
Test Engineer	XEN
Date	29/7/09

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM1
Test Engineer	XEN
Date	29/7/09

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM1
Test Engineer	XEN
Date	29/7/09

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.05	1mV
+15v	TP4	14.93	1mV
-15v	TP6	-15.02	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	275 mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On?

Unit	UIM1
Test Engineer	XEN
Date	29/7/09

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2				
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Unit.....UIM1 Test EngineerXEN Date29/7/09

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages.

Measure and record the Peak to Peak output between TP7 and TP11 At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	4.8	4.8	4.8v to 5v	\checkmark
Ch2	4.8	4.8	4.8	4.8v to 5v	\checkmark
Ch3	4.9	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	4.9	4.9	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 10Hz, and 1KHz

0.1Hz **F1** F3 Specification **F2** Pass/Fail Ch1 4.9 4.9 4.9 4.9 to 5.1v $\sqrt{}$ Ch2 4.9 4.9 4.9 4.9 to 5.1v $\sqrt{}$ Ch3 $\sqrt{}$ 4.9 4.9 4.9 4.9 to 5.1v 4.9 to 5.1v $\sqrt{}$ Ch4 4.9 4.9 4.9

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.4	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit.....UIM1 Test EngineerXEN Date30/7/09

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	4.9	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.6	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	4.9	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.7	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.7	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.7	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-27	\checkmark	-26.9	\checkmark	26.9	\checkmark	-27	\checkmark
-7v	-19	\checkmark	-18.9	\checkmark	-18.7	\checkmark	-19	\checkmark
-5v	-13.5	\checkmark	-13.5	\checkmark	-13.3	\checkmark	-13.5	\checkmark
-1v	-2.8	\checkmark	-2.6	\checkmark	-2.6	\checkmark	-2.8	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.6	\checkmark	2.7	\checkmark	2.7	\checkmark	2.6	\checkmark
5v	13.0	\checkmark	13.5	\checkmark	13.5	\checkmark	13.0	\checkmark
7v	18.5	\checkmark	18.9	\checkmark	18.9	\checkmark	18.5	\checkmark
10v	26.5	\checkmark	27	\checkmark	26.9	\checkmark	26.9	\checkmark

Unit	UIM1
Test Engineer	XEN
Date	30/7/09

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Max o/p	@ Freq
Channel 1	Channel 2	-101	-101	Flat
Channel 2	Channel 1	-101	-92	1KHz
Channel 2	Channel 3	-101	-98	269Hz
Channel 3	Channel 2	-101	-98	467Hz
Channel 3	Channel 4	-101	-99	407Hz
Channel 4	Channel 3	-101	-97	154Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit....UIM2 Test EngineerRMC Date22/3/11

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM2
Test Engineer	XEN
Date	30/7/09

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Unit (e.g. Manufacturer Model DVM) DVM **FLUKE** 115 TIME ELECTRONICS V/C calibrator 1044 Signal Agilent 332504 Generator Oscilloscope **ISR622** Iso Tech PSU LR39-2 Farnell LR39-2 PSU Farnell

Record the Models and serial numbers of the test equipment used below.

Unit	UIM2
Test Engineer	XEN
Date	30/7/09

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM2
Test Engineer	XEN
Date	30/7/09

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit.....UIM2 Test EngineerXEN Date30/7/09

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.01	1mV
+15v	TP4	14.91	1mV
-15v	TP6	-14.92	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270mV
-16.5v	200mV

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM2
Test Engineer	XEN
Date	30/7/09

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2				
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	4.8v to 5v	\checkmark
Ch2	4.8	4.9	4.9	4.8v to 5v	\checkmark
Ch3	4.8	4.9	4.9	4.8v to 5v	\checkmark
Ch4	4.8	4.9	4.9	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.4	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.7	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Fre	e?
Ch1	N	
Ch2	N	
Ch3	N	
Ch4	N	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-26.7	\checkmark	-26.5	\checkmark	-27.0	\checkmark	-27.0	\checkmark
-7v	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark
-5v	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark	-13.7	\checkmark
-1v	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.6	\checkmark	2.7	\checkmark	2.8	\checkmark	2.7	\checkmark
5v	13.0	\checkmark	13.0	\checkmark	13.5	\checkmark	13.3	\checkmark
7v	18.5	\checkmark	18.5	\checkmark	19.0	\checkmark	18.9	\checkmark
10v	26.5	\checkmark	26.9	\checkmark	27.0	\checkmark	27.0	\checkmark

Unit	UIM2
Test Engineer	XEN
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-102dB	-96.2dB	917Hz
Channel 2	Channel 1	-102dB	-93.9dB	870Hz
Channel 2	Channel 3	-102dB	-95.7dB	1KHz
Channel 3	Channel 2	-101dB	-96.4dB	933Hz
Channel 3	Channel 4	-101dB	-96.1dB	812Hz
Channel 4	Channel 3	-101dB	-96.9dB	501Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit....UIM3 Test EngineerXEN Date31/7/09

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM3
Test Engineer	XEN
Date	31/7/09

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g.	Manufacturer	Model	
DVM)			
DVM	FLUKE	115	
V/C calibrator	TIME ELECTRONICS	1044	
Signal	Agilent	332504	
Generator			
Oscilloscope	Iso Tech	ISR622	
PSU	Farnell	LR39-2	
PSU	Farnell	LR39-2	

Unit	UIM3
Test Engineer	XEN
Date	31/7/09

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM3
Test Engineer	XEN
Date	31/7/09

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit.....UIM3 Test EngineerXEN Date31/7/09

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.04	1mV
+15v	TP4	14.79	1mV
-15v	TP6	-15.01	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	260mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/- 0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM3
Test Engineer	XEN
Date	31/7/09

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2				
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Unit.....UIM3 Test EngineerXEN Date31/7/09

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	4.8v to 5v	\checkmark
Ch2	4.9	4.9	4.9	4.8v to 5v	\checkmark
Ch3	4.8	4.9	4.9	4.8v to 5v	\checkmark
Ch4	4.8	4.9	4.9	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.4	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit.....UIM3 Test EngineerXEN Date31/7/09

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.7	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.7	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Fre	e?
Ch1	N	
Ch2	N	
Ch3	N	
Ch4	N	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable	Ch2 o/p	Ch2 stable	Ch3 o/p	Ch3 stable	Ch4 o/p	Ch4 stable
-10v	-26.9	r V	-26.9	r V	-27.0		-27.0	r V
-7v	-18.9	\checkmark	-18.9	\checkmark	-18.9		-18.9	
-5v	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark
-1v	-2.8	\checkmark	-2.7	\checkmark	-2.8	\checkmark	-2.7	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.6	\checkmark	2.8	\checkmark	2.6	\checkmark	2.8	\checkmark
5v	13.5	\checkmark	13.5	\checkmark	13.0	\checkmark	13.5	\checkmark
7v	18.9	\checkmark	19.0	\checkmark	18.5	\checkmark	18.9	\checkmark
10v	26.9	\checkmark	27.0	\checkmark	26.5	\checkmark	26.9	\checkmark

Unit	UIM3
Test Engineer	XEN
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-101dB	93.3dB	933 Hz
Channel 2	Channel 1	-101dB	96.1dB	901Hz
Channel 2	Channel 3	-101dB	93.4dB	949Hz
Channel 3	Channel 2	-101dB	94.4dB	812Hz
Channel 3	Channel 4	-100dB	93.2dB	707Hz
Channel 4	Channel 3	-100dB	91.6dB	91.6Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM4 Test EngineerXEN Date31/7/09

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM4
Test Engineer	XEN
Date	31/7/09

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g.	Manufacturer	Model		
DVM)				
DVM	FLUKE	115		
V/C calibrator	TIME ELECTRONICS	1044		
Signal	Agilent	332504		
Generator				
Oscilloscope	Iso Tech	ISR622		
PSU	Farnell	LR39-2		
PSU	Farnell	LR39-2		

Unit	UIM4
Test Engineer	XEN
Date	31/7/09

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM4
Test Engineer	XEN
Date	31/7/09

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit.....UIM4 Test EngineerXEN Date31/7/09

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	11.97	1mV
+15v	TP4	14.88	1mV
-15v	TP6	-14.9	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	260mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/- 0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM4
Test Engineer	XEN
Date	31/7/09

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2				
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Unit.....UIM4 Test EngineerXEN Date31/7/09

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	4.9	4.9	4.8v to 5v	\checkmark
Ch2	4.8	4.9	4.9	4.8v to 5v	\checkmark
Ch3	4.8	4.9	4.9	4.8v to 5v	\checkmark
Ch4	4.8	4.9	4.9	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.4	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit.....UIM4 Test EngineerXEN Date31/7/09

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Free?		
Ch1	N		
Ch2	N		
Ch3	N		
Ch4	N		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-26.5	\checkmark	-27.0	\checkmark	-27.1	\checkmark	-26.9	\checkmark
-7v	-19.0	\checkmark	-19.0	\checkmark	-19.1	\checkmark	-18.9	\checkmark
-5v	-13.9	\checkmark	-13.5	\checkmark	-13.9	\checkmark	-13.5	\checkmark
-1v	-2.9	\checkmark	-2.7	\checkmark	-2.9	\checkmark	-2.7	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.6	\checkmark	2.8	\checkmark	2.6	\checkmark	2.8	\checkmark
5v	13.0	\checkmark	13.2	\checkmark	13.1	\checkmark	13.5	\checkmark
7v	18.2	\checkmark	18.5	\checkmark	18.5	\checkmark	18.0	\checkmark
10v	26.5	\checkmark	26.5	\checkmark	26.5	\checkmark	26.9	\checkmark

Unit	UIM4
Test Engineer	XEN
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-102dB	-95.2dB	707Hz
Channel 2	Channel 1	-101dB	-94.0dB	616Hz
Channel 2	Channel 3	-101dB	-94.3dB	436Hz
Channel 3	Channel 2	-101dB	-95.8dB	870Hz
Channel 3	Channel 4	-101dB	-94.6dB	812Hz
Channel 4	Channel 3	-101dB	-94.7dB	1KHz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit....UIM5 Test EngineerXEN Date3/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM5
Test Engineer	XEN
Date	3/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	FLUKE	115
V/C calibrator	TIME ELECTRONICS	1044
Signal	Agilent	332504
Generator		
Oscilloscope	Iso Tech	ISR622
PSU	Farnell	LR39-2
PSU	Farnell	LR39-2

Unit	UIM5
Test Engineer	XEN
Date	3/8/9

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM5
Test Engineer	XEN
Date	3/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	+ 5 🗸	
2	Imon2P	Current Source 2+	t Source 2+ 6 √	
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark
5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM5
Test Engineer	XEN
Date	3/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	11.98	
+15v	TP4	14.79	
-15v	TP6	-14.95	

All Outputs smooth DC, no oscillation? OK

Record Power Supply Currents

Supply	Current
+16.5v	225 mA
-16.5v	200 mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM5
Test Engineer	XEN
Date	3/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation							
	Filt	Filter 1 Filter 2 Filter 2						
	ON OFF		ON	OFF	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

Unit	UIM5
Test Engineer	XEN
Date	.3/8/9

8. Corner frequency tests Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.4	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit
Test Engineer
Date

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Free?		
Ch1	N		
Ch2	N		
Ch3	N		
Ch4	N		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark
-7v	-19.0	\checkmark	-18.9	\checkmark	-19.0	\checkmark	-18.9	\checkmark
-5v	-13.5	\checkmark	-13.5	\checkmark	-13.7	\checkmark	-13.5	\checkmark
-1v	-2.8	\checkmark	-2.6	\checkmark	-2.8	\checkmark	-2.7	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.6	\checkmark	3.0	\checkmark	2.7	\checkmark	2.8	\checkmark
5v	13.5	\checkmark	14.0	\checkmark	13.2	\checkmark	13.5	\checkmark
7v	19.0	\checkmark	19.1	\checkmark	18.9	\checkmark	19.0	\checkmark
10v	27.0	\checkmark	27.1	\checkmark	26.9	\checkmark	27.0	\checkmark

Unit	UIM5
Test Engineer	XEN
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-104dB	-94.6dB	812Hz
Channel 2	Channel 1	-102dB	-94.6dB	436Hz
Channel 2	Channel 3	-101dB	-94.8dB	707Hz
Channel 3	Channel 2	-101dB	-94.5dB	467Hz
Channel 3	Channel 4	-101dB	-96.5dB	917Hz
Channel 4	Channel 3	-101dB	-92.7dB	155Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit....UIM6 Test EngineerXEN Date4/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM6
Test Engineer	XEN
Date	4/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	FLUKE	115
V/C calibrator	TIME ELECTRONICS	1044
Signal	Agilent	332504
Generator		
Oscilloscope	Iso Tech	ISR622
PSU	Farnell	LR39-2
PSU	Farnell	LR39-2

Unit	UIM6
Test Engineer	XEN
Date	4/8/9

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Good

A solder joint on C104 Ch2 not soldered. Re-soldered.

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM6
Test Engineer	XEN
Date	4/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM6
Test Engineer	XEN
Date	4/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.08	1mV
+15v	TP4	14.95	1mV
-15v	TP6	-15.04	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270 mA
-16.5v	200 mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM6
Test Engineer	XEN
Date	4/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filter 1			er 2	Filter 2	
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Unit	UIM6
Test Engineer	XEN
Date	4/8/9

8. Corner frequency tests Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	4.8	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	4.8	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	4.8	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.3	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.3	3.4	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit	.UIM6
Test Engineer	.XEN
Date	.4/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Fre	e?
Ch1	N	
Ch2	N	
Ch3	N	
Ch4	N	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-26.9	\checkmark	-27.0	\checkmark	-27.4	\checkmark	-27.0	\checkmark
-7v	-19.0	\checkmark	-19.0	\checkmark	-19.1	\checkmark	-18.9	\checkmark
-5v	-13.5	\checkmark	-13.5	\checkmark	-13.9	\checkmark	-13.5	\checkmark
-1v	-2.8	\checkmark	-2.8	\checkmark	-2.9	\checkmark	-2.8	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.6	\checkmark	2.8	\checkmark	2.7	\checkmark	2.9	\checkmark
5v	13.0	\checkmark	13.5	\checkmark	13.1	\checkmark	13.5	\checkmark
7v	18.5	\checkmark	19.0	\checkmark	18.9	\checkmark	19.0	\checkmark
10v	26.9	\checkmark	27.0	\checkmark	26.9	\checkmark	27.0	\checkmark

Unit	UIM6
Test Engineer	XEN
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-101dB	-93.5dB	144Hz
Channel 2	Channel 1	-101dB	-93.1dB	1KHz
Channel 2	Channel 3	-100dB	-93.3dB	933Hz
Channel 3	Channel 2	-100dB	-93.9dB	807Hz
Channel 3	Channel 4	-100dB	-95.9dB	933Hz
Channel 4	Channel 3	-100dB	-95.3dB	758Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM7 Test EngineerXEN Date4/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM7
Test Engineer	XEN
Date	4/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g.	Manufacturer	Model	
DVM)			
DVM	FLUKE	115	
V/C calibrator	TIME ELECTRONICS	1044	
Signal	Agilent	332504	
Generator			
Oscilloscope	Iso Tech	ISR622	
PSU	Farnell	LR39-2	
PSU	Farnell	LR39-2	

Unit	UIM7
Test Engineer	XEN
Date	4/8/9

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM7
Test Engineer	XEN
Date	4/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM7
Test Engineer	XEN
Date	4/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.00	1mV
+15v	TP4	14.94	1mV
-15v	TP6	-14.92	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/- 0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM7
Test Engineer	XEN
Date	4/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2				
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Unit	UIM7
Test Engineer	XEN
Date	5/8/9

8. Corner frequency tests Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.4	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit	UIM7
Test Engineer	XEN
Date	5/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Fre	e?
Ch1	N	
Ch2	N	
Ch3	N	
Ch4	N	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark
-7v	-19.0	\checkmark	-18.9	\checkmark	-19.0	\checkmark	-19.0	\checkmark
-5v	-13.5	\checkmark	-13.5	\checkmark	-13.9	\checkmark	-13.5	\checkmark
-1v	-2.8	\checkmark	-2.8	\checkmark	-2.9	\checkmark	-2.7	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.7	\checkmark	3.0	\checkmark	2.7	\checkmark	2.9	\checkmark
5v	13.5	\checkmark	13.9	\checkmark	13.5	\checkmark	13.5	\checkmark
7v	19.0	\checkmark	19.1	\checkmark	18.5	\checkmark	19.0	\checkmark
10v	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark

Unit	UIM7
Test Engineer	XEN
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL	-	_	
Channel 1	Channel 2	-103dB	-96.8dB	501Hz
Channel 2	Channel 1	-102dB	-94.5dB	870Hz
Channel 2	Channel 3	-101dB	-95.8dB	1KHz
Channel 3	Channel 2	-101dB	-95.6dB	154Hz
Channel 3	Channel 4	-101dB	-92.2dB	1KHz
Channel 4	Channel 3	-101dB	-96.1dB	933Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM8 Test EngineerXEN Date5/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.
Unit	UIM8
Test Engineer	XEN
Date	5/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g.	Manufacturer	Model
DVM)		
DVM	FLUKE	115
V/C calibrator	TIME ELECTRONICS	1044
Signal	Agilent	332504
Generator		
Oscilloscope	Iso Tech	ISR622
PSU	Farnell	LR39-2
PSU	Farnell	LR39-2

Unit	UIM8
Test Engineer	XEN
Date	5/8/9

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM8
Test Engineer	XEN
Date	5/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM8
Test Engineer	XEN
Date	5/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.06	1mV
+15v	TP4	14.85	1mV
-15v	TP6	-14.96	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM8
Test Engineer	XEN
Date	5/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation						
	Filter 1		Filter 2		Filter 2		
	ON OFF		ON	OFF	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Unit	UIM8
Test Engineer	XEN
Date	5/8/9

8. Corner frequency tests Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.4	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit	UIM8
Test Engineer	XEN
Date	5/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Free?			
Ch1	N			
Ch2	N			
Ch3	N			
Ch4	N			

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark	-26.5	\checkmark
-7v	-19.0	\checkmark	-18.9	\checkmark	-18.9	\checkmark	-19.0	\checkmark
-5v	-13.5	\checkmark	-13.5	\checkmark	-13.2	\checkmark	-13.7	\checkmark
-1v	-2.9	\checkmark	-2.7	\checkmark	-2.7	\checkmark	-2.8	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.7	\checkmark	3.0	\checkmark	2.6	\checkmark	2.6	\checkmark
5v	13.2	\checkmark	13.9	\checkmark	13.2	\checkmark	13.5	\checkmark
7v	18.9	\checkmark	19.0	\checkmark	18.5	\checkmark	18.7	\checkmark
10v	27.0	\checkmark	27.0	\checkmark	26.9	\checkmark	26.9	\checkmark

Unit	UIM8
Test Engineer	XEN
Date	5/8/9

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-103dB	-96.0dB	771Hz
Channel 2	Channel 1	-101dB	-92.7dB	870Hz
Channel 2	Channel 3	-100dB	-94.5dB	933Hz
Channel 3	Channel 2	-100dB	-93.5dB	707Hz
Channel 3	Channel 4	-100dB	-96.7dB	475Hz
Channel 4	Channel 3	-100dB	-94.7dB	436Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit....UIM9 Test EngineerXEN Date7/8.9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- **10. Distortion**
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM9
Test Engineer	XEN
Date	7/8.9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	FLUKE	115
V/C calibrator	TIME ELECTRONICS	1044
Signal	Agilent	332504
Generator	_	
Oscilloscope	Iso Tech	ISR622
PSU	Farnell	LR39-2
PSU	Farnell	LR39-2

Unit	UIM9
Test Engineer	XEN
Date	7/8.9

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM9
Test Engineer	XEN
Date	7/8.9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM9
Test Engineer	XEN
Date	.7/8.9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.08	1mV
+15v	TP4	14.98	1mV
-15v	TP6	-14.92	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM9
Test Engineer	XEN
Date	7/8.9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation						
	Filt	Filter 1 Filter 2 Filter 2					
	ON	OFF	ON	OFF	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Unit	UIM9
Test Engineer	XEN
Date	7/8.9

8. Corner frequency tests Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.4	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit	.UIM9
Test Engineer	.XEN
Date	.7/8.9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Free?		
Ch1	N		
Ch2	N		
Ch3	N		
Ch4	N		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable	Ch2 o/p	Ch2 stable	Ch3 o/p	Ch3 stable	Ch4 o/p	Ch4 stable
-10v	-26.9		-27.0	r √	-27.0		-26.5	
-7v	-19.0	\checkmark	-19.5	\checkmark	-19.5	\checkmark	-19.0	\checkmark
-5v	-13.5	\checkmark	-14.0	\checkmark	-14.0	\checkmark	-13.6	\checkmark
-1v	-2.8	\checkmark	-3.0	\checkmark	-3.0	\checkmark	-2.9	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.7	\checkmark	2.6	\checkmark	2.7	\checkmark	2.6	\checkmark
5v	13.5	\checkmark	13.0	\checkmark	13.0	\checkmark	13.5	\checkmark
7v	18.9	\checkmark	18.9	\checkmark	18.7	\checkmark	18.9	\checkmark
10v	27.0	\checkmark	26.9	\checkmark	26.9	\checkmark	27.0	\checkmark

Unit	UIM9
Test Engineer	XEN
Date	7/8.9

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-102dB	-95.5dB	933hz
Channel 2	Channel 1	-101dB	-92.1dB	1KHz
Channel 2	Channel 3	-100dB	-95.6dB	616Hz
Channel 3	Channel 2	-100dB	-95.1dB	1KHz
Channel 3	Channel 4	-100dB	-95.5dB	758Hz
Channel 4	Channel 3	-105dB	-95.9dB	841Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM10 Test Engineer RMC Date7/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM10
Test Engineer	RMC
Date	7/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	FLUKE	115
V/C calibrator	TIME ELECTRONICS	1044
Signal	Agilent	332504
Generator	_	
Oscilloscope	Iso Tech	ISR622
PSU	Farnell	LR39-2
PSU	Farnell	LR39-2

Unit	UIM10
Test Engineer	RMC
Date	7/8/9

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM10
Test Engineer	RMC
Date	7/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM10
Test Engineer	RMC
Date	7/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	11.98	1mV
+15v	TP4	14.8	1mV
-15v	TP6	-14.94	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM10
Test Engineer	RMC
Date	7/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation						
	Filt	Filter 1 Filter 2 Filter 2					
	ON	OFF	ON	OFF	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Unit	UIM10
Test Engineer	RMC
Date	7/8/9

8. Corner frequency tests Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.5	3.5	3.5	3.3v to 3.7v	\checkmark
Ch2	3.5	3.5	3.5	3.3v to 3.7v	\checkmark
Ch3	3.5	3.5	3.5	3.3v to 3.7v	\checkmark
Ch4	3.5	3.5	3.5	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	0.4v to 0.5v	\checkmark
Ch2	5.0	5.0	5.0	0.4v to 0.5v	\checkmark
Ch3	5.0	5.0	5.0	0.4v to 0.5v	\checkmark
Ch4	5.0	5.0	5.0	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	0.4v to 0.5v	\checkmark
Ch2	5.0	5.0	5.0	0.4v to 0.5v	\checkmark
Ch3	5.0	5.0	5.0	0.4v to 0.5v	\checkmark
Ch4	5.0	5.0	5.0	0.4v to 0.5v	\checkmark

Unit.....UIM10 Test Engineer RMC Date7/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Free?		
Ch1	N		
Ch2	N		
Ch3	N		
Ch4	N		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-26.9	\checkmark	-26.9	\checkmark	-26.9	\checkmark	-26.9	\checkmark
-7v	-19.0	\checkmark	-19.5	\checkmark	-19.0	\checkmark	-19.0	\checkmark
-5v	-13.5	\checkmark	-14.0	\checkmark	-13.5	\checkmark	-13.5	\checkmark
-1v	-2.8	\checkmark	-2.9	\checkmark	-2.8	\checkmark	-2.8	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.7	\checkmark	2.6	\checkmark	2.7	\checkmark	2.7	\checkmark
5v	13.5	\checkmark	13.5	\checkmark	13.5	\checkmark	13.5	\checkmark
7v	18.9	\checkmark	18.8	\checkmark	18.8	\checkmark	18.9	\checkmark
10v	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark

Unit	UIM10
Test Engineer	RMC
Date	7/8/9

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-103dB	-100dB	707Hz
Channel 2	Channel 1	-101dB	-95.3dB	758Hz
Channel 2	Channel 3	-101dB	-96.1dB	660Hz
Channel 3	Channel 2	-100dB	-99dB	1KHz
Channel 3	Channel 4	-100dB	-96dB	813Hz
Channel 4	Channel 3	-100dB	-97dB	616Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm
UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM11 Test EngineerXEN Date7/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM11
Test Engineer	XEN
Date	7/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	FLUKE	115
V/C calibrator	TIME ELECTRONICS	1044
Signal	Agilent	332504
Generator		
Oscilloscope	Iso Tech	ISR622
PSU	Farnell	LR39-2
PSU	Farnell	LR39-2

Unit	UIM11
Test Engineer	XEN
Date	7/8/9

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM11
Test Engineer	XEN
Date	7/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM11
Test Engineer	XEN
Date	7/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.02	1mV
+15v	TP4	14.96	1mV
-15v	TP6	-14.98	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM11
Test Engineer	XEN
Date	7/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation						
	Filter 1		Filter 2		Filter 2		
	ON OFF		ON	OFF	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Unit	UIM11
Test Engineer	XEN
Date	7/8/9

8. Corner frequency tests Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.5	3.5	3.5	3.3v to 3.7v	\checkmark
Ch2	3.5	3.5	3.5	3.3v to 3.7v	\checkmark
Ch3	3.5	3.5	3.5	3.3v to 3.7v	\checkmark
Ch4	3.5	3.5	3.5	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit	UIM11
Test Engineer	XEN
Date	7/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Free?			
Ch1	N			
Ch2	N			
Ch3	N			
Ch4	N			

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-27.0	\checkmark	-26.9	\checkmark	-26.9	\checkmark	-27.0	\checkmark
-7v	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark
-5v	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark
-1v	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.6	\checkmark	2.6	\checkmark	2.6	\checkmark	2.7	\checkmark
5v	13.0	\checkmark	13.5	\checkmark	13.0	\checkmark	13.3	\checkmark
7v	18.5	\checkmark	18.7	\checkmark	18.5	\checkmark	18.5	\checkmark
10v	26.9	\checkmark	26.9	\checkmark	26.9	\checkmark	27.0	\checkmark

Unit	UIM11
Test Engineer	XEN
Date	7/8/9

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-102dB	-96.4dB	1KHz
Channel 2	Channel 1	-101dB	-96.0dB	436Hz
Channel 2	Channel 3	-101dB	-95.3dB	870Hz
Channel 3	Channel 2	-100dB	-95.0dB	436Hz
Channel 3	Channel 4	-100dB	-95.0dB	812Hz
Channel 4	Channel 3	-100dB	-95.0dB	785Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM12 Test EngineerXEN Date10/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	.UIM12
Test Engineer	.XEN
Date	10/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Unit (e.g. DVM)	Manufacturer	Model
DVM	FLUKE	115
V/C calibrator	TIME ELECTRONICS	1044
Signal Generator	Agilent	332504
Oscilloscope	Iso Tech	ISR622
PSU	Farnell	LR39-2
PSU	Farnell	LR39-2

Record the Models and serial numbers of the test equipment used below.

Unit	UIM12
Test Engineer .	XEN
Date	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM12
Test Engineer	XEN
Date	10/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM12
Test Engineer	XEN
Date	10/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.6	1mV
+15v	TP4	14.9	1mV
-15v	TP6	-14.95	1mV

All Outputs smooth DC, no oscillation? OK

Record Power Supply Currents

Supply	Current
+16.5v	270mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/- 0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM12
Test Engineer	XEN
Date	10/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation							
	Filt	Filter 1 Filter 2 Filter 2						
	ON	OFF	ON	OFF	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

Unit	.UIM12
Test Engineer	XEN
Date	10/8/9

8. Corner frequency tests Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.4	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit.....UIM12 Test EngineerXEN Date10/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.7	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.7	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.7	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.7	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-26.8	\checkmark	-26.9	\checkmark	-26.9	\checkmark	-27.0	\checkmark
-7v	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark
-5v	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark	-13.6	\checkmark
-1v	-2.8	\checkmark	-2.8	\checkmark	-2.7	\checkmark	-2.8	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.6	\checkmark	2.6	\checkmark	2.6	\checkmark	2.7	\checkmark
5v	13.1	\checkmark	13.3	\checkmark	13.1	\checkmark	13.3	\checkmark
7v	18.8	\checkmark	18.8	\checkmark	18.5	\checkmark	18.8	\checkmark
10v	26.9	\checkmark	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark

Unit	UIM12
Test Engineer	XEN
Date	10/8/9

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL	-	_	_
Channel 1	Channel 2	-103dB	-96dB	707Hz
Channel 2	Channel 1	-101dB	-95dB	707Hz
Channel 2	Channel 3	-101dB	-95dB	982Hz
Channel 3	Channel 2	-100dB	-96dB	660Hz
Channel 3	Channel 4	-101dB	-95dB	707Hz
Channel 4	Channel 3	-101dB	-96dB	707Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM13P Test EngineerXEN Date10/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM13P
Test Engineer	XEN
Date	10/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Unit (e.g. Manufacturer Model DVM) DVM **FLUKE** 115 TIME ELECTRONICS V/C calibrator 1044 Signal Agilent 332504 Generator Oscilloscope **ISR622** Iso Tech PSU LR39-2 Farnell LR39-2 PSU Farnell

Record the Models and serial numbers of the test equipment used below.

Unit	UIM13P
Test Engineer	XEN
Date	10/8/9

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM13P
Test Engineer	XEN
Date	10/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM13P
Test Engineer	XEN
Date	10/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.10	1mV
+15v	TP4	15.03	1mV
-15v	TP6	-15.03	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/- 0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM13P
Test Engineer	XEN
Date	10/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation							
	Filt	Filter 1 Filter 2 Filter 2						
	ON	OFF	ON	OFF	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

Unit.....UIM13P Test EngineerXEN Date10/8/9

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.5	3.5	3.5	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Unit.....UIM13P Test EngineerXEN Date10/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Free?		
Ch1	N		
Ch2	N		
Ch3	N		
Ch4	N		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-26.5	\checkmark	-26.9	\checkmark	-27.0	\checkmark	-27.0	\checkmark
-7v	-18.9	\checkmark	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark
-5v	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark
-1v	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.7	\checkmark	2.6	\checkmark	2.8	\checkmark	2.7	\checkmark
5v	13.5	\checkmark	13.5	\checkmark	13.5	\checkmark	13.5	\checkmark
7v	19.0	\checkmark	18.8	\checkmark	18.9	\checkmark	19.0	\checkmark
10v	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark

Unit	UIM13P
Test Engineer	XEN
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL	-	_	-
Channel 1	Channel 2	-102dB	-94dB	933Hz
Channel 2	Channel 1	-101dB	-94dB	575Hz
Channel 2	Channel 3	-101dB	-94dB	812Hz
Channel 3	Channel 2	-100dB	-94dB	1KHz
Channel 3	Channel 4	-101dB	-94dB	575Hz
Channel 4	Channel 3	-101dB	-94dB	917Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM14 Test EngineerXEN Date10/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM14
Test Engineer	XEN
Date	10/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	FLUKE	115
V/C calibrator	TIME ELECTRONICS	1044
Signal	Agilent	332504
Generator	_	
Oscilloscope	Iso Tech	ISR622
PSU	Farnell	LR39-2
PSU	Farnell	LR39-2

Unit	UIM14
Test Engineer	XEN
Date	10/8/9

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM14
Test Engineer	XEN
Date	10/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM14
Test Engineer	XEN
Date	10/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.04	1mV
+15v	TP4	14.78	1 mV
-15v	TP6	-14.99	5 mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM14
Test Engineer	XEN
Date	10/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation						
	Filt	Filter 1 Filter 2 Filter 2					
	ON OFF		ON	OFF	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Unit	UIM14
Test Engineer	XEN
Date	10/8/9

8. Corner frequency tests Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.1	5.1	5.1	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.5	3.5	3.5	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit	UIM14
Test Engineer	XEN
Date	10/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Free?			
Ch1	N			
Ch2	N			
Ch3	N			
Ch4	N			

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark	-26.9	\checkmark
-7v	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark
-5v	-13.6	\checkmark	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark
-1v	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.7	\checkmark	2.8	\checkmark	2.7	\checkmark	2.8	\checkmark
5v	13.5	\checkmark	13.5	\checkmark	13.5	\checkmark	13.5	\checkmark
7v	18.9	\checkmark	19.0	\checkmark	18.9	\checkmark	19.0	\checkmark
10v	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark

Unit	UIM14
Test Engineer	XEN
Date	10/8/9

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-123dB	-107dB	1KHz
Channel 2	Channel 1	-115dB	-103dB	933Hz
Channel 2	Channel 3	-115dB	-106dB	870Hz
Channel 3	Channel 2	-118dB	-109dB	660Hz
Channel 3	Channel 4	-120dB	-106dB	933Hz
Channel 4	Channel 3	-135dB	-107dB	144Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM15 Test EngineerXEN Date11/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- 10. Distortion
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM15
Test Engineer	XEN
Date	11/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Unit (e.g. Manufacturer Model

Record the Models and serial numbers of the test equipment used below.

Unit (e.g.	Manufacturer	Model
DVM)		
DVM	FLUKE	115
V/C calibrator	TIME ELECTRONICS	1044
Signal	Agilent	332504
Generator		
Oscilloscope	Iso Tech	ISR622
PSU	Farnell	LR39-2
PSU	Farnell	LR39-2

Unit	UIM15
Test Engineer	XEN
Date	11/8/9

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

LED DS1 slightly off flush with the PCB – adjusted.

One pin on the +15v regulator was not soldered to the PCB - resoldered

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM15
Test Engineer	XEN
Date	11/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM15
Test Engineer	XEN
Date	11/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.01	1mV
+15v	TP4	15.02	1mV
-15v	TP6	-14.93	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270 mA
-16.5v	200 mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM15
Test Engineer	XEN
Date	11/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2				
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Unit	.UIM15
Test Engineer	XEN
Date	.11/8/9

8. Corner frequency tests Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.4	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit.....UIM15 Test EngineerXEN Date11/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.67	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.67	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.67	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.67	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Fre	e?
Ch1	N	
Ch2	N	
Ch3	N	
Ch4	N	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark	-26.8	\checkmark
-7v	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark
-5v	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark
-1v	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.6	\checkmark	2.7	\checkmark	2.6	\checkmark	2.6	\checkmark
5v	13.3	\checkmark	13.5	\checkmark	13.3	\checkmark	13.3	\checkmark
7v	18.7	\checkmark	18.9	\checkmark	18.5	\checkmark	18.8	\checkmark
10v	27.0	\checkmark	27.0	\checkmark	26.9	\checkmark	26.8	\checkmark

Unit	UIM15
Test Engineer	XEN
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL	-	_	-
Channel 1	Channel 2	-102dB	-96dB	1KHz
Channel 2	Channel 1	-101dB	-95dB	144Hz
Channel 2	Channel 3	-101dB	-97dB	826Hz
Channel 3	Channel 2	-101dB	-96dB	1KHz
Channel 3	Channel 4	-101dB	-96dB	537Hz
Channel 4	Channel 3	-101dB	-96dB	537Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM16 Test EngineerXEN Date12/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- **10. Distortion**
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM16
Test Engineer	XEN
Date	12/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	FLUKE	115
V/C calibrator	TIME ELECTRONICS	1044
Signal	Agilent	332504
Generator	_	
Oscilloscope	Iso Tech	ISR622
PSU	Farnell	LR39-2
PSU	Farnell	LR39-2

Unit	UIM16
Test Engineer	XEN
Date	12/8/9

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM16
Test Engineer	XEN
Date	12/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15
Unit.....UIM16 Test EngineerXEN Date12/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.01	1mV
+15v	TP4	14.93	1mV
-15v	TP6	-14.97	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM16
Test Engineer	XEN
Date	12/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay		LED Operation					
	Filt	Filter 1 Filter 2 Filter 2					
	ON	OFF	ON	OFF	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Unit....UIM16 Test EngineerXEN Date12/8/9

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.4	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit.....UIM16 Test EngineerXEN Date12/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Free?		
Ch1	N		
Ch2	N		
Ch3	N		
Ch4	N		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark
-7v	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark	-18.9	\checkmark
-5v	-13.5	\checkmark	-13.5	\checkmark	-12.6	\checkmark	-13.8	\checkmark
-1v	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark	-2.7	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.7	\checkmark	2.6	\checkmark	2.8	\checkmark	2.8	\checkmark
5v	13.5	\checkmark	13.1	\checkmark	13.5	\checkmark	13.5	\checkmark
7v	19.0	\checkmark	18.6	\checkmark	19.0	\checkmark	18.9	\checkmark
10v	27.0	\checkmark	26.9	\checkmark	27.0	\checkmark	27.0	\checkmark

Unit	UIM16
Test Engineer	XEN
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-102dB	-96dB	870Hz
Channel 2	Channel 1	-101dB	-95dB	870Hz
Channel 2	Channel 3	-100dB	-94dB	933Hz
Channel 3	Channel 2	-100dB	-96dB	870Hz
Channel 3	Channel 4	-103dB	-97dB	501Hz
Channel 4	Channel 3	-101dB	-94dB	812Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM17 Test EngineerXEN Date13/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- **10. Distortion**
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM17
Test Engineer	XEN
Date	13/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	FLUKE	115
V/C calibrator	TIME ELECTRONICS	1044
Signal	Agilent	332504
Generator	_	
Oscilloscope	Iso Tech	ISR622
PSU	Farnell	LR39-2
PSU	Farnell	LR39-2

Unit	UIM17
Test Engineer	XEN
Date	13/8/9

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM17
Test Engineer	XEN
Date	13/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM17
Test Engineer	XEN
Date	13/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.02	1mV
+15v	TP4	14.94	1mV
-15v	TP6	14.99	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM17
Test Engineer	XEN
Date	13/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation							
	Filt	Filter 1 Filter 2 Filter 2						
	ON	OFF	ON	OFF	ON	OFF		
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

Unit.....UIM17 Test EngineerXEN Date13/8/9

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages.

Measure and record the Peak to Peak output between TP7 and TP11 At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F 1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.5	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.5	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.5	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.5	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit.....UIM17 Test EngineerXEN Date13/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2		
Ch3		
Ch4	\checkmark	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark	-26.9	\checkmark
-7v	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark
-5v	-13.7	\checkmark	-13.8	\checkmark	-13.7	\checkmark	-13.5	\checkmark
-1v	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark	-2.7	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.7	\checkmark	2.8	\checkmark	2.6	\checkmark	2.7	\checkmark
5v	13.3	\checkmark	13.5	\checkmark	13.3	\checkmark	13.4	\checkmark
7v	18.8	\checkmark	19.0	\checkmark	18.9	\checkmark	18.9	\checkmark
10v	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark

Unit	UIM17
Test Engineer	XEN
Date	13/8/9

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-102dB	-96dB	812Hz
Channel 2	Channel 1	-101dB	-95dB	812Hz
Channel 2	Channel 3	-101dB	-96dB	467Hz
Channel 3	Channel 2	-100dB	-96dB	1KHz
Channel 3	Channel 4	-100dB	-94dB	933Hz
Channel 4	Channel 3	-101dB	-95dB	758Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit..... Test EngineerXEN Date

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- **10. Distortion**
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIN18
Test Engineer	XEN
Date	13/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Model Unit (e.g. Manufacturer DVM) DVM FLUKE 115 TIME ELECTRONICS V/C calibrator 1044 Signal Agilent 332504 Generator Oscilloscope Iso Tech **ISR622** PSU LR39-2 Farnell PSU Farnell LR39-2

Record the Models and serial numbers of the test equipment used below.

Unit	UIN18
Test Engineer	XEN
Date	13/8/9

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Loose joint on C103 Ch3 Re-soldered

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIN18
Test Engineer	XEN
Date	

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit.....UIN18 Test EngineerXEN Date13/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.08	1mV
+15v	TP4	14.95	1mV
-15v	TP6	-14.90	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIN18
Test Engineer	XEN
Date	13/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay		LED Operation				
	Filt	Filter 1 Filter 2 Filter 2				
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Unit....UIN18 Test EngineerXEN Date13/8/9

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.4	3.5	3.3v to 3.7v	\checkmark
Ch2	3.4	3.4	3.5	3.3v to 3.7v	\checkmark
Ch3	3.4	3.4	3.4	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.4	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit.....UIN18 Test EngineerXEN Date13/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Free?		
Ch1	N		
Ch2	N		
Ch3	N		
Ch4	N		

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark
-7v	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark
-5v	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark
-1v	-2.8	\checkmark	-2.7	\checkmark	-2.8	\checkmark	-2.8	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.8	\checkmark	2.7	\checkmark	2.8	\checkmark	2.6	\checkmark
5v	13.5	\checkmark	13.5	\checkmark	13.5	\checkmark	13.3	\checkmark
7v	18.9	\checkmark	19.0	\checkmark	19.0	\checkmark	18.9	\checkmark
10v	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark

Unit	UIN18
Test Engineer	XEN
Date	13/8/9

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-101dB	-94dB	758Hz
Channel 2	Channel 1	-101dB	-92dB	1KHz
Channel 2	Channel 3	-101dB	-96dB	933Hz
Channel 3	Channel 2	-100dB	-95dB	933Hz
Channel 3	Channel 4	-105dB	-95dB	933Hz
Channel 4	Channel 3	-102dB	-95dB	933Hz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900237-v1 Advanced LIGO UK 6 May 2009 UIM Coil Driver Board Test Report R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM COIL DRIVER BOARD TEST REPORT

Unit.....UIM20 Test EngineerXEN Date14/8/9

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Corner Frequency Tests
- 9. Monitor Outputs
- **10. Distortion**
- 11. DC Stability
- 12. Crosstalk test

1. Description

The UIM Driver will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM board controls four OSEMs.

The UIM Coil Drive Board is mounted, together with a monitor board, inside a UIM unit.

The UIM Driver board also passes the amplified signals from the Photodiodes which detect the position of the UIM mirror back to the control electronics without processing them in any way.

Monitor Board

FIG. 1 UIM Driver Channel Block Diagram

Each UIM Driver board consists of four identical channels, one of which is shown above. Three power regulators (not shown), which provide regulated power to the four channels, are also mounted on the board.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz, followed by a complimentary zero at 10 Hz. To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz, the attenuation increases at a rate of 20dB/decade up to the corner frequency of the zero at 10 Hz, after which the characteristic levels off. The forth block is again similar, except that it has a gain of 0.248. The overall gain of the UIM driver is 1.2. The extra gain is needed to compensate for the losses in the switching circuits due to the 1 megohm bypass resistors and associated capacitors.

Finally, the outputs from the driver stage, and the voltage across the coil, are buffered by unity gain voltage followers before being fed to the monitor circuit.

Each filter may be switched in and out as required by its own control relay, and a talkback signal confirms the position of each relay.

A Test Mode relay is provided on the front end which enables the amplifier inputs to be switched to a Test input.

Unit	UIM20
Test Engineer	XEN
Date	14/8/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model
DVM	FLUKE	115
V/C calibrator	TIME ELECTRONICS	1044
Signal	Agilent	332504
Generator		
Oscilloscope	Iso Tech	ISR622
PSU	Farnell	LR39-2
PSU	Farnell	LR39-2
Unit	UIM20	
---------------	--------	
Test Engineer	XEN	
Date	14/8/9	

3. Inspection

Workmanship Inspect the general workmanship standard and comment:

Good

Links:

Check that links W3, W4 and W5 are present. If not, connect them.

Unit	UIM20
Test Engineer	XEN
Date	14/8/9

4. Continuity Checks Use a multi-meter to check the connections below exist

J2 PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark

J5 PIN	SIGNAL	Monitors:	To J1 PIN	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

J1 PIN	SIGNAL	DESCRIPTION	OK?
9	V+	+17v Supply	\checkmark
10	V+	+17v Supply	\checkmark
11	V-	-17v Supply	\checkmark
12	V-	-17v Supply	\checkmark
13	0V	Return	\checkmark
22	0V	Return	\checkmark
23	0V	Return	\checkmark
24	0V	Return	\checkmark
25	0V	Return	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test: J3 pins 1, 2, 3, 4 = positive input J3 pins 6, 7, 8, 9 = negative input J3 pin 5 = ground

Power

J1 pin 9, 10 = +16.5v J1 pin 11,12 = -16.5 J1 pins 22, 23, 24, 25 = 0v

Outputs

Ch1+ = J4 pin 1	Ch1- = J4 pin 9
Ch2+ = J4 pin 3	Ch2- = J4 pin 11
Ch3+ = J4 pin 5	Ch3- = J4 pin 13
Ch4+ = J4 pin 7	Ch4- = J4 pin 15

Unit	UIM20
Test Engineer	XEN
Date	14/8/9

6. Power

Check the polarity of the wiring: 3 Pin Power Connector

Set the power supply outputs to zero.

Connect power to the unit

Increase the voltages on the supplies to +/-3V.

Determine that the supply polarities are correct.

Increase input voltages to +/- 16.5v.

Record the output voltage, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.

Record regulator outputs:

Regulator	Test Point	Output voltage	Noise p/p
+12v	TP5	12.05	1mV
+15v	TP4	14.85	1mV
-15v	TP6	14.95	5mV

All Outputs smooth DC, no oscillation? **OK**

Record Power Supply Currents

Supply	Current
+16.5v	270mA
-16.5v	200mA

If outputs are satisfactory, (nominal +/-0.5v), and there is no oscillation on any of the power rails, proceed to next section.

Check for Overheating.

Front Panel and monitor LEDs On? $\sqrt{}$

Unit	UIM20
Test Engineer	XEN
Date	14/8/9

7. Relay Operation

Operate each relay stage in turn. Observe its operation

Connect the test unit to J6 and J7.

Operate switches and see if LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2				
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Unit.....UIM20 Test EngineerXEN Date14/8/9

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 0.1Hz. Switch out all the filter stages. Measure and record the Peak to Peak output between TP7 and TP11

At 1Hz, 10Hz and 100Hz for each channel

	1Hz	10Hz	100Hz	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch2	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch3	4.8	5.0	5.0	4.8v to 5v	\checkmark
Ch4	4.8	5.0	5.0	4.8v to 5v	\checkmark

Switch in each filter in turn and measure, then again measure and record the output. Repeat for 0.1Hz, 1Hz, 10Hz, 100Hz, and 1KHz 0.1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch2	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch3	5.0	5.0	5.0	4.9 to 5.1v	\checkmark
Ch4	5.0	5.0	5.0	4.9 to 5.1v	\checkmark

1Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	3.4	3.5	3.5	3.3v to 3.7v	\checkmark
Ch2	3.4	3.5	3.5	3.3v to 3.7v	\checkmark
Ch3	3.5	3.5	3.5	3.3v to 3.7v	\checkmark
Ch4	3.4	3.4	3.5	3.3v to 3.7v	\checkmark

10Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch2	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch3	0.7	0.7	0.7	0.48 to 0.75v	\checkmark
Ch4	0.7	0.7	0.7	0.48 to 0.75v	\checkmark

100Hz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

1 KHz

	F1	F2	F3	Specification	Pass/Fail
Ch1	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch2	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch3	0.5	0.5	0.5	0.4v to 0.5v	\checkmark
Ch4	0.5	0.5	0.5	0.4v to 0.5v	\checkmark

Unit.....UIM20 Test EngineerXEN Date14/8/9

9. Monitor Outputs

Switch out the filters.

With a 3K9 dummy load on each channel, apply a 1v peak input at 10Hz and measure the differential output voltage between the monitor pins.

Channel	Monitor	Parameter	Theoretical	Measured	Pass/
	Connector		Value	Value	Fail
1	Pin 1 to Pin 2	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 3 to Pin 4	Coil Mon	1.6v to 1.7v	1.65	\checkmark
2	Pin 5 to Pin 6	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 7 to Pin 8	Coil Mon	1.6v to 1.7v	1.65	\checkmark
3	Pin 9 to Pin 10	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 11 to Pin 12	Coil Mon	1.6v to 1.7v	1.65	\checkmark
4	Pin 13 to Pin 14	Voltage Mon	4.9v to 5.1v	5.0	\checkmark
	Pin 15 to Pin 16	Coil Mon	1.6v to 1.7v	1.65	\checkmark

10. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Observe the voltage across each load with an analogue oscilloscope.

	Distortion Fre	e?
Ch1	N	
Ch2	N	
Ch3	N	
Ch4	N	

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark	-27.0	\checkmark
-7v	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark	-19.0	\checkmark
-5v	-13.6	\checkmark	-13.5	\checkmark	-13.5	\checkmark	-13.5	\checkmark
-1v	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark	-2.8	\checkmark
0v	0	\checkmark	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.7	\checkmark	2.7	\checkmark	2.7	\checkmark	2.6	\checkmark
5v	13.5	\checkmark	13.5	\checkmark	13.5	\checkmark	13.5	\checkmark
7v	19.0	\checkmark	18.9	\checkmark	18.9	\checkmark	18.9	\checkmark
10v	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark	27.0	\checkmark

Unit	UIM20
Test Engineer	XEN
Date	

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.

Record the output in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs.

INPUT	OUTPUT	Output at 10Hz	Max o/p	@ Freq
CHANNEL	CHANNEL			
Channel 1	Channel 2	-100dB	-92dB	467Hz
Channel 2	Channel 1	-100dB	-92dB	154Hz
Channel 2	Channel 3	-100dB	-95dB	886Hz
Channel 3	Channel 2	-100dB	-93dB	616Hz
Channel 3	Channel 4	-100dB	-94dB	154Hz
Channel 4	Channel 3	-100dB	-94dB	1KHz

12.2 Quick Test

Apply an input to each channel in turn from the signal generator, while grounding the unused channels. Monitor the other channel outputs using the HP Dynamic Signal Analyser.

INPUT	OUTPUT	Maximum	@ Frequency
CHANNEL	CHANNEL	Output	
Channel 1	Channel 2		
Channel 2	Channel 1		
Channel 2	Channel 3		
Channel 3	Channel 2		
Channel 3	Channel 4		
Channel 4	Channel 3		