LIGO Laboratory / LIGO Scientific Collaboration

LIGO-Т0900236-v3 Advanced LIGO UK 2 September 2009

UIM1P Drive Unit Test Results

R. M. Cutler, University of Birmingham

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

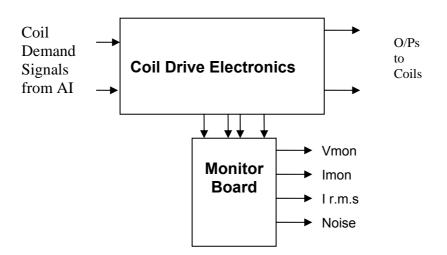
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM1.....Serial NoUIM1P Test EngineerXEN Date2/9/09

Drive Card ID.....UIM1 Monitor Card IDMON1(P)

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- 12. Distortion
- 13. Final Assembly Tests


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit.....UIM1.....Serial NoUIM1P Test EngineerXEN Date2/9/09

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number	
DVM	FLUKE	115		
V/I Calibrator	Time Electronics	1044		
Signal Generator	Agilent	33250A		
Oscilloscope	ISO-Tech	ISR622		
PSU x 2	Farnell	L30-2		

Unit.....UIM1.....Serial NoUIM1P Test EngineerXEN Date2/9/09

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

Links:

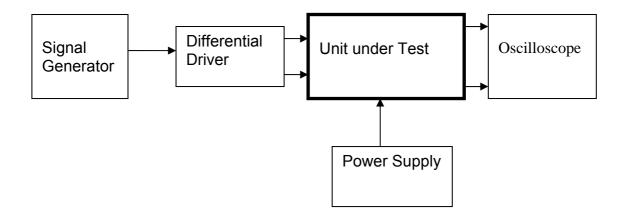
Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

Unit.....UIM1.....Serial NoUIM1P Test EngineerXEN Date2/9/09

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V			
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, 10 = +16.5v	or DC in A1
Pd In from Sat pin 11,12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

Unit.....UIM1.....Serial NoUIM1P Test EngineerXEN Date2/9/09

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit.....UIM1.....Serial NoUIM1P Test EngineerXEN Date2/9/09

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay		LED Operation				
	Filt	Filter 1 Filter 2			Filter 2	
	ON	OFF	ON	OFF	ON	OFF
Ch1					\checkmark	
Ch2					\checkmark	
Ch3					\checkmark	
Ch4						

This indicates that the relays are operating, and that the talk back contacts work OK.

Unit.....UIM1.....Serial NoUIM1P Test EngineerXEN Date2/9/09

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9964	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9998	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9965	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9974	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9962	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9953	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9953	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9976	\checkmark

The theoretical output is 0.995v.

Unit.....UIM1.....Serial NoUIM1P Test EngineerXEN Date2/9/09

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	0.990	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	0.996	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	0.996	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	0.999	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and TR	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz **Coil Drive** F1 F2 F3 **Specification** Pass/Fail output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

Unit.....UIM1....Serial NoUIM1P Test EngineerXEN Date2/9/09

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	+8.4	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	+8.4	6.6 to 8.7	
1Hz	-0.9	-0.2 to -2	
10Hz	-44	-41 to -52	
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	+8.2	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

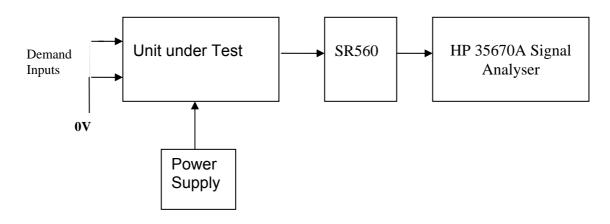
Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	+8.5	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Unit.....UIM1.....Serial NoUIM1P Test EngineerXEN Date2/9/09

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-93.7	-153.7dB
Ch2	-152.6	-96.5	-156.6dB
Ch3	-152.6	-95.5	-155.5dB
Ch4	-152.6	-94	-154dB

All channels are within specification.

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

Unit.....UIM1.....Serial NoUIM1P Test EngineerXEN Date2/9/09

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

Unit.....UIM1.....Serial NoUIM1P Test EngineerRMC Date23/9/09

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM1
Driver board ID	UIM1P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM1P
Monitor board ID	UIM MON1 (P)
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIM MON1 P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. \checkmark
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-ТО900236-v3 Advanced LIGO UK 3 September 2009 UIM2P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

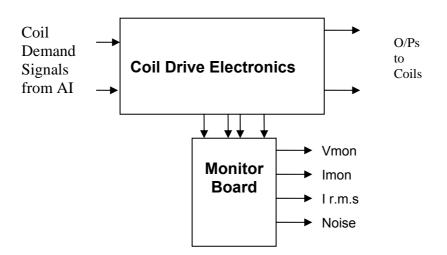
http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

UIM DRIVE COMPLETED UNIT TEST PLAN

Drive Card ID.....UIM2 Monitor Card IDMON2(P)

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- 12. Distortion
- 13. Final Assembly Tests


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit.....UIM2....Serial NoUIM2P..... Test EngineerXEN Date3/9/09

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

Links:

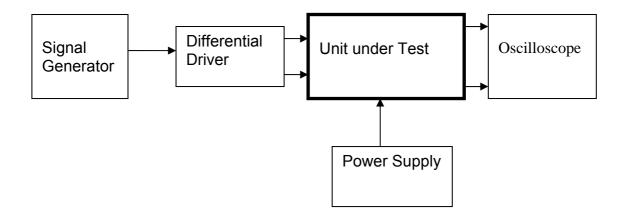
Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

Unit.....UIM2.....Serial NoUIM2P..... Test EngineerXEN Date3/9/09

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, 10 = +16.5v	or DC in A1
Pd In from Sat pin 11,12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit: \surd

v			
A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit.....UIM2....Serial NoUIM2P.... Test EngineerXEN Date3/9/09

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2				
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9969	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9998	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9975	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9984	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9970	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9973	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9971	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9966	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0012	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0018	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0026	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0019	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and TR	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz **Coil Drive** F1 F2 F3 **Specification** Pass/Fail output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	+8.3	6.6 to 8.7	\checkmark
1Hz	-1.1	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	+8.3	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	+8.5	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

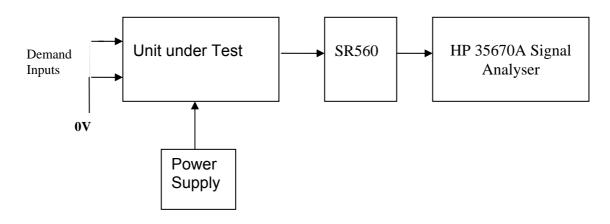
Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	+8.2	6.6 to 8.7	\checkmark
1Hz	-0.7	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Unit.....UIM2.....Serial NoUIM2P..... Test Engineer ...RMC..... Date24/9/9

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-93.11	-153.11
Ch2	-152.6	-94.23	-154.23
Ch3	-152.6	-94.37	-154.37
Ch4	-152.6	-93.6	-153.6

All channels are within specification.

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

Unit.....UIM2.....Serial NoUIM2P..... Test EngineerRMC Date29/9/09

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. \checkmark
- 5. Tighten the screw-locks holding all the external connectors. \checkmark
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$
- 8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM2
Driver board ID	UIM2P
Driver board Drawing No/Issue No	D0704814-K
Driver board Serial Number	UIM2P
Monitor board ID	MON2
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIMMON2P

- 9. Check the security of any modification wires.
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-ТО900236-v3 Advanced LIGO UK 4 September 2009 UIM3P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

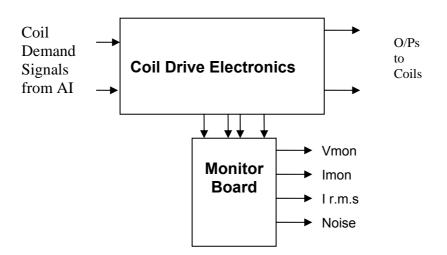
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM3.....Serial NoUIM3P..... Test EngineerXEN Date4/9/09

Drive Card ID.....UIM3P Monitor Card ID.....MON3P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- 12. Distortion
- 13. Final Assembly Tests


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit.....UIM3.....Serial NoUIM3P..... Test EngineerXEN Date4/9/09

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number	
DVM	FLUKE	115		
V/I Calibrator	Time Electronics	1044		
Signal Generator	Agilent	33250A		
Oscilloscope	ISO-Tech	ISR622		
PSU x 2	Farnell	L30-2		

Unit.....UIM3.....Serial NoUIM3P..... Test EngineerXEN Date4/9/09

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

Links:

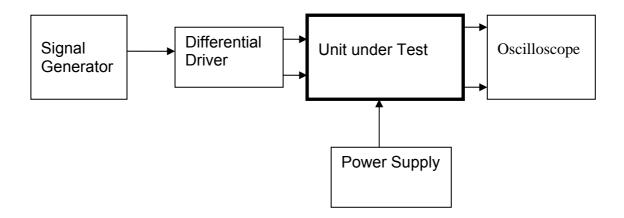
Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

Unit.....UIM3.....Serial NoUIM3P.... Test EngineerXEN Date4/9/09

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out to AA	SIGNAL	DESCRIPTION	Pd in from Sat	OK?
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

A1 A3 A2

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in
Pd In from Sat pin 11,12 = -16.5	or DC in
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

Unit.....UIM3.....Serial NoUIM3P..... Test EngineerXEN Date4/9/09

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit.....UIM3.....Serial NoUIM3P.... Test EngineerXEN Date4/9/09

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay		LED Operation				
	Filt	Filter 1 Filter 2 Filter 2				er 2
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

This indicates that the relays are operating, and that the talk back contacts work OK.

Unit.....UIM3.....Serial NoUIM3P.... Test EngineerXEN Date4/9/09

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9966	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	1.0015	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9978	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	1.0026	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9965	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9997	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9967	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9994	\checkmark

The theoretical output is 0.995v.

Unit.....UIM3.....Serial NoUIM3P..... Test EngineerXEN Date4/9/09

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0019	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0020	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0050	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0015	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and T R	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz **Coil Drive** F1 F2 F3 **Specification** Pass/Fail output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

Unit.....UIM3.....Serial NoUIM3P.... Test EngineerXEN Date4/9/09

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.3	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-1.1	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

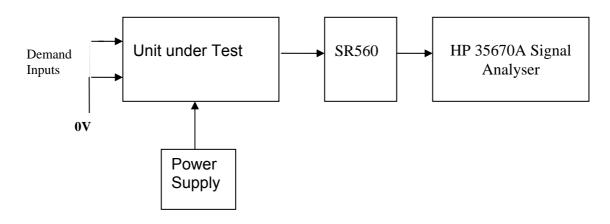
Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Unit.....UIM3.....Serial NoUIM3P.... Test EngineerRMC Date24/9/09

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-94.3	-154.3
Ch2	-152.6	-93.25	-153.25
Ch3	-152.6	-93.5	-153.5
Ch4	-152.6	-94.2	-154.2

All channels are within specification.

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

Unit.....UIM3....Serial NoUIM3P.... Test EngineerXEN Date4/9/09

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

Unit.....UIM3.....Serial NoUIM3P..... Test EngineerRMC Date29/9/09

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM3P
Driver board ID	UIM3P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM3P
Monitor board ID	MON3P
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIM UIM3P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900236-v3 Advanced LIGO UK 7 September 2009 UIM4P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

<u>http://www.ligo.caltech.edu/</u> <u>http://www.physics.gla.ac.uk/igr/sus/</u> <u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

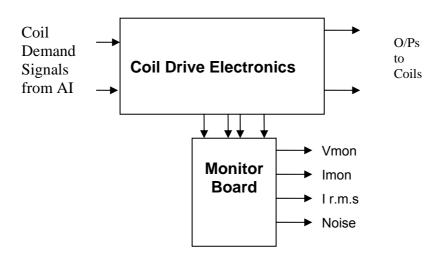
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM4....Serial NoUIM4P.... Test EngineerXEN Date7/9/09

Drive Card ID..... UIM4P Monitor Card ID MON4P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- **12. Distortion**
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit.....UIM4....Serial NoUIM4P.... Test EngineerXEN Date7/9/09

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

Unit.....UIM4....Serial NoUIM4P.... Test EngineerXEN Date7/9/09

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

Links:

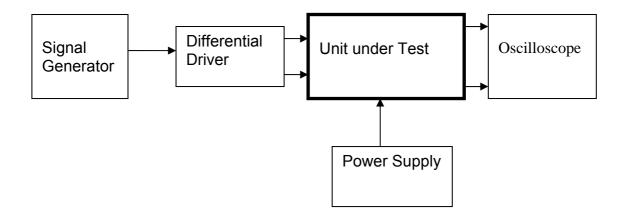
Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

Unit.....UIM4....Serial NoUIM4P.... Test EngineerXEN Date7/9/09

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

Unit.....UIM4....Serial NoUIM4P.... Test EngineerXEN Date7/9/09

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit.....UIM4....Serial NoUIM4P.... Test EngineerXEN Date7/9/09

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2				
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9950	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9979	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9940	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9993	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9939	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9963	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9937	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9973	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0021	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0026	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0026	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0010	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and T R	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.2	6.6 to 8.7	\checkmark
1Hz	-0.7	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.3	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

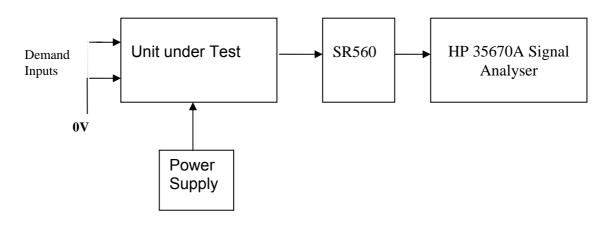
Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	

Unit.....UIM4....Serial NoUIM4P.... Test EngineerRMC Date24/9/09

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-93.6	-153.6
Ch2	-152.6	-95.6	-153.6
Ch3	-152.6	-95.6	-153.6
Ch4	-152.6	-93.6	-153.6

All channels are within specification

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

Unit.....UIM4.....Serial NoUIM4P..... Test EngineerRMC Date29/9/09

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. \checkmark
- 8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM4P
Driver board ID	UIM4P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM4P
Monitor board ID	MON4P
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIM MON4P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900236-v3 Advanced LIGO UK 7 September 2009 UIM5P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

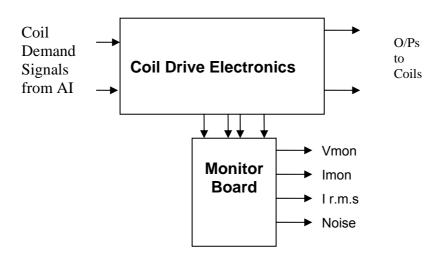
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM5....Serial NoUIM5P EngineerXEN Date7/9/09

Drive Card ID.....UIM5 Monitor Card IDMON5P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- **12. Distortion**
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit.....UIM5....Serial NoUIM5P EngineerXEN Date7/9/09

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

Links:

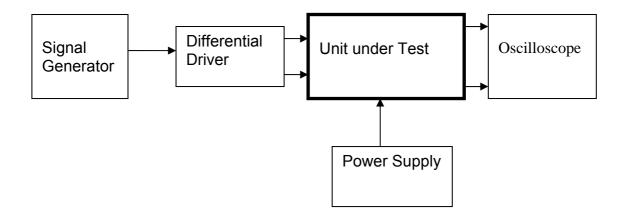
Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

Unit	UIM5	.Serial No	. UIM5P
Engineer	.XEN		
Date	7/9/09		

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay		LED Operation				
	Filt	Filter 1 Filter 2 Filter 2				er 2
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9967	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9985	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9970	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9997	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9972	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9984	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9970	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9992	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0009	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0025	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0013	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0022	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and TR	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

Unit	UIM5	.Serial No	. UIM5P
Engineer	XEN		
Date	7/9/09		

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

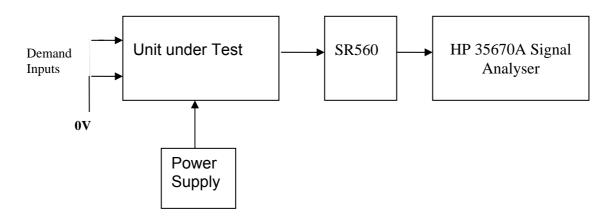
Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-54	-51 to -58	

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-94.9	-154.9
Ch2	-152.6	-94.7	-154.7
Ch3	-152.6	-93.3	-153.3
Ch4	-152.6	-95.2	-155.2

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

•••

13. Final Assembly Tests

- 1. Remove the lid of the box. \checkmark
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM5P
Driver board ID	UIM5P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM5P
Monitor board ID	MON5P
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIMMON5P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-ТО900236-v3 Advanced LIGO UK 8 September 2009 UIM6P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

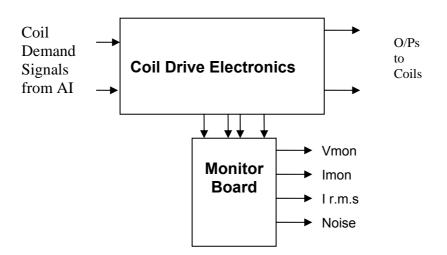
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM6.....Serial NoUIM6P EngineerXEN Date8/9/09

Drive Card ID.....UIM6P Monitor Card ID.....MON6P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- 12. Distortion
- 13. Final Assembly Tests


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

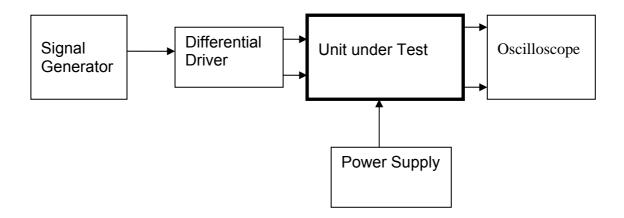
Links:

Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

A1 A3 A2

Connections:

Differential signal inputs to the Drive Input of the unit under test:

Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or DC in
Pd In from Sat pin 11,12 = -16.5	or DC in
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel		\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2				er 2
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9977	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	1.0022	
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9970	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	1.0033	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9972	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	1.0015	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9972	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	1.0056	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0019	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0011	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0018	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0016	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and TR	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz **Coil Drive** F1 F2 F3 **Specification** Pass/Fail output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.3	6.6 to 8.7	
1Hz	-1.1	-0.2 to -2	
10Hz	-44	-41 to -52	
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	
1Hz	-0.9	-0.2 to -2	
10Hz	-44	-41 to -52	
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-0.6	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	

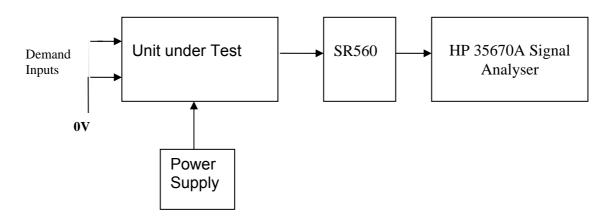
Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	
1Hz	-1.1	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	

Unit.....UIM6.....Serial NoUIM6P EngineerRMC Date24/9/09

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-94.5	-154.5
Ch2	-152.6	-95.5	-155.5
Ch3	-152.6	-93.6	-153.6
Ch4	-152.6	-93.6	-153.6

All channels are within specification

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

Unit.....UIM6.....Serial NoUIM6P EngineerRMC Date29/9/9

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM6P
Driver board ID	UIM6P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM6P
Monitor board ID	MON6P
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIM6 MON P

- 9. Check the security of any modification wires.
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900236-v3 Advanced LIGO UK 8 September 2009 UIM7P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

<u>http://www.ligo.caltech.edu/</u> <u>http://www.physics.gla.ac.uk/igr/sus/</u> <u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

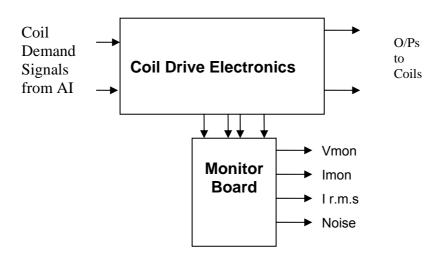
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM7....Serial NoUIM7P EngineerXEN Date8/9/09

Drive Card ID..... UIM7P Monitor Card ID MON7P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- 12. Distortion
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

Links:

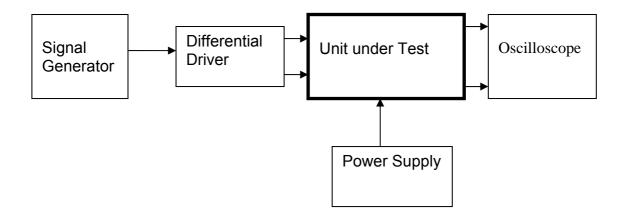
Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

Unit	UIM7	Serial No	UIM7P
Engineer	XEN		
Date	8/9/09		

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

Unit.....UIM7.....Serial NoUIM7P EngineerXEN Date8/9/09

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit.....UIM7....Serial NoUIM7P EngineerXEN Date8/9/09

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation							
	Filt	Filter 1 Filter 2 Filter 2						
	ON OFF ON OFF		ON	OFF				
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9968	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9993	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9965	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	1.0002	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9966	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9981	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9942	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9981	\checkmark

The theoretical output is 0.995v.

Unit.....UIM7....Serial NoUIM7P EngineerXEN Date8/9/09

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0027	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0020	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0017	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0013	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and T R	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

				10Hz		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

Unit.....UIM7.....Serial NoUIM7P EngineerXEN Date8/9/09

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	\checkmark

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.2	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

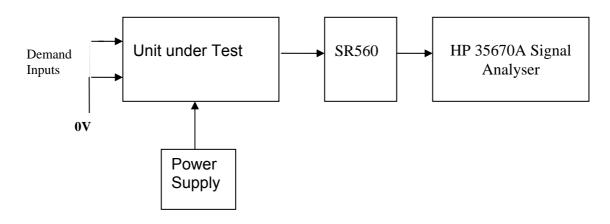
Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	

Unit.....UIM7.....Serial NoUIM7P EngineerRMC Date24/9/09

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-94.7	-154.7
Ch2	-152.6	-94.3	-154.3
Ch3	-152.6	-93.1	-153.1
Ch4	-152.6	-94.4	-154.4

All channels are in specification.

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

Unit	UIM7	Serial No	UIM7P
Engineer .	XEN		
Date			

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

Unit.....UIM7.....Serial NoUIM7P EngineerRMC Date29/9/09

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$
- 8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM7P
Driver board ID	UIM7P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM7P
Monitor board ID	MON7P
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIM MON7P

- 9. Check the security of any modification wires. $\sqrt{}$
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-ТО900236-v3 Advanced LIGO UK 8 September 2009 UIM8P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

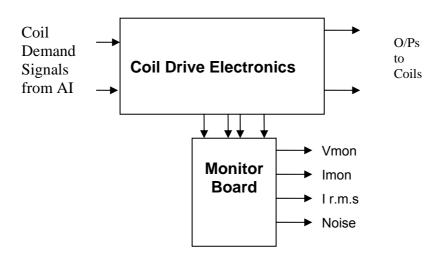
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM8.....Serial NoUIM8P..... Test EngineerXEN Date8/9/09

Drive Card ID..... UIM8P Monitor Card ID MON8P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- **12. Distortion**
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit.....UIM8.....Serial NoUIM8P..... Test EngineerXEN Date8/9/09

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

Unit.....UIM8.....Serial NoUIM8P.... Test EngineerXEN Date8/9/09

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

Links:

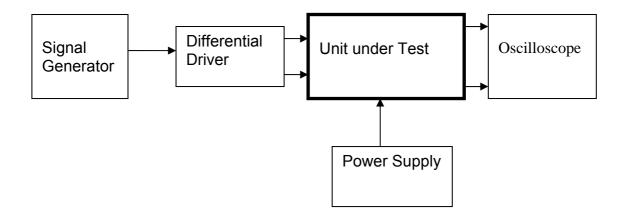
Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

Unit.....UIM8.....Serial NoUIM8P..... Test EngineerXEN Date8/9/09

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V			
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V			
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

Unit.....UIM8....Serial NoUIM8P.... Test EngineerXEN Date8/9/09

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit.....UIM8.....Serial NoUIM8P.... Test EngineerXEN Date8/9/09

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation							
	Filt	Filter 1 Filter 2 Filter 2						
	ON OFF ON OFF		ON	OFF				
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9974	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9997	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9963	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9998	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9970	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9996	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9964	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9982	\checkmark

The theoretical output is 0.995v.

Unit.....UIM8.....Serial NoUIM8P.... Test EngineerXEN Date8/9/09

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0014	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0014	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0027	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0016	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and T R	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

				10Hz		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

Unit.....UIM8.....Serial NoUIM8P.... Test EngineerXEN Date8/9/09

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.7	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.3	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-1.2	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

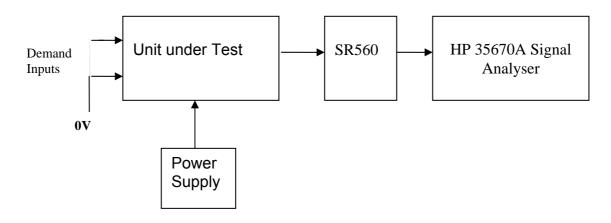
Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	

Unit.....UIM8.....Serial NoUIM8P.... Test EngineerRMC Date24/9/09

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-94.7	-154.7
Ch2	-152.6	-93.3	-153.3
Ch3	-152.6	-93.3	-153.3
Ch4	-152.6	-93.2	-153.2

All channels are within specification.

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

Unit......UIM8.....Serial NoUIM8P.... Test EngineerXEN Date8/9/09

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

Unit.....UIM8.....Serial NoUIM8P.... Test EngineerRMC Date12/9/09

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below: \checkmark

UoB box ID	UIM8P
Driver board ID	UIM8P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM8P
Monitor board ID	MON8P
Monitor board Drawing No/Issue No	D070481-4-K
Monitor board Serial Number	UIM MON8P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. \checkmark
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-ТО900236-v3 Advanced LIGO UK 9 September 2009 UIM9P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

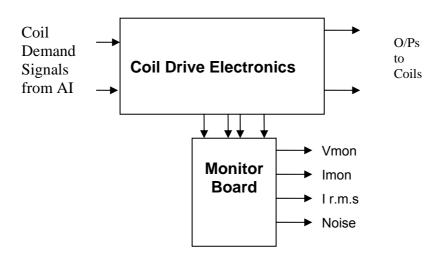
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM9....Serial NoUIM9P Test EngineerXEN Date9/9/9

Drive Card ID.....UIM9P Monitor Card IDMON9(P)

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- 12. Distortion
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel Unit.....UIM9....Serial NoUIM9P Test EngineerXEN Date9/9/9

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

Unit......UIM9.....Serial NoUIM9P Test EngineerXEN Date9/9/9

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

Links:

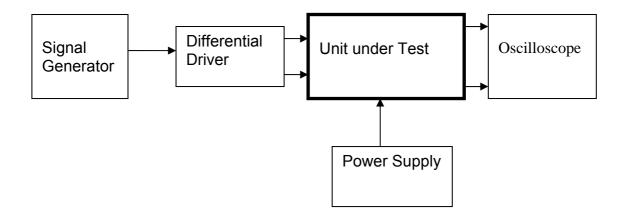
Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

Unit......UIM9.....Serial NoUIM9P Test EngineerXEN Date9/9/9

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2			Filt	er 2
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9972	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9981	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9982	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9971	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9962	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9974	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9990	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9989	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0027	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0024	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0019	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0025	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and TR	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.3	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

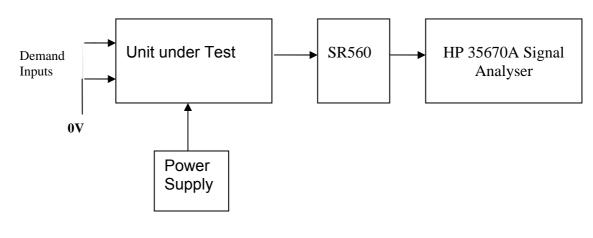
Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Unit.....UIM9.....Serial NoUIM9P Test EngineerRMC Date24/9/9

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-152.6	-93.8	-153.8
Ch2	-152.6	-93.38	-153.38
Ch3	-152.6	-95.5	-155.5
Ch4	-152.6	-93.3	-153.3

All channels are within specification.

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	
Ch3	
Ch4	\checkmark

Unit......UIM9.....Serial NoUIM9P Test Engineer Date

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM9P
Driver board ID	UIM9P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM9P
Monitor board ID	UIM MON9P
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIM MON9P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. \checkmark

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-ТО900236-v3 Advanced LIGO UK 9 September 2009 UIM10P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

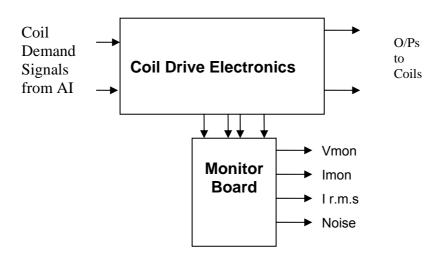
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM10....Serial NoUIM10P Test EngineerXEN Date9/9/9

Drive Card ID.....UIM10P Monitor Card IDMON10P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- 12. Distortion
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

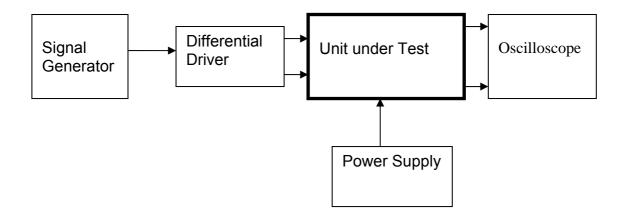
Links:

Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
500mA	400mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2				
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9975	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	1.0006	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	1.0301	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	1.0288	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9975	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9977	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9966	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9967	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0012	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0338	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0020	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0015	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and TR	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.3	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

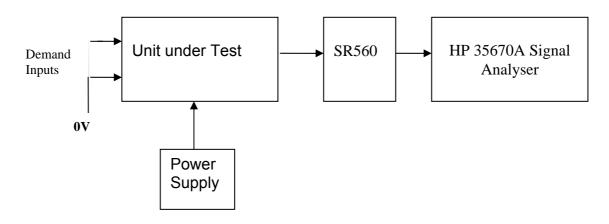
Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	
1Hz	-0.7	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	

Unit.....UIM10.....Serial NoUIM10P Test EngineerRMC Date24/9/9

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-94.2	-154.2
Ch2	-152.6	-93.6	-153.6
Ch3	-152.6	-95.4	-155.4
Ch4	-152.6	-96.8	-156.8

All channels are within specification

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

Unit.....UIM10.....Serial NoUIM10P Test EngineerRMC Date29/9/9

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. \checkmark

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM10P
Driver board ID	UIM10P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM10P
Monitor board ID	MON10P
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIM MON10P

- 9. Check the security of any modification wires.
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900236-v3 Advanced LIGO UK 10 September 2009 UIM11P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

<u>http://www.ligo.caltech.edu/</u> <u>http://www.physics.gla.ac.uk/igr/sus/</u> <u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

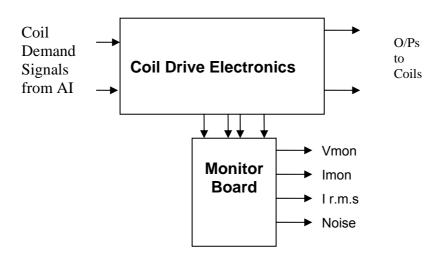
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM11....Serial NoUIM11P Test EngineerXEN Date10/9/9

Drive Card ID.....UIM11P Monitor Card IDMON11P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- 12. Distortion
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

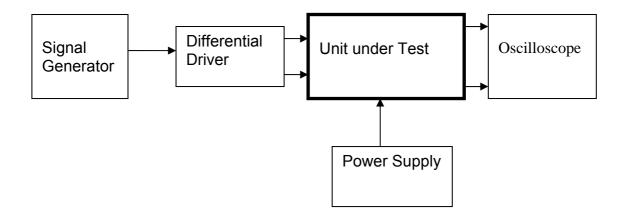
Links:

Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	
9	Imon4N	Current Source 4-	21	

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	
24	0V	Return	A2	
25	0V	Return	A2	

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus		
Front Panel	\checkmark	\checkmark		
Rear Panel	\checkmark	\checkmark		

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation						
	Filter 1		Filter 2		Filter 2		
	ON	OFF	ON	OFF	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9950	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9964	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9983	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9995	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9977	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9984	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9977	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9991	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0023	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0029	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0028	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0032	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and T R	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

				10Hz		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

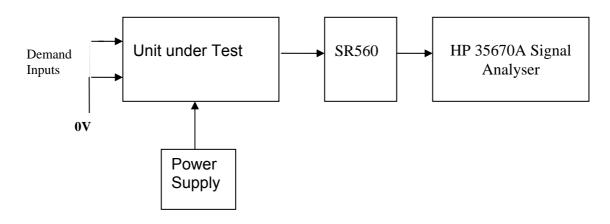
Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.3	6.6 to 8.7	
1Hz	-0.7	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB	Measured @	-60dB =
	V/√Hz	10Hz	
Ch1	-152.6	-99.5	-159.5
Ch2	-152.6	-93.3	-153.3
*Ch3	-152.6	-90.5	-150.5
Ch4	-152.6	-93.7	-153.7

* Ch 3 is slightly out of specification.

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

Unit.....UIM11....Serial NoUIM11P Test EngineerRMC Date30/9/9

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM11P
Driver board ID	UIM11P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM11P
Monitor board ID	MON11P
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIM MON11P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900236-v3 Advanced LIGO UK 11 September 2009 UIM12P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

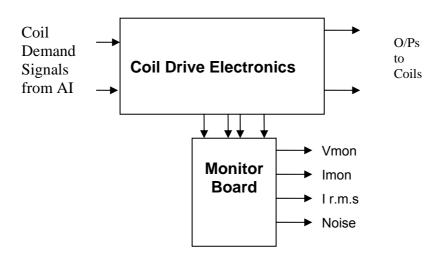
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM12.....Serial NoUIM12P Test EngineerXEN Date11/9/9

Drive Card ID.....UIM12P Monitor Card IDMON12P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- 12. Distortion
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	
DVM	FLUKE	115	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

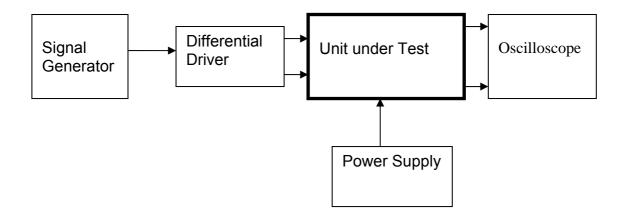
Links:

Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation						
	Filt	Filter 1 Filter 2 Filter 2					
	ON	OFF	ON	OFF	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9978	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9977	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9987	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9974	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9992	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	1.0000	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9983	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	1.0002	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0027	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0030	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0036	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0034	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and TR	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1			
Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

	Channel 2				
Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail		
0.1 Hz	8.5	6.6 to 8.7	\checkmark		
1Hz	-0.9	-0.2 to -2	\checkmark		
10Hz	-44	-41 to -52			
100Hz	-53	-51 to -58	\checkmark		
1KHz	-53	-51 to -58			

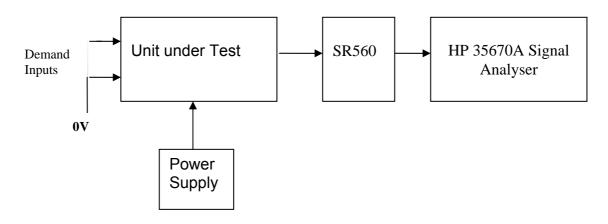
	Channel 3					
Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail			
0.1 Hz	8.2	6.6 to 8.7	\checkmark			
1Hz	-0.9	-0.2 to -2	\checkmark			
10Hz	-44	-41 to -52	\checkmark			
100Hz	-53	-51 to -58	\checkmark			
1KHz	-53	-51 to -58	\checkmark			

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-93.7	-153.7
Ch2	-152.6	-93.2	-153.2
Ch3	-152.6	-93.7	-153.7
Ch4	-152.6	-93.7	-153.7

All channels are within specification

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

Unit.....UIM12.....Serial NoUIM12P Test EngineerRMC Date30/9/9

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM12P
Driver board ID	UIM12P
Driver board Drawing No/Issue No	D070481P-4-K
Driver board Serial Number	UIM12P
Monitor board ID	MON12P
Monitor board Drawing No/Issue No	D070480P-4-K
Monitor board Serial Number	UIMMON12P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900236-v3 Advanced LIGO UK 14 September 2009 UIM13P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

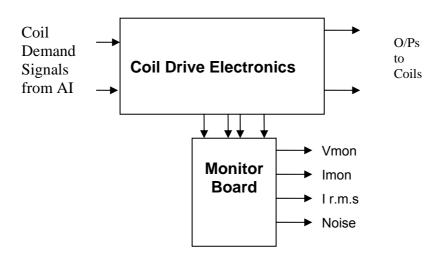
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM13....Serial NoUIM13P Test EngineerXEN Date14/9/9

Drive Card ID.....UIM13P Monitor Card IDMON13P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- **12. Distortion**
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

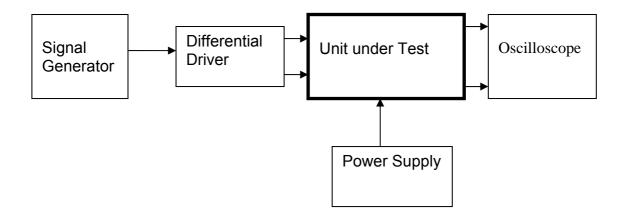
Links:

Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2			er 2	
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9969	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9981	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9965	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9978	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9967	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9993	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9968	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9956	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0015	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0012	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0020	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0013	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and T R	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.3	6.6 to 8.7	\checkmark
1Hz	-0.7	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	\checkmark

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Unit.....UIM13.....Serial NoUIM13P Test EngineerRMC Date30/9/9

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-94.4	-154.4
Ch2	-152.6	-94.7	-154.7
Ch3	-152.6	-93	-153
Ch4	-152.6	-94	-154

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?		
Ch1	\checkmark		
Ch2	\checkmark		
Ch3	\checkmark		
Ch4	\checkmark		

Unit.....UIM13.....Serial NoUIM13P Test EngineerRMC Date30/9/9

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$
- 8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM13P
Driver board ID	UIM13P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM13P
Monitor board ID	MON13P
Monitor board Drawing No/Issue No	D070481-4-K
Monitor board Serial Number	UIM MON13P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900236-v3 Advanced LIGO UK 14 September 2009 UIM14P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

<u>http://www.ligo.caltech.edu/</u> <u>http://www.physics.gla.ac.uk/igr/sus/</u> <u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

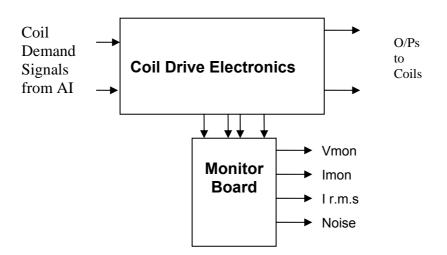
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM14....Serial NoUIM14P Test EngineerXEN Date14/9/9

Drive Card ID.....UIM14P Monitor Card IDMON14P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- 12. Distortion
- 13. Final Assembly Tests


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

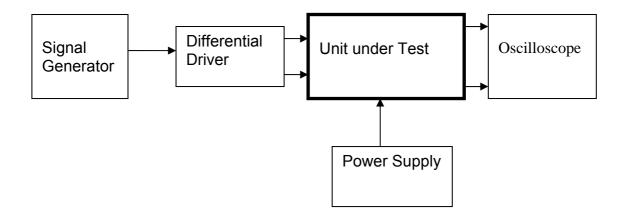
Links:

Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED	SIGNAL	Monitors:	In from	OK?
Mon			Sat	
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, 10 = +16.5v	or DC in A1
Pd In from Sat pin 11,12 = -16.5	or DC in A3
Pd In from Sat pins 22, 23, 24, 25 = 0v	or DC in A2

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)	
500mA	400mA	

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2			Filter 2	
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9974	
	Pin 1	RMS Current	0.95 v to 1.05 v dc	1.0011	
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9986	
	Pin 4	RMS Current	0.95 v to 1.05 v dc	1.0023	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9979	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9977	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9971	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9988	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket	output?	value	
		Pin			
1	Pins 1,9	Pin 3	1.0015	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0022	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0016	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0026	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and T R	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz **Coil Drive** F1 F2 F3 **Specification** Pass/Fail output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.3	6.6 to 8.7	\checkmark
1Hz	0.9	-0.2 to -2	
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.2	6.6 to 8.7	\checkmark
1Hz	0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	
1Hz	0.8	-0.2 to -2	
10Hz	-44	-41 to -52	
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	0.7	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-91	-151
Ch2	-152.6	-95.1	-155.1
Ch3	-152.6	-94	-154
Ch4	-152.6	-93.5	-153.5

Noise on channel 1 is 1.6 dB high

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. \checkmark
- 8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM14P
Driver board ID	UIM14P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM14P
Monitor board ID	MON14P
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIM UIM14P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-ТО900236-v3 Advanced LIGO UK 14 September 2009 UIM15P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

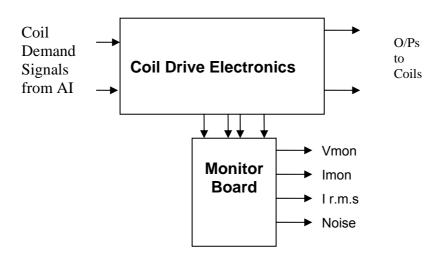
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM15P.....Serial NoUIM15P Test EngineerXEN Date14/9/09

Drive Card ID..... UIM15P Monitor Card ID MON15P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- **12. Distortion**
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

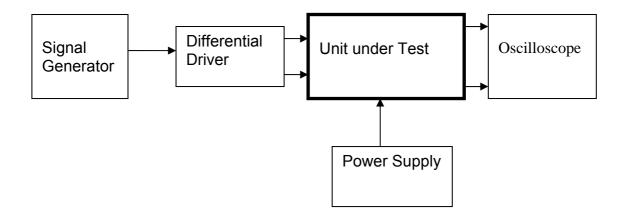
Links:

Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	
25	0V	Return	A2	

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation						
	Filt	Filter 1 Filter 2 Filter 2					
	ON	OFF	ON	OFF	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9972	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9985	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9967	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9978	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9967	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9955	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9970	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9961	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive	Voltage Monitor	Monitor	Expected	OK?
	Output pins	socket pin	output?	value	
1	Pins 1,9	Pin 3	1.0027	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0018	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0013	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0019	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and T R	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	\checkmark

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	\checkmark

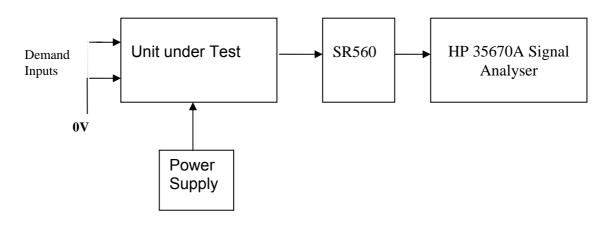
Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Unit.....UIM15P.....Serial NoUIM15P Test EngineerRMC Date28/9/9

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-93.1	-153.1
Ch2	-152.6	-93.4	-153.4
Ch3	-152.6	-94.3	-154.3
Ch4	-152.6	-93	-153

All channels are in specification

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

Unit.....UIM15P.....Serial NoUIM15P Test EngineerRMC Date30/9/9

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. \checkmark

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM15P
Driver board ID	UIM15P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM15P
Monitor board ID	MON15P
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIM MON15P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900236-v3 Advanced LIGO UK 15 September 2009 UIM16P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

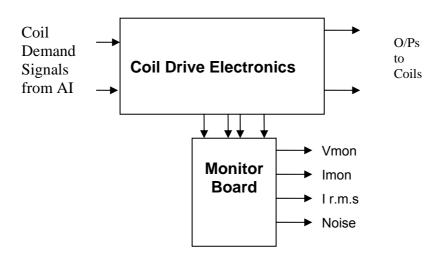
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM16P.....Serial NoUIM16P Test EngineerXEN Date15/9/9

Drive Card ID..... UIM16P Monitor Card ID MON16P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- **12. Distortion**
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

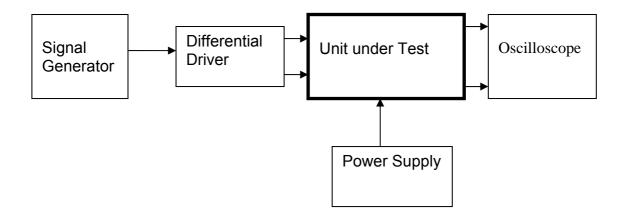
Links:

Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V			
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector , to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation						
	Filt	Filter 1 Filter 2 Filter 2					
	ON	OFF	ON	OFF	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9977	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	1.0009	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9980	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9995	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9975	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9985	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9968	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9989	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0020	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0031	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0023	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0012	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and TR	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Channel 1	
------------------	--

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.2	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.

Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-95.7	-155.7
Ch2	-152.6	-89.7	-149.7
Ch3	-152.6	-93.7	-153.7
Ch4	-152.6	-94.9	-154.9

Channel 2 is out of specification by 2.9dB

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM16P
Driver board ID	UIM16P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM16P
Monitor board ID	MON16P
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIM MON16P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900236-v3 Advanced LIGO UK 15 September 2009 UIM17P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

<u>http://www.ligo.caltech.edu/</u> <u>http://www.physics.gla.ac.uk/igr/sus/</u> <u>http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html</u> <u>http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm</u>

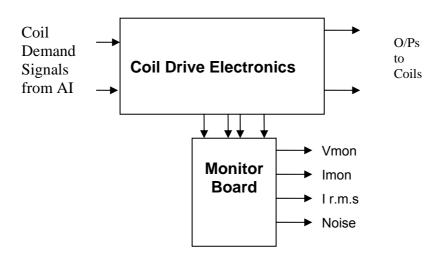
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM17P.....Serial NoUIM17P Test EngineerXEN Date15/9/9

Drive Card ID..... UIM17P Monitor Card ID MON17P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- **12. Distortion**
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

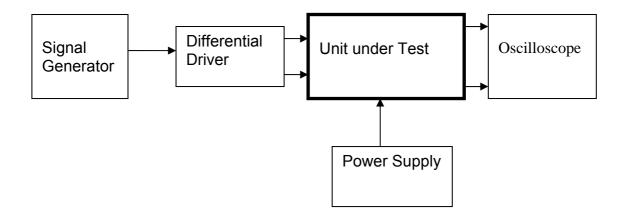
Links:

Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	
8	PD3N	Photodiode C-	16	
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay		LED Operation				
	Filt	Filter 1 Filter 2 Filter 2			er 2	
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9968	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9967	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9977	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9977	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9974	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9983	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9978	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9995	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0020	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0021	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0024	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0021	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and TR	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

				10Hz		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

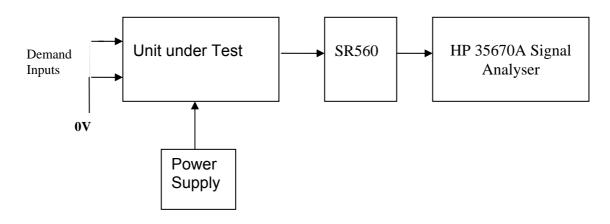
Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.3	6.6 to 8.7	\checkmark
1Hz	-0.7	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-95.7	-155.7
Ch2	-152.6	-94.8	-154.8
Ch3	-152.6	-93.5	-153.5
Ch4	-152.6	-95.5	-155.5

All channels are within specification

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?
Ch1	\checkmark
Ch2	\checkmark
Ch3	\checkmark
Ch4	\checkmark

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM17P
Driver board ID	UIM17P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM17P
Monitor board ID	MON17P
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIM MON17P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T0900236-v3 Advanced LIGO UK 16 September 2009 UIM18P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail <u>k.strain@physics.gla.ac.uk</u> Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail N.Lockerbie@phys.strath.ac.uk

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

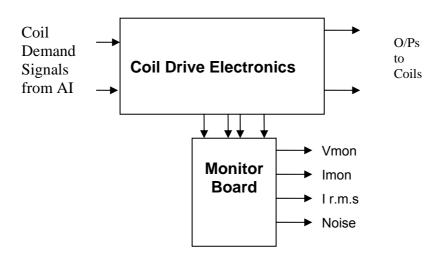
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM18P.....Serial NoUIM18P Test EngineerXEN Date16/9/9

Drive Card ID..... UIM18P Monitor Card ID MON18P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- 12. Distortion
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number		
DVM	FLUKE	115			
V/I Calibrator	Time Electronics	1044			
Signal Generator	Agilent	33250A			
Oscilloscope	ppe ISO-Tech ISR622				
PSU x 2	SU x 2 Farnell				

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

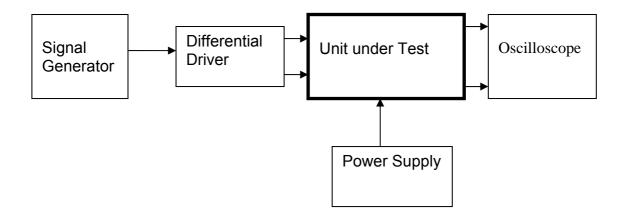
Links:

Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V			
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)		
500mA	400mA		

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation						
	Filt	Filter 1 Filter 2 Filter 2					
	ON	OFF	ON	OFF	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9961	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9986	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9972	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	1.0021	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9960	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9981	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9947	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9956	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0018	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0010	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0010	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0022	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and TR	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.3	6.6 to 8.7	\checkmark
1Hz	-0.7	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.5	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

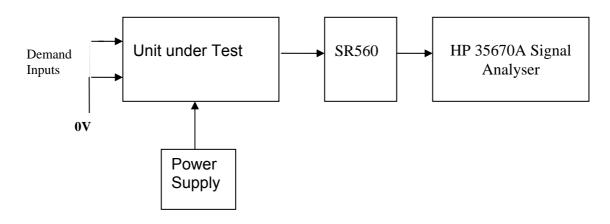
Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.2	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-93.8	-153.8
Ch2	-152.6	-96.5	-156.5
Ch3	-152.6	-91.6	-151.6
Ch4	-152.6	-94.4	-154.4

Channel 3 is 1 dB out of specification.

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	
Driver board ID	
Driver board Drawing No/Issue No	
Driver board Serial Number	
Monitor board ID	
Monitor board Drawing No/Issue No	
Monitor board Serial Number	

- 9. Check the security of any modification wires. None
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-ТО900236-v3 Advanced LIGO UK 16 September 2009 UIM19P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

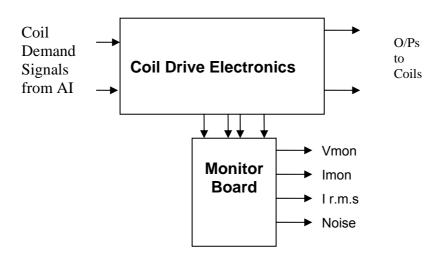
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM19P.....Serial NoUIM19P Test EngineerXEN Date16/9/9

Drive Card ID..... UIM19P Monitor Card ID MON19P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- 12. Distortion
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number	
DVM	FLUKE	115		
V/I Calibrator	Time Electronics	1044		
Signal Generator	Agilent	33250A		
Oscilloscope	ISO-Tech	ISR622		
PSU x 2	Farnell	L30-2		

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

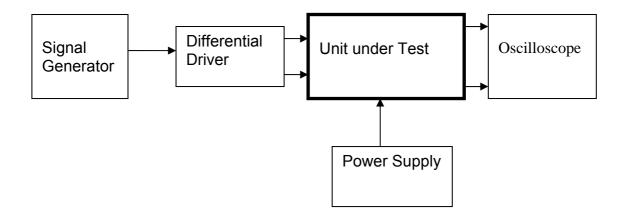
Links:

Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source 1+	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V			
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

DC in A1 DC in A3 DC in A2

Connections:

Differential signal inputs to the Drive Input of the unit under test: Drive Input pins 1, 2, 3, 4 = positive input Drive Input pins 6, 7, 8, 9 = negative input Drive Input pin 5 = ground

Power (depending on connector availability)

Pd In from Sat pin 9, $10 = +16.5v$	or
Pd In from Sat pin 11,12 = -16.5	or
Pd In from Sat pins 22, 23, 24, 25 = 0v	or

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1 2 3	Voltage Monitor 4 Current Monitor 4 R.M.S Current 4
3	
-	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- Channel 4 Noise Monitor 4 0v
- 5 to 9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay	LED Operation					
	Filt	Filter 1 Filter 2 Filter 2				er 2
	ON	OFF	ON	OFF	ON	OFF
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

This indicates that the relays are operating, and that the talk back contacts work OK.

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9970	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	1.0051	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9977	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9974	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9976	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9998	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9968	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	1.0000	\checkmark

The theoretical output is 0.995v.

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0012	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0013	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0022	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0007	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and TR	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.7	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	
1KHz	-53	-51 to -58	\checkmark

Channel 1

Channel 2

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.7	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

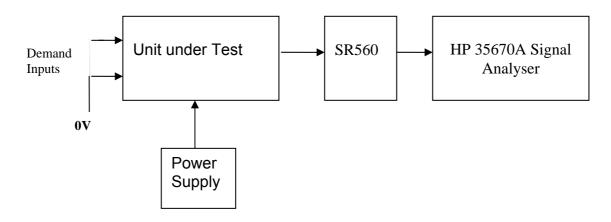
Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.2	6.6 to 8.7	\checkmark
1Hz	-0.8	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.2	6.6 to 8.7	\checkmark
1Hz	-0.7	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-94.1	-154.1
Ch2	-152.6	-93.2	-153.2
Ch3	-152.6	-92.9	-152.9
Ch4	-152.6	-94.0	-154.0

All channels are within specification

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?				
Ch1	\checkmark				
Ch2	√				
Ch3	√				
Ch4	√				

Unit.....UIM19P.....Serial NoUIM19P Test EngineerRMC Date5/10/9

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. \checkmark

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM19P
Driver board ID	UIM19P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM19P
Monitor board ID	MON19P
Monitor board Drawing No/Issue No	D070480-4-K
Monitor board Serial Number	UIM MON19P

- 9. Check the security of any modification wires.
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-ТО900236-v3 Advanced LIGO UK 16 September 2009 UIM20P Drive Unit Test Results R. M. Cutler, University of Birmingham

> Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

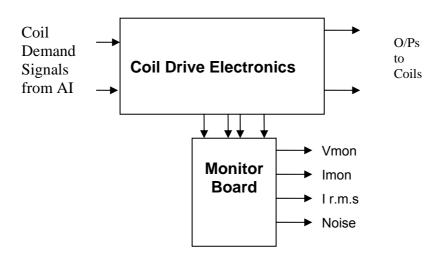
UIM DRIVE COMPLETED UNIT TEST PLAN

Unit.....UIM20P.....Serial NoUIM20P Test EngineerXEN Date16/9/9

Drive Card ID.....UIM20P Monitor Card IDMON20P

Contents

- 1. Description
- 2. Test Equipment
- 3. Inspection
- 4. Continuity Checks
- 5. Test Set Up
- 6. Power
- 7. Relay operation
- 8. Current Monitor Tests
- 9. Voltage Monitor Tests
- **10. Corner Frequency Tests**
- 11. Noise Tests
- **12. Distortion**
- **13. Final Assembly Tests**


1. Description

The UIM Driver Unit will be used to control the mirror position in the Advanced LIGO Gravity wave experiment.

It controls the current in the coil which provides the magnetic force which controls the position of the UIM mirror in a Quad assembly. It works in conjunction with the OSEM coil and position sensor units. One UIM unit controls four OSEMs.

The UIM Coil Drive Unit contains a Coil Drive board and a Monitor board. The Monitor Board monitors the Output voltage, Output Current, RMS Current and Output Noise from the unit.

The UIM Driver Unit also passes the amplified signals from the Photodiodes, which detect the position of the UIM mirror, back to the control electronics without processing them in any way.

FIG. 1 UIM Driver Unit Block Diagram

Each UIM Driver Unit consists of four identical differential coil drive channels. It also contains the monitor board which monitors the output voltage, current, r.m.s current and noise from each channel

UnitUIM20P	Serial NoUIM20P
Test EngineerXEN	
Date	

2. Test Equipment

Power supplies (At least +/- 20v variable, 1A) Signal generator (capable of delivering 10v peak, 0.1Hz to 10 KHz)) Digital oscilloscope Analogue oscilloscope Agilent Dynamic Signal Analyser (or similar) Low noise Balanced Driver circuit Relay test box

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	FLUKE	115	
V/I Calibrator	Time Electronics	1044	
Signal Generator	Agilent	33250A	
Oscilloscope	ISO-Tech	ISR622	
PSU x 2	Farnell	L30-2	

Unit.....UIM20P.....Serial NoUIM20P Test EngineerXEN Date16/9/9

3. Inspection

Remove the lid of the case.

Workmanship

Inspect the general workmanship standard and comment:

Good

Links:

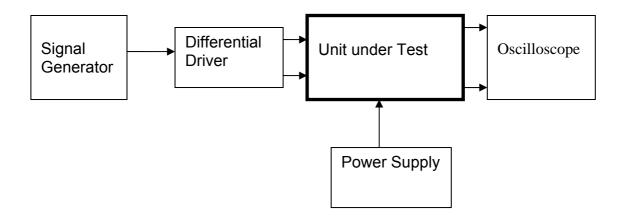
Check that links W3, W4 and W5 are present on each channel of the Drive board. If not, connect them.

Unit.....UIM20P.....Serial NoUIM20P Test EngineerXEN Date16/9/9

4. Continuity Checks Use a multi-meter to check the connections below.

Photodiode outputs

Pd Out	SIGNAL	DESCRIPTION	Pd in from	OK?
to AA			Sat	
1	PD1P	Photodiode A+	1	\checkmark
2	PD2P	Photodiode B+	2	\checkmark
3	PD3P	Photodiode C+	3	\checkmark
4	PD4P	Photodiode D+	4	\checkmark
5	0V	\checkmark		
6	PD1N	Photodiode A-	14	\checkmark
7	PD2N	Photodiode B-	15	\checkmark
8	PD3N	Photodiode C-	16	\checkmark
9	PD4N	Photodiode D-	17	\checkmark


LED Monitors

LED Mon	SIGNAL	Monitors:	In from Sat	OK?
1	Imon1P	Current Source	5	\checkmark
2	Imon2P	Current Source 2+	6	\checkmark
3	Imon3P	Current Source 3+	7	\checkmark
4	Imon4P	Current Source 4+	8	\checkmark
5	0V	\checkmark		
6	Imon1N	Current Source 1-	18	\checkmark
7	Imon2N	Current Source 2-	19	\checkmark
8	Imon3N	Current Source 3-	20	\checkmark
9	Imon4N	Current Source 4-	21	\checkmark

Power Supply to Satellite box

In from Sat	SIGNAL	DESCRIPTION	DC in Connector	OK?
9	V+	+17v Supply	A1	\checkmark
10	V+	+17v Supply	A1	\checkmark
11	V-	-17v Supply	A3	\checkmark
12	V-	-17v Supply	A3	\checkmark
13	0V	Return	A2	\checkmark
22	0V	Return	A2	\checkmark
23	0V	Return	A2	\checkmark
24	0V	Return	A2	\checkmark
25	0V	Return	A2	\checkmark

5. TEST SET UP

Note:

(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.

(2) Some signal generators will indicate 1vpk/pk when the output is in fact 1v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the Drive Input of	the unit under test:
Drive Input pins 1, 2, 3, 4 = positive input	
Drive Input pins 6, 7, 8, 9 = negative input	
Drive Input pin 5 = ground	
Power (depending on connector availability)	
Pd In from Sat pin 9, 10 = +16.5v	or DC in A1
Pd In from Sat pin 11,12 = -16.5	
Fu in nom Sal pin 11,12 – -10.5	or DC in A3

Coil Drive Outputs

Ch1+ = Coil out to Sat pin 1	Ch1- = Coil out to Sat pin 9
Ch2+ = Coil out to Sat pin 3	Ch2- = Coil out to Sat pin 11
Ch3+ = Coil out to Sat pin 5	Ch3- = Coil out to Sat pin 13
Ch4+ = Coil out to Sat pin 7	Ch4- = Coil out to Sat pin 15

Voltage, Current and R.M.S monitors

1	Voltage Monitor 4
2	Current Monitor 4
3	R.M.S Current 4
4	Voltage Monitor 3
5	Current Monitor 3
6	R.M.S Current 3
7	Voltage Monitor 2
8	Current Monitor 2
9	R.M.S Current 2
10	Voltage Monitor 1
11	Current Monitor 1
12	R.M.S Current 1
13 to 25	0v

Noise Monitor

- 1 Channel 1 Noise Monitor
- 2 Channel 2 Noise Monitor
- 3 Channel 3 Noise Monitor
- 4 Channel 4 Noise Monitor
- 5 to 9 0v

Unit.....UIM20P.....Serial NoUIM20P Test EngineerXEN Date16/9/9

6. Power

Check the polarity of the wiring from the 3 Pin Power Connector, to each of the boards. Viewed from the back of the unit:

A1	Left pin	Positive	White wire
A2	Middle pin	RTN	Black wire
A3	Right pin	Negative	Green wire

If this is correct,

Connect power to the unit Set the supplies to 16.5v Turn on

Record supply currents:

+ 16.5 supply current (mA)	- 16.5 supply current (mA)
500mA	400mA

Check that all power LEDs are illuminated.

LEDs	Plus	Minus
Front Panel	\checkmark	\checkmark
Rear Panel	\checkmark	\checkmark

If the power supplies are correct, proceed to the next section.

Unit	.UIM20P	Serial No	UIM20P
Test Engineer	XEN		
Date			

7. Relay Operation

Connect the test unit to the Binary IO inputs.

Operate switches and check that LEDs are on when the relays are switched on, and off when they are switched off:

Relay		LED Operation					
	Filt	Filter 1 Filter 2 Filter 2					
	ON	OFF	ON	OFF	ON	OFF	
Ch1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ch3	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Ch4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

This indicates that the relays are operating, and that the talk back contacts work OK.

UnitUIM20P	Serial NoUIM20P
Test EngineerXEN	
Date	

8. Current Monitor tests

The purpose of this test is to perform a functionality test on the current monitor and RMS circuits.

Connect the 39 ohm dummy loads to the coil drive output. Connect the differential driver to the input, fed by the signal generator. Set the signal generator to 4v at 100 Hz.

Switch out the filters.

Use the true r.m.s meter to measure the r.m.s voltage between test points TP7 and TP11 on the drive board. Adjust the signal generator unit the until this voltage is 3v r.m.s.

Connect a scope probe to each end of one of the load resistors. Set up the scope to differentially observe the voltage across the load resistor. Check that it is a sine wave.

Measure and record the output from each current monitors, and each of the RMS circuits. Set the meter to r.m.s for the "current monitor" readings (ac signal), and to dc when measuring the r.m.s outputs (dc signal).

Ch.	Monitor Connector	Parameter	Theoretical Value	Measured Value	Pass/ Fail
1	Pin 2	Current Monitor	0.95v to 1.05 v r.m.s	0.9972	\checkmark
	Pin 1	RMS Current	0.95 v to 1.05 v dc	0.9965	\checkmark
2	Pin 5	Current Monitor	0.95 v to 1.05 v r.m.s	0.9974	\checkmark
	Pin 4	RMS Current	0.95 v to 1.05 v dc	0.9981	\checkmark
3	Pin 8	Current Monitor	0.95 v to 1.05 v r.m.s	0.9979	\checkmark
	Pin 7	RMS Current	0.95 v to 1.05 v dc	0.9951	\checkmark
4	Pin 11	Current Monitor	0.95 v to 1.05 v r.m.s	0.9972	\checkmark
	Pin 10	RMS Current	0.95 v to 1.05 v dc	0.9970	\checkmark

The theoretical output is 0.995v.

UnitUIM20P	Serial NoUIM20P
Test EngineerXEN	
Date	

9. Voltage Monitor tests

The purpose of this test is to verify and calibrate the Voltage Monitor circuit on each channel.

Switch all filters out. Remove the dummy loads and make differential voltage output measurements on the coil drive outputs TP7 and TP11 at 100 Hz. Adjust the signal generator to give a voltage to 3v r.m.s on the coil drive outputs.

Record the peak voltage on each Voltage Monitor pin, and check against the theoretical figure.

Channel	Coil Drive Output pins	Voltage Monitor socket Pin	Monitor output?	Expected value	OK?
1	Pins 1,9	Pin 3	1.0020	0.95v to 1.05v	\checkmark
2	Pins 3,11	Pin 6	1.0032	0.95v to 1.05v	\checkmark
3	Pins 5,13	Pin 9	1.0029	0.95v to 1.05v	\checkmark
4	Pins 7, 15	Pin 12	1.0025	0.95v to 1.05v	\checkmark

Measurements may be used using a 25 way break out box, or a 25 way connector on the V, I and r.m.s connector.

10. Corner frequency tests

The purpose of this test is to verify that the frequency response of each filter stage of each channel is correct. There are two possible ways of performing this test depending on available equipment. Either 8.1 or 8.2 should be conducted (it is not necessary to do both).

10.1 Using a Signal Generator

Apply a signal to the input, amplitude 1v peak, Frequency 100Hz via the differential driver, to the Drive Input.

Switch out all the filter stages. Measure and record the peak differential output between the outputs of each channel, using two oscilloscope channels in differential mode.

	Coil Drive output pins	Pk/pk Output	Specification	Pass/Fail
Ch1	1 and 9		4.8v to 5v	
Ch2	3 and 11		4.8v to 5v	
Ch3	5 and 13		4.8v to 5v	
Ch4	7 and 15		4.8v to 5v	

Switch in each filter in turn and measure and record the peak output at 1Hz, 10 Hz, and 1 KHz. **1Hz**

	TO TIZ, and T R	12.		1112		
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				3.3v to 3.7v	
Ch2	3 and 11				3.3v to 3.7v	
Ch3	5 and 13				3.3v to 3.7v	
Ch4	7 and 15				3.3v to 3.7v	

	10Hz					
	Coil Drive output pins	F1	F2	F3	Specification	Pass/Fail
Ch1	1 and 9				0.48 to 0.75v	
Ch2	3 and 11				0.48 to 0.75v	
Ch3	5 and 13				0.48 to 0.75v	
Ch4	7 and 15				0.48 to 0.75v	

1 KHz Coil Drive **F1** F2 **Specification** Pass/Fail **F3** output pins Ch1 1 and 9 0.4v to 0.5v Ch2 3 and 11 0.4v to 0.5v 0.4v to 0.5v Ch3 5 and 13 Ch4 7 and 15 0.4v to 0.5v

13

Unit	.UIM20P	Serial No	UIM20P
Test Engineer			
Date			

10.2. Using the Dynamic Signal Analyser

With all filters switched in, measure the frequency response of each channel in turn between 0.1 Hz and 1KHz. If a fast turn around is required, limit the measurement to the frequency range to between 1 Hz and 1KHz. Measure the gain at the spot frequencies below and record them.

Connect the 39 ohm loads across each coil output to simulate the coils.

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.3	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 2

Channel 1

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.3	6.6 to 8.7	\checkmark
1Hz	-1.0	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

Channel 3

Frequency	Gain (dB)	Expected Gain (dB)	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-0.9	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

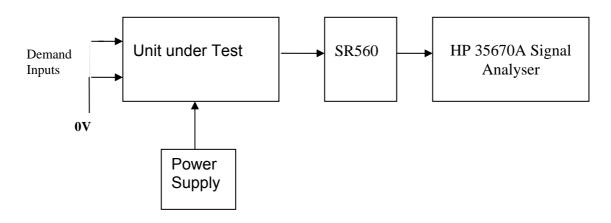
Channel 4

Frequency	Gain (dB)	Expected Gain	Pass/Fail
0.1 Hz	8.4	6.6 to 8.7	\checkmark
1Hz	-1.1	-0.2 to -2	\checkmark
10Hz	-44	-41 to -52	\checkmark
100Hz	-53	-51 to -58	\checkmark
1KHz	-53	-51 to -58	\checkmark

UnitUl	M20P	Serial No	UIM20P
Test Engineer			
Date			

11. Noise Tests

Ensure the filter links W2, W3, W4 and W5 are present on each channel.


Connect the filter test box, and switch in all filters. Switch it out of Test Mode

Use the HP 35670A Dynamic Signal Analyser.

Connect a shorting plug to the demand input to short all positive and negative demands together and to 0v. Connect 39 Ohm loads to the outputs. Switch the filters in.

Use Stuart Aston's noise measurement set up, loaded from disc.

Measure the noise output from each channel in turn at the amplifier outputs. The Low Pass filter on the SR650 may be used to reduce mains interference, to prevent the Signal Analyser from overloading. Ideally the filter corner frequency should be set to 3 KHz, and readings should be made when the ambient noise is low. Set the amplifier gain to 1000, and check that the overload light is not on before each measurement.

	Spec in dB V/√Hz	Measured @ 10Hz	-60dB =
Ch1	-152.6	-94.5	-154.5
Ch2	-152.6	-94.7	-154.7
Ch3	-152.6	-94.9	-154.9
Ch4	-152.6	-93.4	-153.4

All channels are in specification.

The specification at 10 Hz is a noise current of 3 pA per root Hz. The total load resistance is 7.8k. The permitted noise voltage from the amplifiers is therefore 23.4 nA/ / \sqrt{Hz} or -152.6 dB. The SR560 is set to a gain of 1000 (60dB) so 60dB needs to be subtracted from the reading.

Unit.....UIM20P.....Serial NoUIM20P Test EngineerXEN Date16/9/9

12. Distortion

No filters. Increase input voltage to 10v peak, f = 1KHz. Dummy 39 Ohm loads. Check the differential voltage across each load for distortion with an analogue oscilloscope.

	Distortion Free?	
Ch1	\checkmark	
Ch2	\checkmark	
Ch3	\checkmark	
Ch4	\checkmark	

Unit.....UIM20P.....Serial NoUIM20P Test EngineerRMC Date7/10/9

13. Final Assembly Tests

- 1. Remove the lid of the box. $\sqrt{}$
- 2. Unplug all external connections. $\sqrt{}$

3. Check that the 9mm pillars are in place in the corners of the Monitor Board towards the centre of the box. \checkmark

- 4. Check that all internal connectors are firmly mated. $\sqrt{}$
- 5. Tighten the screw-locks holding all the external connectors. $\sqrt{}$
- 6. Check that all the LEDs are nicely centred. $\sqrt{}$
- 7. Check that links W3, W4 and W5 are in place. $\sqrt{}$

8. Check that the boards are labelled with their Drawing Number, Issue Number, and serial number. Record below:

UoB box ID	UIM20P
Driver board ID	UIM20P
Driver board Drawing No/Issue No	D070481-4-K
Driver board Serial Number	UIM20P
Monitor board ID	MON20P
Monitor board Drawing No/Issue No	D070481-4-K
Monitor board Serial Number	UIM MON20P

- 9. Check the security of any modification wires. None
- 10. Visually inspect. √
- 11. Put the lid on and fasten all screws, $\sqrt{}$

Check all external screws for tightness. $\sqrt{}$