LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN

```
Unit
```

\qquad

``` Q TOP46P
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen
Date
9/3/10
```


Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` Q_TOP46P
``` \(\qquad\)
\(\qquad\)
```

Test Engineer.....Xen.
Date
9/3/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

                Q_TOP46P
                                    Serial No
    ```
\(\qquad\)
```

Test Engineer.....Xen.
Date
9/3/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Also, replaced U3.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer.. Xen.
Date. .9/3/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & \(0 V\) & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & 0V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
Q_TOP46P
Test Engineer. Xen

```
\(\qquad\)
\(\qquad\)
Date 9/3/10

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|l|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.01 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.91 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.06 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
Test Engineer.....Xen. 9/3/10
\(\qquad\)
Date

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP46P

Serial No \(\qquad\)
Test Engineer. Xen.
Date. .9/3/10
\(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.35 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.35 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.35 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.66 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.66 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch2 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xen
Date .9/3/10 \(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer. .Xen
Date 9/3/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.207 & Pin 1 to Pin 2 & 1.205 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.206 & Pin 5 to Pin 6 & 1.205 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.206 & Pin 9 to Pin 10 & 1.205 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.206 & Pin 13 to Pin 14 & 1.205 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{l}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{l}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{l}
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.396 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.398 & Pin 7 to Pin 8 & 0.398 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.398 & \(\sqrt{ }\) \\
\hline
\end{tabular}
10. Distortion

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & \multicolumn{1}{|c|}{ Distortion Free? } \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP46P .Serial No \(\qquad\)
Test Engineer. .Xen
Date .9/3/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.4 & \(\sqrt{ }\) & -24.3 & \(\sqrt{ }\) & -24.3 & \(\sqrt{ }\) & -24.3 & \(\checkmark\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\checkmark\) & -12.2 & \(\checkmark\) & -12.2 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.41 & \(\sqrt{ }\) & -2.4 & \(\checkmark\) & -2.41 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) & 2.42 & \(\sqrt{ }\) & 2.42 & \(\sqrt{ }\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\sqrt{ }\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.1 & \(\checkmark\) \\
\hline 10v & 24.3 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.5 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|l|l|c|c|c|}
\hline \begin{tabular}{l}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{l}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer.....Xen.
Date.................9/3/10

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.58 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(10 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
\(\qquad\)
Test EngineerXen..........
Date 21/1/10......

\section*{2. Test equipment}

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline Signal analyzer & Agilent & 35670 A & \\
\hline Pre-amplifier & Stanford Systems & SR560 & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
Test EngineerXen..
```

$\qquad$ Serial No $\qquad$
21/1/10......
Date

## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . .Xen
Date 21/1/10......

## 4. Continuity Checks

J2

| PIN | SIGNAL | DESCRIPTION | To J1 PIN | OK? |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PD1P | Photodiode A+ | 1 | $\checkmark$ |
| 2 | PD2P | Photodiode B+ | 2 | $\checkmark$ |
| 3 | PD3P | Photodiode C+ | 3 | $\checkmark$ |
| 4 | PD4P | Photodiode D+ | 4 | $\checkmark$ |
|  | 5 | OV | $\checkmark$ |  |
| 6 | PD1N | Photodiode A- | 14 | $\checkmark$ |
| 7 | PD2N | Photodiode B- | 15 | $\checkmark$ |
| 8 | PD3N | Photodiode C- | 16 | $\checkmark$ |
| 9 | PD4N | Photodiode D- | 17 | $\checkmark$ |

J5

| PIN | SIGNAL |  | To J1 PIN | OK? |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Imon1P |  | 5 | $\sqrt{ }$ |
| 2 | Imon2P |  | 6 | $\checkmark$ |
| 3 | Imon3P |  | 7 | $\sqrt{ }$ |
| 4 | Imon4P |  | 8 | $\checkmark$ |
|  | 5 | OV | $\checkmark$ |  |
| 6 | Imon1N |  | 18 | $\sqrt{ }$ |
| 7 | Imon2N |  | 19 | $\checkmark$ |
| 8 | Imon3N |  | 20 | $\sqrt{ }$ |
| 9 | Imon4N |  | 21 | $\checkmark$ |

## Power Supply to Satellite box

J1

| PIN | SIGNAL | DESCRIPTION | OK? |
| :--- | :--- | :--- | :---: |
| 9 | V+ (TP1) | +17 v Supply | $\sqrt{ }$ |
| 10 | V+ (TP1) | +17 v Supply | $\sqrt{ }$ |
| 11 | V- (TP2) | -17v Supply | $\sqrt{ }$ |
| 12 | V- (TP2) | -17v Supply | $\sqrt{ }$ |
| 13 | OV (TP3) |  | $\sqrt{ }$ |
| 22 | OV (TP3) |  | $\sqrt{ }$ |
| 23 | OV (TP3) |  | $\sqrt{ }$ |
| 24 | OV (TP3) |  | $\sqrt{ }$ |
| 25 | OV (TP3) |  | $\sqrt{ }$ |

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
 Q_TOP1P
Test Engineer . .Xen.
..
```

Serial No $\qquad$
Date 21/1/10......

## 6. Power

 Check the polarity of the wiring: 3 Pin Power ConnectorSet the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

| Regulator | Output voltage | Output noise | Nominal <br> $\mathbf{+ / - \mathbf { 0 . 5 v }} \boldsymbol{?}$ |
| :--- | :---: | :---: | :---: |
| +12 v TP5 | 11.95 | 1 mV | $\sqrt{ }$ |
| +15 v TP4 | 14.96 | 1 mV | $\sqrt{ }$ |
| -15 v TP6 | -14.98 | 5 mV | $\sqrt{ }$ |

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

| Supply | Current |
| :--- | :--- |
| +16.5 v |  |
| -16.5 v | 400 mA |

If the supplies are correct, proceed to the next test.

Date .21/1/10.

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

| Channel | Indicator |  | OK? |
| :---: | :---: | :---: | :---: |
|  | ON | OFF |  |
| Ch1 | $\sqrt{ }$ | $\sqrt{2}$ | $\sqrt{ }$ |
| Ch2 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |

## Test Switches

| Channel | Indicator |  | OK? |
| :---: | :---: | :---: | :---: |
|  | ON | OFF |  |
| Ch1 | $\sqrt{ }$ | $\sqrt{2}$ | $\sqrt{ }$ |
| Ch2 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch3 | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |
| Ch4 | $\sqrt{ }$ | $\sqrt{2}$ | $\sqrt{ }$ |

```
Unit
```

$\qquad$

``` Q_TOP1P
```

$\qquad$

```
Test EngineerXen...........
Date
``` \(\qquad\)
``` 21/1/10......
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.8	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.8	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.8	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.8	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch3	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch4	3.4	3.3 v to 3.7 v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.66	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

$\qquad$
Date 21/1/10......
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch2	3.25	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.25	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.48	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

$\qquad$
Test Engineer Xen. 21/1/10

## 9. Monitor Outputs

Remove W4 and W5. With a 39 Ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   $\mathbf{( + / - \mathbf { 0 . 1 v } )}$
$\mathbf{1}$	$1.16-1.28$	1.205	Pin 1 to Pin 2	1.205	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.205	Pin 5 to Pin 6	1.205	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.205	Pin 9 to Pin 10	1.205	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.205	Pin 13 to Pin 14	1.205	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.398	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.397	Pin 7 to Pin 8	0.398	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.396	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.398	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$ with dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. $\qquad$ Q_TOP1P.
$\qquad$
Test Engineer ..Xen..........
Date .21/1/10......

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2   o/p	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.5	$\checkmark$	-24.5	$\checkmark$	-24.5	$\checkmark$
-7v	-17.1	$\sqrt{ }$	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$
-5v	-12.2	$\checkmark$	-12.3	$\checkmark$	-12.3	$\checkmark$	-12.3	$\checkmark$
-1v	-2.41	$\checkmark$	-2.4	$\sqrt{ }$	-2.42	$\checkmark$	-2.42	$\checkmark$
Ov	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.42	$\checkmark$	2.42	$\checkmark$	2.42	$\checkmark$	2.42	$\checkmark$
5v	12.2	$\sqrt{ }$	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$
7v	17.2	$\sqrt{ }$	17.0	$\sqrt{ }$	17.1	$\sqrt{ }$	17.0	$\sqrt{ }$
10v	24.5	$\checkmark$	24.5	$\checkmark$	24.5	$\checkmark$	24.5	$\checkmark$

```
Unit.
 Q_TOP1P
 Serial No
```

$\qquad$

```
Test EngineerXen.........
Date
21/1/10.....
```


## 12. Crosstalk Tests

```
The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.
```


### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the outputs in dBs at 10 Hz on adjacent channels. Record maximum output and the frequency at which this occurs (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2	-127 dB	-114 dB	525 Hz
Channel 2	Channel 1	-140 dB	-113 dB	363 Hz
Channel 2	Channel 3	-136 dB	-113 dB	871 Hz
Channel 3	Channel 2	-133 dB	-111 dB	457 Hz
Channel 3	Channel 4	-139 dB	-111 dB	661 Hz
Channel 4	Channel 3	-126 dB	-109 dB	347 Hz

$\qquad$
Test Engineer . . Xen.
$\qquad$ No

Date 21/1/10......

## 13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range.
Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.57	$\sqrt{ }$
Ch3	5v to 6v	5.55	$\sqrt{ }$
Ch4	5v to 6v	5.56	$\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
## Quad TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## QUAD TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
Q_TOP1P
Test EngineerXen..........
```

Serial No
Date 28/1/10

## 2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

$\qquad$
$\qquad$

## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . . Xen . .28/1/10......

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17 v Supply	$\sqrt{ }$
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
 Q_TOP1P
Test EngineerXen.........
```

Serial No $\qquad$
Date
28/1/10......

## 6. Power

## Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.02	1 mV	$\sqrt{ }$
+15 v TP4	14.91	1 mV	$\sqrt{ }$
-15 v TP6	-14.97	5 mV	$\sqrt{ }$

## All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.
$\qquad$
Date 28/1/10.
$\qquad$
$\qquad$
7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. Q_TOP1P .Serial No
Test Engineer ....Xen..........
Date .28/1/10......

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch3	3.35	3.3 v to 3.7 v	$\sqrt{ }$
Ch4	3.4	3.3 v to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\checkmark$
Ch2	0.47	0.4 v to 0.5 v	$\checkmark$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\checkmark$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\checkmark$
Ch2	0.47	0.4 v to 0.5 v	$\checkmark$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

$\qquad$
$\qquad$

Date 28/1/10......
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.25	3 v to 3.4 v	$\sqrt{ }$
Ch2	3.2	3 to 3.4 v	$\sqrt{ }$
Ch3	3.2	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.2	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.46	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.48	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

Unit.
Q_TOP1P.
Serial No $\qquad$
Test Engineer . .Xen.
Date 28/1/10.....

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/-0.1v)
$\mathbf{1}$	$1.16-1.28$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	Pin 7 to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.396	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.398	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit.
Q_TOP1P. $\qquad$ Serial No $\qquad$
Test Engineer . .Xen.
28/1/10
Date .28/1/10......

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$
-5v	-12.3	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.3	$\checkmark$	-12.3	$\checkmark$
-1v	-2.42	$\checkmark$	-2.42	$\checkmark$	-2.42	$\sqrt{ }$	-2.42	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$
1v	2.42	$\sqrt{ }$	2.42	$\sqrt{ }$	2.41	$\sqrt{ }$	2.42	$\sqrt{ }$
5v	12.0	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$
7v	17.0	$\sqrt{ }$	17.1	$\sqrt{ }$	17.0	$\checkmark$	17.1	$\sqrt{ }$
10v	24.3	$\checkmark$	24.5	$\checkmark$	24.3	$\checkmark$	24.5	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit.
Q_TOP1P
Test EngineerXen..........
```

Serial No $\qquad$
Date 28/1/10......

## 13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.57	$\sqrt{ }$
Ch3	5v to 6v	5.56	$\sqrt{ }$
Ch4	5v to 6v	5.57	$\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
## Quad TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## QUAD TOP COIL DRIVER BOARD TEST PLAN



## Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

```
 Q_TOP3P
 ..
 Serial No
```

$\qquad$

```
Test Engineer .
 Xen.
.28/1/10.....
Date
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

$\qquad$
$\qquad$
$\qquad$

## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen...........
Date 28/1/10......

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\checkmark$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

$J 5$

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\checkmark$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\sqrt{ }$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

## 6. Power

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.02	1 mV	$\sqrt{ }$
+15 v TP4	14.79	1 mV	$\sqrt{ }$
-15 v TP6	-15.08	5 mV	$\sqrt{ }$


All Outputs smooth DC, no oscillation?	$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.

Date 28/1/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\checkmark$	$\sqrt{ }$	$\checkmark$
Ch2	$\checkmark$	$\checkmark$	$\sqrt{ }$
Ch3	$\checkmark$	$\checkmark$	$\checkmark$
Ch4	$\checkmark$	$\checkmark$	,

Test Switches

Channel	Indicator		OK?
Ch1	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{2}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. $\qquad$ Q_TOP3P. Serial No $\qquad$
Test Engineer ....Xen...........
Date $\qquad$ 28/1/10......

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.68	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

Date 28/1/10......
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.2	3 to 3.4 v	$\sqrt{ }$
Ch3	3.25	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.2	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.46	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

$\qquad$
Test Engineer . .Xen. 28/1/10

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   $\mathbf{( + / - \mathbf { 0 . 1 v } )}$
$\mathbf{1}$	$1.16-1.28$	1.203	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.397	Pin 7 to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.396	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.399	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit.
Q_TOP3P. $\qquad$ Serial No $\qquad$
Test Engineer ....Xen...........
Date 28/1/10......

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.1	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.1	$\checkmark$
-5v	-12.2	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.3	$\checkmark$	-12.3	$\checkmark$
-1v	-2.4	$\checkmark$	-2.42	$\checkmark$	-2.42	$\sqrt{ }$	-2.4	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$
1v	2.42	$\sqrt{ }$	2.42	$\sqrt{ }$	2.4	$\sqrt{ }$	2.42	$\sqrt{ }$
5v	12.2	$\checkmark$	12.2	$\checkmark$	12.1	$\checkmark$	12.2	$\checkmark$
7v	17.0	$\checkmark$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.1	$\sqrt{ }$
10v	24.4	$\sqrt{ }$	24.5	$\sqrt{ }$	24.3	$\checkmark$	24.5	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

$\qquad$
Test Engineer ....Xen..........
Date ................28/1/10......

## 13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.57	$\sqrt{ }$
Ch3	5v to 6v	5.57	$\sqrt{ }$
Ch4	5v to 6v	5.57	$\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
## Quad TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## QUAD TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

## 2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2 $_{\text {DVM }}$	Farnell	L30-2	
DVM	Fluke	77 III	
DVI calibrator	Time Electronics	$72-7730$	
V/I	1044		

$\qquad$
$\qquad$

## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen...........
Date 28/1/10......

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\checkmark$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\checkmark$
4	PD4P	Photodiode D+	4	$\checkmark$
	5	OV	$\checkmark$	
6	PD1N	Photodiode A-	14	$\checkmark$
7	PD2N	Photodiode B-	15	$\checkmark$
8	PD3N	Photodiode C-	16	$\checkmark$
9	PD4N	Photodiode D-	17	$\checkmark$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\checkmark$
2	Imon2P		6	$\checkmark$
3	Imon3P		7	$\checkmark$
4	Imon4P		8	$\checkmark$
	5	OV	$\checkmark$	
6	Imon1N		18	$\sqrt{ }$
7	Imon2N		19	$\checkmark$
8	Imon3N		20	$\checkmark$
9	Imon4N		21	$\checkmark$

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

## 6. Power

## Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to +/-3V.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.02	1 mV	$\checkmark$
+15 v TP4	14.81	1 mV	$\sqrt{ }$
-15 v TP6	-15.04	5 mV	$\sqrt{ }$

## All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
$\qquad$
$\qquad$
$\qquad$
Date 28/1/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. $\qquad$ Q_TOP4P .Serial No $\qquad$
Test Engineer ....Xen...........
Date .28/1/10......

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

$\qquad$
$\qquad$

Date 28/1/10......
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.25	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.49	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

$\qquad$
Test Engineer . .Xen. 28/1/10

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   $\mathbf{( + / - \mathbf { 0 . 1 v } )}$
$\mathbf{1}$	$1.16-1.28$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	Pin 7 to Pin 8	0.396	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.396	Pin 11 to Pin 12	0.398	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.398	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit.
Q_TOP4P. $\qquad$ Serial No $\qquad$
Test Engineer . Xen
Date .29/1/10......

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.3	$\sqrt{ }$	-24.3	$\sqrt{ }$	-24.5	$\sqrt{ }$
-7v	-17.2	$\checkmark$	-17.1	$\checkmark$	-17.1	$\checkmark$	-17.1	$\checkmark$
-5v	-12.3	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.3	$\checkmark$	-12.3	$\checkmark$
-1v	-2.42	$\checkmark$	-2.41	$\checkmark$	-2.41	$\sqrt{ }$	-2.42	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$
1v	2.41	$\sqrt{ }$	2.41	$\sqrt{ }$	2.42	$\sqrt{ }$	2.41	$\sqrt{ }$
5v	12.1	$\checkmark$	12.1	$\checkmark$	12.2	$\checkmark$	12.1	$\checkmark$
7v	17.0	$\checkmark$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$
10v	24.3	$\sqrt{ }$	24.2	$\sqrt{ }$	24.3	$\checkmark$	24.3	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit.
Q_TOP4P
Test EngineerXen...........
```

Serial No $\qquad$
Date 28/1/10......

## 13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.56	$\sqrt{ }$
Ch3	5v to 6v	5.57	$\sqrt{ }$
Ch4	5v to 6v	5.57	$\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
## Quad TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## QUAD TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
```

$\qquad$

``` Q_TOP5P
Test Engineer . Xen. ..
```

$\qquad$ Serial No $\qquad$
Date 29/1/10. $\qquad$

## 2. Test equipment

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

```
Unit.
```

$\qquad$

```
 Q_TOP5P
Test EngineerXen.
Xe........
Date
 29/1/10
```

$\qquad$
$\qquad$Serial No
$\qquad$

## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen...........
Date 29/1/10......

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	0V			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17 v Supply	$\sqrt{ }$
10	V+ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\sqrt{ }$
12	V- (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit.
 Q_TOP5P
Test Engineer . Xen.
.
```

Serial No $\qquad$ 29/1/10.....

## 6. Power

## Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.07	1 mV	$\checkmark$
+15 v TP4	14.91	1 mV	$\sqrt{ }$
-15 v TP6	-15.05	5 mV	$\sqrt{ }$

## All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
$\qquad$
$\qquad$
Test Engineer ....Xen..........
Date 29/1/10
$\qquad$ 29/1/10.....

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{n}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. $\qquad$ Q_TOP5P Serial No $\qquad$
Test Engineer .Xen $\qquad$
Date $\qquad$ 29/1/10

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.66	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

Date 29/1/10......
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.25	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.25	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.48	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

$\qquad$
Test Engineer . .Xen. 29/1/10

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   $\mathbf{( + / - \mathbf { 0 . 1 v } )}$
$\mathbf{1}$	$1.16-1.28$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.395	Pin 3 to Pin 4	0.396	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.395	Pin 11 to Pin 12	0.396	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.398	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit.
Q_TOP5P. $\qquad$ Serial No $\qquad$
Test Engineer . .Xen. 29/1/10
Date .29/1/10......

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$	-24.5	$\sqrt{ }$
-7v	-17.2	$\checkmark$	-17.1	$\checkmark$	-17.2	$\checkmark$	-17.1	$\checkmark$
-5v	-12.3	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.3	$\checkmark$	-12.3	$\checkmark$
-1v	-2.42	$\checkmark$	-2.42	$\checkmark$	-2.42	$\sqrt{ }$	-2.41	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$
1v	2.41	$\sqrt{ }$	2.42	$\sqrt{ }$	2.41	$\sqrt{ }$	2.42	$\sqrt{ }$
5v	12.0	$\checkmark$	12.1	$\checkmark$	12.0	$\checkmark$	12.1	$\checkmark$
7v	17.0	$\checkmark$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$
10v	24.2	$\sqrt{ }$	24.2	$\sqrt{ }$	24.2	$\checkmark$	24.2	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit.
 Q_TOP5P
Test EngineerXen.........
```

Serial No $\qquad$
Date
29/1/10......

## 13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.57	$\sqrt{ }$
Ch3	5v to 6v	5.56	$\sqrt{ }$
Ch4	5v to 6v	5.57	$\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
## Quad TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## QUAD TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

```
 Q_TOP6P
```

$\qquad$

``` Serial No
``` \(\qquad\)
```Test Engineer .Xen.
```

```..Date1/2/10......
```


## 2. Test equipment

```
Power supplies (At least \(+/-20 \mathrm{v}\) variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

$\qquad$
$\qquad$
$\qquad$ 29/1/.....

## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen...........
Date 29/1/10......

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	0V			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
 Q_TOP6P
Test Engineer .
 Xen.
 P.
Test Engineer Xen...........
1/2/10......
```

                                    Serial No
    $\qquad$
Date

## 6. Power

## Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   +/- 0.5v?
+12 v TP5	12.02	1 mV	$\checkmark$
+15 v TP4	14.88	1 mV	$\sqrt{ }$
-15 v TP6	-15.03	5 mV	$\sqrt{ }$

## All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
$\qquad$
$\qquad$
$\qquad$
Date

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{n}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. $\qquad$ Q_TOP6P. Serial No $\qquad$
Test Engineer . Xen.
Date .1/2/10

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	530	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.68	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.49	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

$\qquad$
Test Engineer . .Xen
Date 1/2/10

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   $\mathbf{( + / - \mathbf { 0 . 1 v } )}$
$\mathbf{1}$	$1.16-1.28$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.395	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.399	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit.
Q_TOP6P. $\qquad$ Serial No $\qquad$
Test Engineer . .Xen..........
Date 1/2/10......

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.1	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.1	$\checkmark$
-5v	-12.3	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.3	$\checkmark$	-12.2	$\checkmark$
-1v	-2.4	$\checkmark$	-2.41	$\checkmark$	-2.42	$\sqrt{ }$	-2.4	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$
1v	2.42	$\sqrt{ }$						
5v	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$
7v	17.1	$\checkmark$	17.1	$\sqrt{ }$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$
10v	24.5	$\checkmark$	24.5	$\checkmark$	24.3	$\checkmark$	24.5	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit.
Q_TOP6P.
Test Engineer ..Xen.
..
```

Serial No $\qquad$
Date
1/2/10

## 13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.57	$\sqrt{ }$
Ch2	5v to 6v	5.57	$\sqrt{ }$
Ch3	5v to 6v	5.55	$\sqrt{ }$
Ch4	5v to 6v	5.56	$\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
## Quad TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## QUAD TOP COIL DRIVER BOARD TEST PLAN



## Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` Q_TOP7P
``` \(\qquad\)
``` Serial No
``` \(\qquad\)
```

Test EngineerXen........
Date
1/2/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.
Test EngineerXen.
Q_TOP7P
1/2/10···....
Date

```
\(\qquad\) Serial No \(\qquad\)

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.........
Date 1/2/10......

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & 0V & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & \(\mathrm{~V}-\) (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
Q_TOP7P
Serial No
Test Engineer .
.Xen.

```
\(\qquad\)
``` Serial No
Test Engineer Xen..........
Date 1/2/10......
```

$\qquad$

## 6. Power

## Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.00	1 mV	$\checkmark$
+15 v TP4	14.78	1 mV	$\sqrt{ }$
-15 v TP6	-14.86	5 mV	$\sqrt{ }$

## All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
$\qquad$
$\qquad$ .Serial No $\qquad$

1/2/10. $\qquad$

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{n}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. $\qquad$ Q_TOP7P.

Serial No $\qquad$
Test Engineer . Xen.
Date .1/2/10

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

$\qquad$
$\qquad$
Date .1/2/10......
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.49	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

$\qquad$
Test Engineer . .Xen.
Date 1/2/10......

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+I- 0.1v)
$\mathbf{1}$	$1.16-1.28$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.397	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.395	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.397	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. Q_TOP7P. $\qquad$ .Serial No $\qquad$
Test Engineer . .Xen.........
Date .1/2/10......

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$	-24.4	$\sqrt{ }$
-7v	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.1	$\checkmark$	-17.0	$\checkmark$
-5v	-12.3	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.3	$\checkmark$	-12.3	$\checkmark$
-1v	-2.4	$\checkmark$	-2.41	$\checkmark$	-2.42	$\sqrt{ }$	-2.4	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$
1v	2.42	$\sqrt{ }$	2.41	$\sqrt{ }$	2.41	$\sqrt{ }$	2.42	$\sqrt{ }$
5v	12.2	$\checkmark$	12.0	$\checkmark$	12.0	$\checkmark$	12.2	$\checkmark$
7v	17.1	$\checkmark$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$
10v	24.3	$\sqrt{ }$	24.2	$\sqrt{ }$	24.2	$\checkmark$	24.2	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit.
Q_TOP7P
Test EngineerXen..........
```

Serial No $\qquad$
Date 1/2/10......

## 13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.57	$\sqrt{ }$
Ch3	5v to 6v	5.55	$\sqrt{ }$
Ch4	5v to 6v	5.56	$\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
## Quad TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## QUAD TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` Q_TOP8P
Test EngineerXen.........
.2/2/10.....
```

$\qquad$ Serial No $\qquad$
Date

## 2. Test equipment

Power supplies (At least $+/-20 \mathrm{v}$ variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

Unit..................Q_TOP8P.
Test Engineer ....Xen.........

## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.
Changed IC11, IC10 and IC5 on CH4.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen..........
Date 1/2/10......

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	0V			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\sqrt{ }$
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
 Q_TOP8P
 Serial No
Test Engineer .
 Xen
 2/2/10
```

$\qquad$

## 6. Power

## Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.07	1 mV	$\checkmark$
+15 v TP4	14.93	1 mV	$\sqrt{ }$
-15 v TP6	-14.89	5 mV	$\sqrt{ }$

## All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
$\qquad$

2/2/10
$\qquad$
Date

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{n}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. $\qquad$ Q_TOP8P Serial No
Test Engineer ....Xen.........
Date $\qquad$ $.2 / 2 / 10 \ldots .$.

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.3	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.66	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.68	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

$\qquad$
$\qquad$
Date $.2 / 2 / 10 \ldots .$.
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.49	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

Unit.
Q_TOP8P.
.Serial No $\qquad$
Test Engineer Xen.
Date 2/2/10......

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+I- 0.1v)
$\mathbf{1}$	$1.16-1.28$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.203	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.203	Pin 9 to Pin 10	1.203	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.203	Pin 13 to Pin 14	1.203	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.395	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.398	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit.
Q_TOP8P. $\qquad$ Serial No $\qquad$
Test Engineer .Xen.
2/2/10
Date 2/2/10......

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.0	$\checkmark$
-5v	-12.3	$\sqrt{ }$	-12.5	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.2	$\sqrt{ }$
-1v	-2.42	$\checkmark$	-2.42	$\checkmark$	-2.4	$\sqrt{ }$	-2.4	$\checkmark$
0v	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$
1v	2.42	$\sqrt{ }$						
5v	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$
7v	17.0	$\sqrt{ }$	17.1	$\sqrt{ }$	17.2	$\sqrt{ }$	17.0	$\sqrt{ }$
10v	24.3	$\sqrt{ }$	24.5	$\sqrt{ }$	24.5	$\checkmark$	24.3	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit. Q_TOP8P
Test EngineerXen..........
```

.Serial No $\qquad$
Date 2/2/10......

## 13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.57	$\sqrt{ }$
Ch3	5v to 6v	5.56	$\sqrt{ }$
Ch4	5v to 6v	5.56	$\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
## Quad TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## QUAD TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
```

$\qquad$

```
 Q_TOP9P
```

$\qquad$

``` Serial No
``` \(\qquad\)
Test Engineer ..... Xen.
```Date3/2/10
```

$\qquad$

## 2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	$33250 A$	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

Unit...................Q_TOP9P.
Test Engineer ....Xen.........

Test Engineer ....Xen..........
Date 2/2/10.

## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Unit.
Q_TOP9P
.Serial No
Test Engineer Xen.........
Date .2/2/10......

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
12	$\mathrm{~V}-$ (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
 Q_TOP9P
 Serial No
Test Engineer .
 Xen
 P.
Test Engineer . Xen.........
Date 2/2/10......
```

$\qquad$

## 6. Power

## Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.05	1 mV	$\checkmark$
+15 v TP4	14.89	1 mV	$\sqrt{ }$
-15 v TP6	-15.06	5 mV	$\sqrt{ }$

## All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
$\qquad$
$\qquad$

2/2/10
$\qquad$
Date 2/2/10.....

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

## Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{2 n y}$	$\sqrt{ }$	$\sqrt{ }$

Unit. Q_TOP9P .Serial No
Test Engineer . Xen.........
Date $\qquad$ .2/2/10...... ,,

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.66	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.46	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.46	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.46	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.46	0.4 v to 0.5 v	$\sqrt{ }$

$\qquad$
Test Engneer ......2en........
Date .................2/2/10......
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.49	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

Unit.
Q_TOP9P.
.Serial No $\qquad$
Test Engineer Xen.
Date 2/2/10......

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+I- 0.1v)
$\mathbf{1}$	$1.16-1.28$	1.203	Pin 1 to Pin 2	1.203	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.203	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.395	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	Pin 7 to Pin 8	0.396	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.396	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.395	Pin 15 to Pin 16	0.398	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. Q_TOP9P $\qquad$ .Serial No $\qquad$
Test Engineer ....Xen..........
Date $.3 / 2 / 10 \ldots .$.

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 olp	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.5	$\checkmark$	-24.5	$\checkmark$
-7v	-17.1	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$
-5v	-12.2	$\checkmark$	-12.3	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.3	$\checkmark$
-1v	-2.42	$\sqrt{ }$	-2.4	$\sqrt{ }$	-2.41	$\checkmark$	-2.41	$\sqrt{ }$
Ov	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$
1v	2.42	$\sqrt{ }$						
5v	12.1	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$
7v	17.0	$\sqrt{ }$						
10v	24.3	$\sqrt{ }$	24.4	$\sqrt{ }$	24.4	$\sqrt{ }$	24.3	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

$\qquad$
Test Engineer ....Xen.........
Date
2/2/10......

## 13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.56	$\sqrt{ }$
Ch3	5v to 6v	5.56	$\sqrt{ }$
Ch4	5v to 6v	5.56	$\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
## Quad TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## QUAD TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
```

$\qquad$

```
 Q_TOP10P
```

$\qquad$

``` Serial No
```

Test Engineer ..... Xen.

```4/2/10
```


## 2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

Unit..................Q_TOP10P
Test Engineer ....Xen.........
Date

## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.........
Date
4/2/10......

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+(\mathrm{TP} 1)$	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	0 V (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit.
 Q_TOP10P
```

$\qquad$

``` Serial No
Test Engineer . Xen.
Date 4/2/10.....
```


## 6. Power

## Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.03	1 mV	$\checkmark$
+15 v TP4	14.82	1 mV	$\sqrt{ }$
-15 v TP6	-15.08	5 mV	$\sqrt{ }$

## All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.

Serial No

Date
4/2/10.
$\qquad$
$\qquad$

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
```

$\qquad$

``` Q_TOP10P Serial No
Test Engineer Xen.........
Date
``` \(\qquad\)
``` \(.4 / 2 / 10 \ldots .\).
```

$\qquad$

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch3	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch4	3.4	3.3 v to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

$\qquad$
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.5	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

$\qquad$
Test Engineer . .Xen.........
Date 4/2/10......

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+I- 0.1v)
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.395	Pin 3 to Pin 4	0.396	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.397	Pin 7 to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.396	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.395	Pin 15 to Pin 16	0.397	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. $\qquad$ Q_TOP10P Serial No $\qquad$
Test Engineer ....Xen.........
Date 4/2/10.....

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 olp	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.5	$\checkmark$	-24.5	$\checkmark$
-7v	-17.1	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$
-5v	-12.2	$\checkmark$	-12.2	$\sqrt{ }$	-12.2	$\sqrt{ }$	-12.2	$\checkmark$
-1v	-2.4	$\sqrt{ }$	-2.42	$\sqrt{ }$	-2.42	$\checkmark$	-2.41	$\sqrt{ }$
Ov	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$
1v	2.42	$\sqrt{ }$						
5v	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$
7v	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.1	$\sqrt{ }$
10v	24.3	$\sqrt{ }$	24.3	$\sqrt{ }$	24.3	$\sqrt{ }$	24.5	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit. Q_TOP10P
```

```
Test EngineerXen........
```

```
Test EngineerXen........
``` Serial No \(\qquad\)
Date 4/2/10......

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.58 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit.

```
\(\qquad\)
```

 Q_TOP11P
    ```
\(\qquad\)
``` Serial No
Test EngineerXen.
Date .4/2/10
```


## 2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

```
Unit.
Test EngineerXen.
 Q_TOP11P
```

$\qquad$

```
 Serial No
Date
4/2/10
```


## $\qquad$

```
Serial No
Date 4/2/10.
``` \(\qquad\)

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen............
Date
4/2/10..........

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & \(0 V\) & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & \(\mathrm{~V}-\) (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit.
Q_TOP11P

```
\(\qquad\)
``` Serial No
Test Engineer . Xen
Date 4/2/10.
``` \(\qquad\)

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.04 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.93 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.04 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

Serial No
Date .4/2/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
``` Q_TOP11P Serial No
Test Engineer . Xen.
Date 4/2/10..........
```


## 8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch3	3.35	3.3 v to 3.7 v	$\sqrt{ }$
Ch4	3.35	3.3 v to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

$\qquad$
$\qquad$
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 to 3.4 v	$\sqrt{ }$
Ch3	3.2	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.49	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

Unit.
Q_TOP11P. Serial No $\qquad$
Test Engineer . Xen.
Date 4/2/10

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+I- 0.1v)
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.203	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.395	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.397	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. .Q_TOP11P. $\qquad$ Serial No $\qquad$
Test Engineer . Xen.
Date .4/2/10

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$
-7v	-17.2	$\checkmark$	-17.1	$\checkmark$	-17.2	$\checkmark$	-17.0	$\checkmark$
-5v	-12.3	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.3	$\checkmark$	-12.2	$\checkmark$
-1v	-2.42	$\checkmark$	-2.42	$\checkmark$	-2.42	$\sqrt{ }$	-2.4	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$
1v	2.42	$\sqrt{ }$	2.42	$\sqrt{ }$	2.42	$\sqrt{ }$	2.4	$\sqrt{ }$
5v	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$	12.0	$\checkmark$
7v	17.0	$\checkmark$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$
10v	24.3	$\sqrt{ }$	24.3	$\sqrt{ }$	24.3	$\checkmark$	24.2	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit
 Q_TOP11P
```

$\qquad$

``` Serial No
``` \(\qquad\)
```

Test EngineerXen.
Date
4/2/10

```
\(\qquad\)
13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit.

```
\(\qquad\)
```

 Q_TOP12P
    ```
\(\qquad\)
``` Serial No
Test EngineerXen.
Date .4/2/10
```


## 2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

```
Unit.
est EngineerXen
Date
4/2/10
```


## $\qquad$

```
Serial No
Test EngineerXen.
Date 4/2/10.
```


## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ....Xen.............
Date 4/2/10..........

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
 Q_TOP12P
```

$\qquad$

``` Serial No
Test Engineer Xen.
Date 4/2/10.
``` \(\qquad\)

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 11.95 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.93 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.96 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

4/2/10
\(\qquad\)
\(\qquad\)
Date

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
``` Q TOP12P Serial No
Test Engineer Xen.
Date 4/2/10 ..
```

$\qquad$

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch3	3.35	3.3 v to 3.7 v	$\sqrt{ }$
Ch4	3.4	3.3 v to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

Date .4/2/10. $\qquad$
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 to 3.4 v	$\sqrt{ }$
Ch3	3.2	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.49	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

Unit.
Q_TOP12P Serial No $\qquad$
Test Engineer . .Xen.
Date 4/2/10

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+I- 0.1v)
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.395	Pin 3 to Pin 4	0.396	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.395	Pin 11 to Pin 12	0.396	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.395	Pin 15 to Pin 16	0.397	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. $\qquad$ Q_TOP12P. $\qquad$ Serial No $\qquad$
Test Engineer .Xen. .4/2/10

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.4	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$	-24.5	$\sqrt{ }$
-7v	-17.1	$\checkmark$	-17.2	$\checkmark$	-17.0	$\checkmark$	-17.2	$\checkmark$
-5v	-12.2	$\sqrt{ }$	-12.2	$\sqrt{ }$	-12.2	$\sqrt{ }$	-12.3	$\checkmark$
-1v	-2.4	$\checkmark$	-2.42	$\checkmark$	-2.4	$\sqrt{ }$	-2.42	$\checkmark$
0v	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$
1v	2.42	$\sqrt{ }$						
5v	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$
7v	17.0	$\checkmark$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$
10v	24.3	$\sqrt{ }$	24.3	$\sqrt{ }$	24.3	$\checkmark$	24.3	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit
 Q_TOP12P
```

$\qquad$

``` Serial No
``` \(\qquad\)
```

Test EngineerXen.
Date
4/2/10

```
\(\qquad\)
13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit.

```
\(\qquad\)
```

 Q_TOP13P.
    ```
\(\qquad\)
``` Serial No
```

```
Test Engineer Xen.
```

```
5/2/10
```


## 2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2 $_{\text {DVM }}$ Farnell	L30-2		
DVM	Fluke	77 III	
V/I calibrator	TENMA	$72-7730$	

```
Unit.
 ...Q
 Q_TOP13P
```

$\qquad$

```
 Serial No
Test EngineerXen.
Date
5/2/10.
```


## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen.
5/2/10............
Date

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
 Q_TOP13P
 Serial No
Test Engineer
.Xen.
Date
5/2/10
```

$\qquad$

## 6. Power

## Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.01	1 mV	$\checkmark$
+15 v TP4	14.98	1 mV	$\sqrt{ }$
-15 v TP6	-15.01	5 mV	$\sqrt{ }$

## All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test. .5/2/10 $\qquad$

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{n}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. $\qquad$ Q_TOP13P. Serial No
Test Engineer . Xen.
Date .5/2/10.........

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.3	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.66	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.66	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.46	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.46	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.46	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.46	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

$\qquad$
$\qquad$
Date .5/2/10. $\qquad$
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.25	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.2	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.48	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

$\qquad$
Test Engineer . .Xen
Date 5/2/10.

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+I- 0.1v)
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.396	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.395	Pin 15 to Pin 16	0.397	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit.
Q_TOP13P Serial No $\qquad$
Test Engineer Xen.
Date .5/2/10

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$						
-7v	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$	-17.2	$\checkmark$
-5v	-12.3	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.3	$\checkmark$	-12.5	$\checkmark$
-1v	-2.4	$\checkmark$	-2.42	$\checkmark$	-2.42	$\sqrt{ }$	-2.42	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$
1v	2.42	$\sqrt{ }$						
5v	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$
7v	17.1	$\checkmark$	17.0	$\sqrt{ }$	17.2	$\sqrt{ }$	17.1	$\sqrt{ }$
10v	24.5	$\checkmark$	24.3	$\checkmark$	24.5	$\checkmark$	24.5	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit
 Q_TOP13P
```

$\qquad$

``` Serial No
``` \(\qquad\)
```

Test EngineerXen.
5/2/10

```
\(\qquad\)
13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit.

```
\(\qquad\)
```

 Q_TOP14P
    ```
\(\qquad\)
``` Serial No
```

```
Test Engineer
```

Test Engineer
.Xen.
.Xen.
.5/2/10

```
\(\qquad\)
```

Date .5/2/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.
Test Engineer ....Xen.
TOP14P

```
\(\qquad\)
```

                                    Serial No
    Date
5/2/10

```

\section*{}
```

Serial No
Date 5/2/10.

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen. 5/2/10.............

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & \(0 V\) & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
Q_TOP14P

```
\(\qquad\)
``` Serial No
Test Engineer Xen
Date 5/2/10
``` \(\qquad\)

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.03 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.77 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.00 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test. 5/2/10
\(\qquad\)
\(\qquad\)
Date

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP14P. Serial No
Test Engineer . Xen.
Date .5/2/10.........

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.66 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Date .5/2/10. \(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & \(3 v\) to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.25 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer . .Xen
Date 5/2/10.

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.395 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.397 & \(\operatorname{Pin} 7\) to Pin 8 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.395 & Pin 15 to Pin 16 & 0.398 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|c|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Q_TOP14P. \(\qquad\) Serial No \(\qquad\)
Test Engineer Xen.
Date .5/2/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.2 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.2 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.4 & \(\checkmark\) & -2.41 & \(\checkmark\) & -2.4 & \(\sqrt{ }\) & -2.42 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.1 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.3 & \(\checkmark\) & 24.4 & \(\checkmark\) & 24.5 & \(\checkmark\) & 24.3 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer . Xen.
\(\qquad\)
Date 5/2/10

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{5 v}\) to 6v & 5.54 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{5 v}\) to 6v & 5.55 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
```

                                    Q_TOP15P
    ```
\(\qquad\)
\(\qquad\)
```

Test Engineer ....Xen.
Date
15/2/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit
\$.
Test Engineer ....Xen.
Q_TOP15P

```
\(\qquad\)
```

                            Serial No
    Date
15/2/10

```

\section*{3. Inspection}

\author{
Workmanship \\ Inspect the general workmanship standard and comment: \(\sqrt{ }\)
}

Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.
\(\qquad\)
Test Engineer . Xen.
Date
15/2/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & 0V & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V - (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
Q_TOP15P
Test Engineer ....Xen.
Date
15/2/10

```

\section*{6. Power}
```

Check the polarity of the wiring:

```

\section*{3 Pin Power Connector}
 Serial No

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
+/- 0.5v?
\end{tabular} \\
\hline+12 v TP5 & 12.02 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.82 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.14 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|l|}{Indicator} & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\checkmark\) & \(\sqrt{ }\) & \(\checkmark\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\checkmark\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\checkmark\) \\
\hline Ch4 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Unit.}
\(\qquad\) Q_TOP15P. Serial No
Test Engineer . Xen.
Date .15/2/10
\(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.9 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.9 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.35 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer . .Xen
Date 15/2/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.203 & Pin 1 to Pin 2 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.203 & Pin 5 to Pin 6 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.203 & Pin 9 to Pin 10 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.203 & Pin 13 to Pin 14 & 1.203 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.395 & Pin 3 to Pin 4 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.396 & \(\operatorname{Pin} 7\) to Pin 8 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.398 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|c|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Q_TOP15P.
Serial No \(\qquad\)
Test Engineer . Xen.
Date 15/2/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.2 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.42 & \(\checkmark\) & -2.4 & \(\checkmark\) & -2.41 & \(\sqrt{ }\) & -2.42 & \(\checkmark\) \\
\hline 0v & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\sqrt{ }\) & 17.2 & \(\sqrt{ }\) & 17.1 & \(\sqrt{ }\) & 17.1 & \(\sqrt{ }\) \\
\hline 10v & 24.5 & \(\sqrt{ }\) & 24.5 & \(\sqrt{ }\) & 24.5 & \(\checkmark\) & 24.5 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
```

Unit.
Q_TOP15P.
Serial No

```
\(\qquad\)
```

Test Engineer ....Xen.
15/2/10

```
\(\qquad\)
``` Serial No
```


13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	$\sqrt{ }$
Ch2	5v to 6v	5.56	$\sqrt{ }$
Ch3	5v to 6v	5.54	$\sqrt{ }$
Ch4	5v to 6v	5.56	$\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
```

\qquad

```
                                    Q_TOP16P
```

\qquad

``` Serial No
``` \(\qquad\)
```

Test Engineer ....Xen.
Date
16/2/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
Unit................Q_TOP16P......................Serial No ..
Test Engineer \(\ldots\). Xen.............
Date15/2/10........

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer Xen.
Date 15/2/10 \(\qquad\)

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & \(0 V\) & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit.
Q_TOP16P
Serial No
Test Engineer ....Xen.
Date
15/2/10

```

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
+/- 0.5v?
\end{tabular} \\
\hline+12 v TP5 & 12.04 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.94 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.05 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
Date 15/2/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP16P. Serial No
Test Engineer . Xen.
Date .15/2/10 \(\qquad\)

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & \(3 \mathrm{v} ~ 3.4 \mathrm{v}\) & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer . .Xen
Date 16/2/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+I-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.204 & Pin 1 to Pin 2 & 1.204 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.203 & Pin 5 to Pin 6 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.204 & Pin 9 to Pin 10 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.203 & Pin 13 to Pin 14 & 1.203 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.395 & Pin 3 to Pin 4 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.396 & \(\operatorname{Pin} 7\) to Pin 8 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.396 & Pin 11 to Pin 12 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.398 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|c|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. Q_TOP16P Serial No \(\qquad\)
Test Engineer Xen.
Date 16/2/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.4 & \(\sqrt{ }\) & -24.5 & \(\sqrt{ }\) & -24.5 & \(\sqrt{ }\) & -24.4 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.42 & \(\checkmark\) & -2.42 & \(\checkmark\) & -2.42 & \(\sqrt{ }\) & -2.42 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) & 2.41 & \(\sqrt{ }\) & 2.42 & \(\sqrt{ }\) & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.1 & \(\checkmark\) & 12.1 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.2 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.3 & \(\checkmark\) & 24.2 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
```

Unit.
Q_TOP16P
Serial No

```
\(\qquad\)
```

Test Engineer ....Xen.
Date
16/2/10

```
\(\qquad\)

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.54 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit.

```
\(\qquad\)
```

                                    Q_TOP17P.
    ```
\(\qquad\)
``` Serial No
Test Engineer ....Xen.
Date .16/2/10
```


2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer .Xen.
Date 16/2/10 \qquad

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\sqrt{ }$
12	V- (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit.
                Q_TOP17P
                                    Serial No
Test Engineer ....Xen.
Date
16/2/10
```


6. Power

Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.01	1 mV	\checkmark
+15 v TP4	14.97	1 mV	$\sqrt{ }$
-15 v TP6	-14.94	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
\qquad
\qquad
Date

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	\sqrt{n}	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. \qquad Q_TOP17P Serial No
Test Engineer . Xen.
Date .16/2/10. \qquad

8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

Test Engineer . .Xen
Date 16/2/10. \qquad
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.35	3 v 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.48	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

\qquad
Test Engineer .Xen
Date 16/2/10

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.395	Pin 3 to Pin 4	0.396	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.396	Pin 11 to Pin 12	0.398	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.397	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit.
Q_TOP17P.
Serial No \qquad
Test Engineer . Xen.
Date 16/2/10

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$	-24.3	$\sqrt{ }$	-24.3	$\sqrt{ }$
-7v	-17.2	\checkmark	-17.0	\checkmark	-17.0	\checkmark	-17.1	\checkmark
-5v	-12.3	$\sqrt{ }$	-12.2	$\sqrt{ }$	-12.3	\checkmark	-12.3	\checkmark
-1v	-2.42	\checkmark	-2.4	\checkmark	-2.4	$\sqrt{ }$	-2.42	\checkmark
Ov	0	$\sqrt{ }$	0	\checkmark	0	$\sqrt{ }$	0	\checkmark
1v	2.42	$\sqrt{ }$						
5v	12.2	\checkmark	12.2	\checkmark	12.2	\checkmark	12.2	\checkmark
7v	17.0	\checkmark	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$
10v	24.3	$\sqrt{ }$	24.3	$\sqrt{ }$	24.2	\checkmark	24.2	\checkmark

Unit.
Serial No \qquad
Test Engineer
Date \qquad

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit.
    Q_TOP17P
Serial No
Test Engineer ....Xen.
Date ..............16/2/10
```

\qquad
13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.57	$\sqrt{ }$
Ch3	5v to 6v	5.57	$\sqrt{ }$
Ch4	5v to 6v	5.56	$\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
```

\qquad

```
                                    Q_TOP18P
```

\qquad

``` Serial No
``` \(\qquad\)
```

Test Engineer ....Xen.
Date
16/2/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
Unit................Q_TOP18P........................Serial No ..
Test Engineer... Xen..............
Date16/2/10.........

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer Xen.
Date 16/2/10 \(\qquad\)

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & \(0 V\) & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit.
Q_TOP18P
Serial No
Test Engineer ....Xen.
Date
16/2/10

```

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
+/- 0.5v?
\end{tabular} \\
\hline+12 v TP5 & 12.00 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.81 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.05 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\) Q_TOP18P
\(\qquad\)
\(\qquad\)
Date

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP18P Serial No
Test Engineer . Xen.
Date .16/2/10. \(\qquad\)

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.9 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.45 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.45 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.7 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.7 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.25 & \(3 v\) to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer .Xen
Date 16/2/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.395 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.395 & Pin 7 to Pin 8 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.396 & Pin 11 to Pin 12 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.397 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|c|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Q_TOP18P \(\qquad\) Serial No \(\qquad\)
Test Engineer . Xen.
16/2/10
Date

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) & -24.4 & \(\sqrt{ }\) & -24.5 & \(\sqrt{ }\) & -24.4 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.41 & \(\checkmark\) & -2.41 & \(\checkmark\) & -2.4 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.1 & \(\sqrt{ }\) \\
\hline 10v & 24.2 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.3 & \(\checkmark\) & 24.5 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
```

Unit.
Q_TOP18P
Serial No

```
\(\qquad\)
```

Test Engineer ....Xen.
Date
16/2/10

```
13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit.

```
\(\qquad\)
```

                                    Q_TOP19P
    ```
\(\qquad\)
``` Serial No
``` \(\qquad\)
```

Test Engineer ....Xen.
16/2/10

```
\(\qquad\)

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.
est Engineer ....Xen.
Date
16/2/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer Xen.
Date 16/2/10 \(\qquad\)

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & \(0 V\) & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit.
Q_TOP19P
Serial No
Test Engineer ....Xen.
Date
16/2/10

```

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
+/- 0.5v?
\end{tabular} \\
\hline+12 v TP5 & 11.94 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.97 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.05 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\) Q_TOP19P
\(\qquad\)
Date

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP19P Serial No
Test Engineer Xen.
Date .16/2/10. \(\qquad\)

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & \(3 v\) to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer .Xen
Date 16/2/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.396 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.396 & \(\operatorname{Pin} 7\) to Pin 8 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.396 & Pin 11 to Pin 12 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.398 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|c|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Q_TOP19P \(\qquad\) Serial No \(\qquad\)
Test Engineer Xen.
Date 16/2/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.4 & \(\checkmark\) & -2.41 & \(\checkmark\) & -2.42 & \(\sqrt{ }\) & -2.42 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.2 & \(\checkmark\) & 17.1 & \(\sqrt{ }\) & 17.1 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.5 & \(\sqrt{ }\) & 24.4 & \(\sqrt{ }\) & 24.4 & \(\checkmark\) & 24.3 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
```

Unit.
Q_TOP19P
Serial No

```
\(\qquad\)
```

Test Engineer ....Xen.
Date
16/2/10

```
\(\qquad\)

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit.

```
\(\qquad\)
```

                                Q_TOP20P
    ```
\(\qquad\)
``` Serial No
```

Test Engineer Xen.

```17/2/10
```


2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2 $_{\text {DVM }}$ Farnell	L30-2		
DVM	Fluke	77 III	
V/I calibrator	TENMA	$72-7730$	

```
Unit
Tes, Engineer Xe=
```

\qquad

```
                            Serial No
Test Engineer ....Xen.
Date
17/2/10
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer Xen.
Date .17/2/10 \qquad

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\sqrt{ }$
12	V- (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit.
                Q_TOP20P
                                    Serial No
Test Engineer ....Xen.
Date
17/2/10
```


6. Power

Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12 v TP5	11.99	1 mV	$\sqrt{ }$
+15 v TP4	14.95	1 mV	$\sqrt{ }$
-15 v TP6	-15.00	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
\qquad
\qquad

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. \qquad Q_TOP20P. Serial No
Test Engineer . Xen.
Date \qquad .17/2/10. \qquad

8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.46	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

\qquad
\qquad
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.25	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.48	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

\qquad
Test Engineer . .Xen
Date 17/2/10

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? $\mathbf{(+ / - \mathbf { 0 . 1 v })}$
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.394	Pin 11 to Pin 12	0.396	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.395	Pin 15 to Pin 16	0.398	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. Q_TOP20P Serial No \qquad
Test Engineer . Xen.
17/2/10

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$
-7v	-17.2	\checkmark	-17.1	\checkmark	-17.1	\checkmark	-17.1	\checkmark
-5v	-12.3	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.3	\checkmark	-12.3	\checkmark
-1v	-2.42	\checkmark	-2.42	\checkmark	-2.42	$\sqrt{ }$	-2.42	\checkmark
Ov	0	$\sqrt{ }$	0	\checkmark	0	$\sqrt{ }$	0	\checkmark
1v	2.42	$\sqrt{ }$						
5v	12.2	\checkmark	12.2	\checkmark	12.2	\checkmark	12.2	\checkmark
7v	17.1	\checkmark	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.1	$\sqrt{ }$
10v	24.5	\checkmark	24.3	\checkmark	24.3	\checkmark	24.5	\checkmark

Unit.
Serial No \qquad
Test Engineer
Date \qquad

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

\qquad
\qquad

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.57	$\sqrt{ }$
Ch2	5v to 6v	5.57	$\sqrt{ }$
Ch3	5v to 6v	5.54	$\sqrt{ }$
Ch4	5v to 6v	5.56	$\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
```

\qquad

```
                                Q_TOP21P.
```

\qquad

``` Serial No
```

Test Engineer Xen.

```17/2/10
```


2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2 $_{\text {DVM }}$ Farnell	L30-2		
DVM	Fluke	77 III	
V/I calibrator	TENMA	$72-7730$	

```
Unit
```

\qquad

```
                                    Q_TOP21P
```

\qquad

```
                                    Serial No
Test Engineer ....Xen.
Date
                                    17/2/10
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . .Xen.
Date .17/2/10 \qquad

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\sqrt{ }$
12	V- (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit.
                Q_TOP21P
                        ..
                                    Serial No
Test Engineer
                                .Xen.
                            17/2/10
Date
```


6. Power

Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.02	1 mV	\checkmark
+15 v TP4	14.96	1 mV	$\sqrt{ }$
-15 v TP6	-15.06	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
\qquad
Date 17/2/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
```

\qquad

``` Q TOP21P Serial No
Test Engineer . Xen.
Date
``` \(\qquad\)
``` 17/2/10
``` \(\qquad\)

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.35 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.34 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & \(3 v\) to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer . Xen.
Date 17/2/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
\(\mathbf{(+ / - \mathbf { 0 . 1 v })}\)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.396 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.396 & \(\operatorname{Pin} 7\) to Pin 8 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.398 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|c|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. Q_TOP21P. Serial No \(\qquad\)
Test Engineer . Xen.
17/2/10
Date

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) & -24.5 & \(\sqrt{ }\) & -24.5 & \(\sqrt{ }\) & -24.4 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.4 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.4 & \(\checkmark\) & -2.42 & \(\checkmark\) & -2.42 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.1 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) & 17.2 & \(\sqrt{ }\) & 17.1 & \(\sqrt{ }\) \\
\hline 10v & 24.5 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.5 & \(\checkmark\) & 24.4 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit.

```
\(\qquad\)
```

                                    Q_TOP22P
    ```
\(\qquad\)
``` Serial No
Test Engineer ....Xen.
Date .18/2/10
```


2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

```
Unit.
    est Engineer ....Xen.
Date
17/2/10
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer Xen.
Date .17/2/10 \qquad

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\sqrt{ }$
12	V- (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
                Q_TOP22P
Test Engineer Xen.
Date 17/2/10
```


6. Power

Check the polarity of the wiring:

```
3 Pin Power Connector
```

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	11.99	1 mV	\checkmark
+15 v TP4	14.81	1 mV	$\sqrt{ }$
-15 v TP6	-14.99	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
\qquad
Date 17/2/10

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. \qquad Q_TOP22P Serial No
Test Engineer . Xen.
Date .18/2/10

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

\qquad
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.25	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.48	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

\qquad
Test Engineer . .Xen
Date 18/2/10

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+I- 0.1v)
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.397	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.395	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.398	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. Q_TOP22P. Serial No \qquad
Test Engineer Xen.
Date 18/2/10

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$
-7v	-17.2	\checkmark	-17.1	\checkmark	-17.2	\checkmark	-17.2	\checkmark
-5v	-12.3	$\sqrt{ }$	-12.2	$\sqrt{ }$	-12.3	\checkmark	-12.3	\checkmark
-1v	-2.42	\checkmark	-2.4	\checkmark	-2.42	$\sqrt{ }$	-2.41	\checkmark
Ov	0	$\sqrt{ }$	0	\checkmark	0	$\sqrt{ }$	0	\checkmark
1v	2.42	$\sqrt{ }$						
5v	12.2	\checkmark	12.1	\checkmark	12.2	\checkmark	12.2	\checkmark
7v	17.0	\checkmark	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$
10v	24.3	$\sqrt{ }$	24.3	$\sqrt{ }$	24.3	\checkmark	24.4	\checkmark

Unit.
Serial No \qquad
Test Engineer
Date \qquad

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

\qquad
Test EngineerXen.
18/2/10.

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.57	$\sqrt{ }$
Ch3	5v to 6v	5.56	$\sqrt{ }$
Ch4	5v to 6v	5.56	$\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
```

\qquad

```
                                    Q_TOP23P
```

\qquad

``` Serial No
``` \(\qquad\)
```

Test Engineer ....Xen.
Date
18/2/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.
est Engineer ....Xen.
Date
18/2/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer .
Date Xen.
18/2/10 \(\qquad\)

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & \(0 V\) & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
Q_TOP23P
Test Engineer ....Xen.
Date
18/2/10

```

\section*{6. Power}

\section*{Check the polarity of the wiring:}
```

3 Pin Power Connector

```
 Serial No

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.04 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.84 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.97 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
\(\qquad\)
Date 18/2/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP23P. Serial No
Test Engineer . Xen.
Date .18/2/10

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.35 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.66 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer .Xen
Date 18/2/10. \(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & \(3 v\) to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer . .Xen
Date 18/2/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.396 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.396 & \(\operatorname{Pin} 7\) to Pin 8 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.395 & Pin 15 to Pin 16 & 0.397 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|c|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. Q_TOP23P Serial No \(\qquad\)
Test Engineer Xen.
Date 18/2/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.1 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.41 & \(\checkmark\) & -2.42 & \(\checkmark\) & -2.42 & \(\sqrt{ }\) & -2.42 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.1 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.4 & \(\checkmark\) & 24.3 & \(\checkmark\) & 24.3 & \(\checkmark\) & 24.4 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}

\section*{Contents}
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit.

```
\(\qquad\)
```

                                Q_TOP24P
    ```
\(\qquad\)
``` Serial No
Test Engineer ....Xen.
Date
18/2/10
```


2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

```
Unit.
Test Engineer ....Xen.
                                    Q_TOP24P
```

\qquad

```
                            Serial No
Date
18/2/10
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer .
Date Xen.
18/2/10 \qquad

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\sqrt{ }$
12	V- (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit.
                Q_TOP24P
                                    Serial No
Test Engineer ....Xen.
Date
18/2/10
```


6. Power

Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12 v TP5	12.02	1 mV	$\sqrt{ }$
+15 v TP4	14.95	1 mV	$\sqrt{ }$
-15 v TP6	-15.04	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
\qquad
\qquad
18/2/10
\qquad
\qquad
Date 18/2/10. \qquad

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. \qquad Q_TOP24P. Serial No
Test Engineer . Xen.
Date .18/2/10.

8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.66	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	\checkmark
Ch2	0.47	0.4 v to 0.5 v	\checkmark
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

\qquad
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.25	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.5	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

\qquad
Test Engineer . .Xen
Date 18/2/10

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+I- 0.1v)
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.397	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.395	Pin 11 to Pin 12	0.396	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.395	Pin 15 to Pin 16	0.398	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. Q_TOP24P. Serial No \qquad
Test Engineer Xen.
Date 18/2/10

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$	-24.5	$\sqrt{ }$
-7v	-17.1	\checkmark	-17.2	\checkmark	-17.0	\checkmark	-17.2	\checkmark
-5v	-12.3	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.3	\checkmark	-12.3	\checkmark
-1v	-2.42	\checkmark	-2.42	\checkmark	-2.4	$\sqrt{ }$	-2.42	\checkmark
Ov	0	$\sqrt{ }$	0	\checkmark	0	$\sqrt{ }$	0	\checkmark
1v	2.42	$\sqrt{ }$						
5v	12.1	\checkmark	12.2	\checkmark	12.2	\checkmark	12.2	\checkmark
7v	17.0	\checkmark	17.1	$\sqrt{ }$	17.2	$\sqrt{ }$	17.1	$\sqrt{ }$
10v	24.2	$\sqrt{ }$	24.4	$\sqrt{ }$	24.5	\checkmark	24.5	\checkmark

Unit.
Serial No \qquad
Test Engineer
Date \qquad

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

\qquad
Test EngineerXen.
18/2/10.

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.58	$\sqrt{ }$
Ch3	5v to 6v	5.55	$\sqrt{ }$
Ch4	5v to 6v	5.55	$\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

```
                        Q_TOP25P
                                    Serial No
Test Engineer ....Xen.
Date
23/2/10
```


2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

Unit................Q_TOP25P.......................Serial No ..
Test Engineer... Xen...............
Date22/2/10.........

3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test EngineerXen.
Date
.22/2/10 \qquad

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\sqrt{ }$
12	V- (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	11.99	1 mV	\checkmark
+15 v TP4	14.96	1 mV	$\sqrt{ }$
-15 v TP6	-15.04	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
\qquad

Date

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	\sqrt{n}	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. \qquad Q_TOP25P. Serial No
Test Engineer . Xen.
Date \qquad .23/2/10.

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

\qquad
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.49	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

\qquad
Test Engineer . .Xen
Date 23/2/10

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+I- 0.1v)
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.395	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.397	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.394	Pin 11 to Pin 12	0.396	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.398	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. Q_TOP25P. Serial No \qquad
Test Engineer .Xen. 23/2/10

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$
-7v	-17.2	\checkmark	-17.1	\checkmark	-17.2	\checkmark	-17.0	\checkmark
-5v	-12.3	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.3	\checkmark	-12.2	\checkmark
-1v	-2.42	\checkmark	-2.41	\checkmark	-2.41	$\sqrt{ }$	-2.41	\checkmark
Ov	0	$\sqrt{ }$	0	\checkmark	0	$\sqrt{ }$	0	\checkmark
1v	2.42	$\sqrt{ }$						
5v	12.2	\checkmark	12.2	\checkmark	12.2	\checkmark	12.2	\checkmark
7v	17.1	\checkmark	17.2	$\sqrt{ }$	17.0	$\sqrt{ }$	17.1	$\sqrt{ }$
10v	24.5	\checkmark	24.5	\checkmark	24.3	\checkmark	24.5	\checkmark

Unit.
Serial No \qquad
Test Engineer
Date \qquad

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

\qquad
Test EngineerXen. .23/2/10.

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	$\sqrt{ }$
Ch2	5v to 6v	5.57	$\sqrt{ }$
Ch3	5v to 6v	5.54	$\sqrt{ }$
Ch4	5v to 6v	5.56	$\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

```
                        Q_TOP26P
```

\qquad

``` Serial No
``` \(\qquad\)
```

Test Engineer ....Xen.
Date
23/2/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
Unit.................Q_TOP26P........................Serial No ..
Test Engineer ...Xen.............
Date23/2/10.........

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ..Xen.
23/2/10 \(\qquad\)

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & \(0 V\) & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
Q_TOP26P
Serial No
Test Engineer ....Xen.
.23/2/10
Date

```

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
+/- 0.5v?
\end{tabular} \\
\hline+12 v TP5 & 12.06 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.96 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.99 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
\(\qquad\)
Date

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP26P. Serial No
Test Engineer . Xen.
Date \(\qquad\) 23/2/10

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.35 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.35 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.66 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.66 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & \(3 v\) to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3 to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer . .Xen
Date 23/2/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.396 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.395 & Pin 7 to Pin 8 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.396 & Pin 11 to Pin 12 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.398 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|c|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. Q_TOP26P. Serial No \(\qquad\)
Test Engineer .Xen. 23/2/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.42 & \(\checkmark\) & -2.4 & \(\checkmark\) & -2.42 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) \\
\hline 0v & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.1 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.4 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.3 & \(\checkmark\) & 24.3 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
Test EngineerXen. 23/2/10.
Date

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & \(\mathbf{5 v}\) to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{5 v}\) to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{5 v}\) to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{5 v}\) to 6v & 5.56 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}

\section*{Contents}
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
```

                        Q_TOP27P
    ```
\(\qquad\)
``` Serial No
``` \(\qquad\)
```

Test Engineer ....Xen.
Date
24/2/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . Xen
Date 23/2/10 \(\qquad\)

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & \(0 V\) & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
Q_TOP27P
Serial No
Test Engineer ....Xen.
.23/2/10
Date

```

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
+/- 0.5v?
\end{tabular} \\
\hline+12 v TP5 & 11.98 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.93 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.02 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
.23/2/10 \(\qquad\)
Date

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP27P. Serial No
Test Engineer . Xen
Date \(\qquad\) .23/2/10.

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.35 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.35 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.35 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Date .23/2/10. \(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & \(3 v\) to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer . .Xen
Date 23/2/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.396 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.396 & \(\operatorname{Pin} 7\) to Pin 8 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.398 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|c|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP27P. \(\qquad\)
\(\qquad\) Serial No \(\qquad\)
Test Engineer . Xen.
.24/2/10
Date

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 olp & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.3 & \(\checkmark\) & -24.3 & \(\sqrt{ }\) & -24.3 & \(\checkmark\) & -24.3 & \(\sqrt{ }\) \\
\hline -7v & -17.1 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.0 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\checkmark\) & -12.2 & \(\sqrt{ }\) & -12.2 & \(\sqrt{ }\) & -12.2 & \(\checkmark\) \\
\hline -1v & -2.41 & \(\sqrt{ }\) & -2.4 & \(\sqrt{ }\) & -2.4 & \(\sqrt{ }\) & -2.4 & \(\sqrt{ }\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) & 2.41 & \(\sqrt{ }\) & 2.42 & \(\sqrt{ }\) & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.1 & \(\checkmark\) & 12.1 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.1 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.2 & \(\sqrt{ }\) & 24.2 & \(\sqrt{ }\) & 24.2 & \(\sqrt{ }\) & 24.3 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
Test EngineerXen. .23/2/10.
Date

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
```

                        Q_TOP28P
    ```
\(\qquad\)
``` Serial No
``` \(\qquad\)
```

Test Engineer ....Xen.
24/2/10

```
\(\qquad\)

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.
..
Test Engineer ....Xen.
Q_TOP28P

```
\(\qquad\)
```

                            Serial No
    Date
24/2/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ..Xen.
24/2/10 \(\qquad\)

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & \(0 V\) & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

Test Engineer . Xen.
Date 24/2/10.

\section*{6. Power}

Check the polarity of the wiring:
3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 11.98 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.95 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.08 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline All Outputs smooth DC, no oscillation? & \(\sqrt{ }\) \\
\hline
\end{tabular}

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{2}\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP28P Serial No
Test Engineer . Xen.
Date \(\qquad\) .24/2/10

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.9 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.35 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer . Xēn
.24/2/10.
Date
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.9 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & \(3 v\) to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer .Xen
Date 24/2/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.396 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.395 & Pin 7 to Pin 8 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.398 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|c|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP28P. Serial No \(\qquad\)
Test Engineer . Xen . 24/2/10
Date

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.2 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.2 & \(\checkmark\) \\
\hline -1v & -2.42 & \(\checkmark\) & -2.41 & \(\checkmark\) & -2.4 & \(\sqrt{ }\) & -2.4 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.1 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) & 17.1 & \(\sqrt{ }\) & 17.1 & \(\sqrt{ }\) \\
\hline 10v & 24.4 & \(\checkmark\) & 24.3 & \(\checkmark\) & 24.5 & \(\checkmark\) & 24.5 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
Test EngineerXen. .24/2/10.
Date

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & \(\mathbf{5 v}\) to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & \(\mathbf{5 v}\) to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{5 v}\) to 6v & 5.54 & \(\sqrt{ }\) \\
\hline Ch4 & \(\mathbf{5 v}\) to 6v & 5.56 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}

\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
```

                        Q_TOP29P
    ```
\(\qquad\)
``` Serial No
``` \(\qquad\)
```

Test Engineer ....Xen.
Date
25/2/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit
..
$\qquad$

## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer . ..Xen.
24/2/10 $\qquad$

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\sqrt{ }$
12	V- (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
 Q_TOP29P
 Serial No
Test EngineerXen.
.24/2/10
Date
```


## 6. Power

## Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   +/- 0.5v?
+12 v TP5	12.05	1 mV	$\sqrt{ }$
+15 v TP4	14.80	1 mV	$\sqrt{ }$
-15 v TP6	-15.01	5 mV	$\sqrt{ }$

## All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
$\qquad$
$\qquad$

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. $\qquad$ Q_TOP29P. Serial No
Test Engineer . Xen.
Date $\qquad$ .....

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.68	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

$\qquad$
$\qquad$
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.48	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

$\qquad$
Test Engineer .Xen
Date 24/2/10

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   $\mathbf{( + / - \mathbf { 0 . 1 v } )}$
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.396	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.398	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. Q_TOP29P. Serial No $\qquad$
Test Engineer . Xen. .25/2/10
Date

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.3	$\sqrt{ }$	-24.3	$\sqrt{ }$	-24.4	$\sqrt{ }$
-7v	-17.2	$\checkmark$	-17.1	$\checkmark$	-17.1	$\checkmark$	-17.0	$\checkmark$
-5v	-12.5	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.1	$\checkmark$	-12.2	$\checkmark$
-1v	-2.42	$\checkmark$	-2.42	$\checkmark$	-2.41	$\sqrt{ }$	-2.4	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$
1v	2.42	$\sqrt{ }$	2.41	$\sqrt{ }$	2.4	$\sqrt{ }$	2.42	$\sqrt{ }$
5v	12.2	$\checkmark$	12.1	$\checkmark$	12.1	$\checkmark$	12.2	$\checkmark$
7v	17.0	$\checkmark$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$
10v	24.3	$\sqrt{ }$	24.2	$\sqrt{ }$	24.2	$\checkmark$	24.3	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

$\qquad$
Test Engineer ....Xen. .24/2/10 $\qquad$

## 13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.56	$\sqrt{ }$
Ch3	5v to 6v	5.56	$\sqrt{ }$
Ch4	5v to 6v	5.56	$\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
## Quad TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## QUAD TOP COIL DRIVER BOARD TEST PLAN



Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

```
 Q_TOP30P
```

$\qquad$

``` Serial No
``` \(\qquad\)
```

Test EngineerXen.
Date
25/2/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.
..

```
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ..Xen.
25/2/10 \(\qquad\)

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & \(0 V\) & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 10 & \(\mathrm{~V}+\) (TP1) & +17 v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17 v Supply & \(\sqrt{ }\) \\
\hline 13 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & 0 V (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
Q_TOP30P

```
\(\qquad\)
``` Serial No
Test EngineerXen. .25/2/10.
``` \(\qquad\)
```

Date

```

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.02 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.94 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.92 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
\(\qquad\)

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP30P. Serial No
Test Engineer . Xen. 25/2/10...........
Date \(\qquad\)

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.9 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.35 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.35 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & \(3 v\) to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer . .Xen
Date 25/2/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c} 
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
\(\mathbf{( + / - \mathbf { 0 . 1 v } )}\)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c} 
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.395 & Pin 3 to Pin 4 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.396 & \(\operatorname{Pin} 7\) to Pin 8 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.398 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|c|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP30P Serial No \(\qquad\)
Test Engineer . Xen. .25/2/10
Date

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.2 & \(\checkmark\) \\
\hline -1v & -2.42 & \(\checkmark\) & -2.42 & \(\checkmark\) & -2.4 & \(\sqrt{ }\) & -2.4 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.2 & \(\checkmark\) & 17.1 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.5 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.4 & \(\checkmark\) & 24.2 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c} 
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.54 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit
..............Q
Q_TOP31P

```
\(\qquad\)
``` Serial No
Test EngineerXen.
Date
2/3/10.
```


## 2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

$\qquad$
$\qquad$
$\qquad$

## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer ..Xen.
25/2/10 $\qquad$

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V- (TP2)	-17 v Supply	$\sqrt{ }$
12	V- (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
 Q_TOP31P
```

$\qquad$

``` Serial No
Test EngineerXen.
Date 2/3/10
``` \(\qquad\)

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|c|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
+/- 0.5v?
\end{tabular} \\
\hline+12 v TP5 & 12.05 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.85 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.05 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|c|c|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP31P. Serial No
Test Engineer . Xen.
Date \(\qquad\) 2/3/10

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & \(3.3 v\) to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 067 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.35 & \(3 v\) to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.25 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.35 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|c|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.Q_TOP31P. Serial No \(\qquad\)
Test Engineer Xen.
Date 2/3/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c} 
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.203 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c} 
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.395 & Pin 3 to Pin 4 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.396 & \(\operatorname{Pin} 7\) to Pin 8 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.395 & Pin 15 to Pin 16 & 0.397 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|c|c|}
\hline & Distortion Free? \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .Q_TOP31P. Serial No \(\qquad\)
Test Engineer .Xen.
2/3/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.2 & \(\sqrt{ }\) & -12.2 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.42 & \(\checkmark\) & -2.4 & \(\checkmark\) & -2.4 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.1 & \(\checkmark\) & 17.2 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.5 & \(\sqrt{ }\) & 24.5 & \(\sqrt{ }\) & 24.4 & \(\checkmark\) & 24.5 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date \(\qquad\)

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c} 
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer ....Xen. 2/3/10
\(\qquad\) 
Date

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}
```

Unit

```
\(\qquad\)
``` Q TOP32P
Serial No
Test Engineer.....Xen
Date 2/3/10
```


## Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` Q_TOP32P \(\qquad\)
```

Test Engineer.....Xen.
Date
2/3/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

                                    Q_TOP32P
                                    Serial No
    ```
\(\qquad\)
```

Test Engineer.....Xen.
Date................2/3/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer.....Xen.
\(\qquad\)
\(\qquad\)
Date. 2/3/10.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & 0V & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit.
Q_TOP32P
Test Engineer.....Xen.
2/3/10.

```
\(\qquad\)
```

Date

```
\(\qquad\)

\section*{6. Power}

\section*{Check the polarity of the wiring:}

\section*{3 Pin Power Connector}

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|l|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+\boldsymbol{+} \mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.02 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.80 & 1 mV & \(\checkmark\) \\
\hline-15 v TP6 & -14.97 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
Test Engineer.....Xen. 2/3/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. Q_TOP32P.

Serial No
Test Engineer.....Xen.
Date. .2/3/10

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.35 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.66 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xen
Date .2/3/10. \(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer. .Xen
Date 2/3/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{l}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{l}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{l}
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.396 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.396 & Pin 7 to Pin 8 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.395 & Pin 15 to Pin 16 & 0.397 & \(\sqrt{ }\) \\
\hline
\end{tabular}
10. Distortion

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & \multicolumn{1}{|c|}{ Distortion Free? } \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP32P. Serial No \(\qquad\)
Test Engineer. .Xen
.2/3/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\checkmark\) & -24.4 & \(\checkmark\) & -24.5 & \(\checkmark\) & -24.4 & \(\checkmark\) \\
\hline -7v & -17.1 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.2 & \(\sqrt{ }\) & -12.2 & \(\checkmark\) & -12.3 & \(\checkmark\) & -12.2 & \(\checkmark\) \\
\hline -1v & -2.42 & \(\sqrt{ }\) & -2.41 & \(\sqrt{ }\) & -2.42 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\checkmark\) & 2.41 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.2 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.5 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|l|l|c|c|c|}
\hline \begin{tabular}{l}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{l}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
```

Unit.
Q_TOP32P
$\qquad$

```
Test Engineer.....Xen.
2/3/10
```


## 13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

|  | Ch1 | Ch2 | Ch3 | Ch4 |
| :---: | :---: | :---: | :---: | :---: |
| Not <br> Clipping? | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

|  | Theoretical o/p | Measured | OK? |
| :--- | :---: | :---: | :---: |
| Ch1 | 5v to 6v | 5.55 | $\sqrt{ }$ |
| Ch2 | 5v to 6v | 5.56 | $\sqrt{ }$ |
| Ch3 | 5v to 6v | 5.55 | $\sqrt{ }$ |
| Ch4 | 5v to 6v | 5.55 | $\sqrt{ }$ |

## LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
## Quad TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## QUAD TOP COIL DRIVER BOARD TEST PLAN

```
Unit................Q_TOP33P
```

$\qquad$

``` Serial No
Test Engineer.....Xen
Date
3/3/10
```


## Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` Q_TOP33P \(\qquad\)
```

Test Engineer.....Xen.
Date
3/3/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 \(_{\text {DVM }}\) Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline V/I calibrator & TENMA & \(72-7730\) & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

                                    Q_TOP33P
                                    Serial No
    ```
\(\qquad\)
```

Test Engineer.....Xen.
Date
2/3/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer.....Xen.
\(\qquad\)
Date. 3/3/10.

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & 0V & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & \multicolumn{1}{l|}{ OK? } \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
Q_TOP33P
Serial No
Test Engineer.....Xen.
3/3/10

```
\(\qquad\)
\(\qquad\)

\section*{6. Power}

\section*{Check the polarity of the wiring:}

\section*{3 Pin Power Connector}

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|l|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(\mathbf{+ / - \mathbf { 0 . 5 v }} \boldsymbol{?}\)
\end{tabular} \\
\hline+12 v TP5 & 11.97 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.82 & 1 mV & \(\checkmark\) \\
\hline-15 v TP6 & -14.96 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
Test Engineer.....Xen. .3/3/10
\(\qquad\)
Date

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP33P. Serial No \(\qquad\)
Test Engineer . Xen
Date 3/3/10
\(\qquad\)

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.35 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xen.
Date .3/3/10. \(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.25 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
Q_TOP33P
Serial No \(\qquad\)
Test Engineer. .Xen
Date 3/3/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{l}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{l}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{l}
Pass/Fail: \\
Equal? \\
\((+I-\mathbf{0 . 1 v})\)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.396 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.398 & Pin 7 to Pin 8 & 0.399 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.398 & \(\sqrt{ }\) \\
\hline
\end{tabular}
10. Distortion

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & \multicolumn{1}{|c|}{ Distortion Free? } \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP33P Serial No \(\qquad\)
Test Engineer. .Xen 3/3/10
Date

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\checkmark\) & -24.4 & \(\checkmark\) & -24.3 & \(\checkmark\) & -24.3 & \(\checkmark\) \\
\hline -7v & -17.1 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.2 & \(\checkmark\) & -12.2 & \(\checkmark\) \\
\hline -1v & -2.41 & \(\sqrt{ }\) & -2.42 & \(\sqrt{ }\) & -2.41 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.4 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.1 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.2 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.3 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|l|l|c|c|c|}
\hline \begin{tabular}{l}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{l}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer.....Xen. .3/3/10.
\(\qquad\)
Date

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.58 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}
```

Unit

```
\(\qquad\)
``` Q TOP34P
Serial No
Test Engineer.....Xen
Date
3/3/10
```

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

```
                        Q_TOP34P
                                    Serial No
```

\qquad

```
Test Engineer.....Xen.
Date
3/3/10
```


2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

```
Unit.
```

\qquad

```
                Q_TOP34P
```

\qquad

```
                                    Serial No
```

\qquad

```
Test Engineer.....Xen.
Date
                                    3/3/10
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer. Xen. \qquad
Date. 3/3/10.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	0V			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit.
                Q_TOP34P
Test Engineer. Xen
```

\qquad 3/3/10
Date

6. Power

Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.10	1 mV	$\sqrt{ }$
+15 v TP4	14.92	1 mV	$\sqrt{ }$
-15 v TP6	-15.11	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.
\qquad
Test Engineer.....Xen. .3/3/10
\qquad
Date

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	\sqrt{n}	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. \qquad Q_TOP34P. Serial No \qquad
Test Engineer. .Xen.
Date 3/3/10.
\qquad

8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch2	3.4	3.3 to 3.7 v	$\sqrt{ }$
Ch3	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch4	3.4	3.3 v to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	\checkmark
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

\qquad
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1 Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch2	3.25	3 to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.48	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

Unit.
.Q_TOP34P
Serial No \qquad
Test Engineer. .Xen
Date 3/3/10.

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+I- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.395	Pin 3 to Pin 4	0.396	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	Pin 7 to Pin 8	0.396	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.396	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.395	Pin 15 to Pin 16	0.397	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. \qquad Q_TOP34P .Serial No \qquad
Test Engineer. .Xen
Date 3/3/10

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$
-7v	-17.2	\checkmark	-17.1	\checkmark	-17.2	\checkmark	-17.0	\checkmark
-5v	-12.3	$\sqrt{ }$	-12.3	$\sqrt{ }$	-12.3	\checkmark	-12.2	\checkmark
-1v	-2.42	\checkmark	-2.4	\checkmark	-2.42	$\sqrt{ }$	-2.4	\checkmark
Ov	0	$\sqrt{ }$	0	\checkmark	0	$\sqrt{ }$	0	\checkmark
1v	2.41	$\sqrt{ }$	2.42	$\sqrt{ }$	2.42	$\sqrt{ }$	2.42	$\sqrt{ }$
5v	12.2	\checkmark	12.2	\checkmark	12.2	\checkmark	12.2	\checkmark
7v	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.0	\checkmark	17.0	$\sqrt{ }$
10v	24.3	\checkmark	24.3	\checkmark	24.3	\checkmark	24.3	\checkmark

Unit.
Serial No \qquad
Test Engineer
Date

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

\qquad
Test Engineer.....Xen. .3/3/10

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Clipping?				

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.55	$\sqrt{ }$
Ch2	5v to 6v	5.56	$\sqrt{ }$
Ch3	5v to 6v	5.56	$\sqrt{ }$
Ch4	5v to 6v	5.54	$\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN

```
Unit
```

\qquad

``` Q TOP35P
Serial No
Test Engineer.....Xen
Date
4/3/10
```


Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` Q_TOP35P \(\qquad\)
```

Test Engineer.....Xen.
Date
4/3/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 Q_TOP35P
 Serial No
    ```
\(\qquad\)
```

Test Engineer.....Xen.
Date
3/3/10

```

\section*{3. Inspection}

\section*{Workmanship}

Inspect the general workmanship standard and comment: \(\sqrt{ }\)
Removed capacitors C102, C103, C104 and C105 on all channels.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer.....Xen.
Date. .3/3/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & \(0 V\) & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & 0V (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit.
Q_TOP35P
Test Engineer.....Xen.

```
\(\qquad\)
```

Test Engineer.

```
\(\qquad\)
3/3/10 3/3/10 \(\qquad\)

\section*{6. Power}

\section*{Check the polarity of the wiring:}

\section*{3 Pin Power Connector}

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|l|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(\mathbf{+ l - \mathbf { 0 . 5 v }} \boldsymbol{?}\)
\end{tabular} \\
\hline+12 v TP5 & 12.02 & 1 mV & \(\checkmark\) \\
\hline+15 v TP4 & 14.95 & 1 mV & \(\checkmark\) \\
\hline-15 v TP6 & -15.00 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
Test Engineer.....Xen.
\(\qquad\)
Date 3/3/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. Q_TOP35P.

Serial No
Test Engineer.....Xen.
Date. 4/3/10.

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & 3.3 to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xen
Date .4/3/10. \(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer. .Xen
Date 4/3/10.

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c} 
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
\(\mathbf{( + / - \mathbf { 0 . 1 v } )}\)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.203 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{l} 
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{l} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{l} 
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.396 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.397 & Pin 7 to Pin 8 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.398 & \(\sqrt{ }\) \\
\hline
\end{tabular}
10. Distortion

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & \multicolumn{1}{|c|}{ Distortion Free? } \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .Q_TOP35P.
.Serial No \(\qquad\)
Test Engineer.....Xen
Date .4/3/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.0 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.2 & \(\checkmark\) & -12.2 & \(\checkmark\) \\
\hline -1v & -2.4 & \(\checkmark\) & -2.41 & \(\checkmark\) & -2.4 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.41 & \(\sqrt{ }\) & 2.42 & \(\sqrt{ }\) & 2.42 & \(\sqrt{ }\) & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\sqrt{ }\) & 17.1 & \(\sqrt{ }\) & 17.0 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.4 & \(\checkmark\) & 24.5 & \(\checkmark\) & 24.3 & \(\checkmark\) & 24.2 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|l|l|c|c|c|}
\hline \begin{tabular}{l} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{l} 
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c} 
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
```

Unit
.Q_TOP35P
\qquad

```
Test Engineer.....Xen.
Date...............4/3/10.
```


13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

| | Ch1 | Ch2 | Ch3 | Ch4 |
| :---: | :---: | :---: | :---: | :---: |
| Not
 Clipping? | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

| | Theoretical o/p | Measured | OK? |
| :--- | :---: | :---: | :---: |
| Ch1 | 5v to 6v | 5.56 | $\sqrt{ }$ |
| Ch2 | 5v to 6v | 5.57 | $\sqrt{ }$ |
| Ch3 | 5v to 6v | 5.55 | $\sqrt{ }$ |
| Ch4 | 5v to 6v | 5.56 | $\sqrt{ }$ |

LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN

```
Unit.
                                    Q_TOP36P
Serial No
Test Engineer.....Xen
Date
4/3/10
```


Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

```
                            Q_TOP36P
\(\qquad\)
```

Test Engineer.....Xen.
Date
4/3/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 Q_TOP36P
 Serial No
    ```
\(\qquad\)
```

Test Engineer.....Xen.
Date
4/3/10

```

\section*{3. Inspection}

\author{
Workmanship \\ Inspect the general workmanship standard and comment: \(\sqrt{ }\)
}

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer.....Xen.
Date. 4/3/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & 0V & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 8 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & OK? \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{l \mid}\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit
Q_TOP36P
\qquad

```
Test Engineer.....Xen.
Date...............4/3/10.
```


6. Power

Check the polarity of the wiring:

3 Pin Power Connector

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.06	1 mV	$\sqrt{ }$
+15 v TP4	14.93	1 mV	$\sqrt{ }$
-15 v TP6	-15.02	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?	$\sqrt{ }$

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.
\qquad
Test Engineer.....Xen. .4/3/10
\qquad
,
Date

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	\sqrt{n}	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. Q_TOP36P.

Serial No
Test Engineer.....Xen.
Date. 4/3/10

8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch2	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch3	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch4	3.35	3.3 v to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.66	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	\checkmark
Ch2	0.47	0.4 v to 0.5 v	\checkmark
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	\checkmark

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.46	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.46	0.4 v to 0.5 v	$\sqrt{ }$

\qquad
Engineer.....Xen
4/3/10. \qquad
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.5	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

\qquad
Test Engineer. .Xen.
Date 4/3/10

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? $\mathbf{(+ / - \mathbf { 0 . 1 v })}$
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+I- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.395	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	Pin 7 to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.395	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.398	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. .Q_TOP36P
.Serial No \qquad
Test Engineer.....Xen
Date .4/3/10

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.3	$\sqrt{ }$	-24.3	$\sqrt{ }$	-24.4	$\sqrt{ }$
-7v	-17.2	\checkmark	-17.1	\checkmark	-17.0	\checkmark	-17.2	\checkmark
-5v	-12.3	$\sqrt{ }$	-12.2	$\sqrt{ }$	-12.2	\checkmark	-12.3	\checkmark
-1v	-2.42	\checkmark	-2.41	\checkmark	-2.4	$\sqrt{ }$	-2.4	\checkmark
Ov	0	$\sqrt{ }$	0	\checkmark	0	$\sqrt{ }$	0	\checkmark
1v	2.42	$\sqrt{ }$						
5v	12.2	\checkmark	12.2	\checkmark	12.2	\checkmark	12.2	\checkmark
7v	17.1	$\sqrt{ }$	17.1	$\sqrt{ }$	17.1	\checkmark	17.1	$\sqrt{ }$
10v	24.3	\checkmark	24.4	\checkmark	24.5	\checkmark	24.3	\checkmark

Unit.
Serial No \qquad
Test Engineer
Date

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

\qquad
Test Engineer.....Xen. \qquad
Date 4/3/10

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.57	$\sqrt{ }$
Ch3	5v to 6v	5.56	$\sqrt{ }$
Ch4	5v to 6v	5.56	$\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN

```
Unit
                                    Q_TOP37P

\section*{Contents}
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit
Q_TOP37P
Serial No

```
\(\qquad\)
```

Test Engineer.....Xen.
Date
4/3/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 Q_TOP37P
    ```
\(\qquad\)
\(\qquad\)
```

Test Engineer.....Xen.
Date
4/3/10

```

\section*{3. Inspection}

\author{
Workmanship \\ Inspect the general workmanship standard and comment: \(\sqrt{ }\)
}

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Unit.
Q_TOP37P.
Serial No
Test Engineer.....Xen.
Date.
.4/3/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & 0V & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & \multicolumn{1}{l|}{ OK? } \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit.
Q_TOP37P
Test Engineer.....Xen.
Date...............4/3/10.

```
\(\qquad\)

\section*{6. Power}

\section*{Check the polarity of the wiring:}

\section*{3 Pin Power Connector}

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|l|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 11.95 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.92 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.05 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
Test Engineer.....Xen. 4/3/10
\(\qquad\)
,
Date

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. Q_TOP37P.

Serial No
Test Engineer.....Xen.
Date. 4/3/10

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.35 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xen
Date .4/3/10. \(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.35 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.25 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.25 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. Q_TOP37P.

Serial No \(\qquad\)
Test Engineer.. .Xen
Date 4/3/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c} 
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{l} 
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{l} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{l} 
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.395 & Pin 3 to Pin 4 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.397 & Pin 7 to Pin 8 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.396 & Pin 11 to Pin 12 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.395 & Pin 15 to Pin 16 & 0.397 & \(\sqrt{ }\) \\
\hline
\end{tabular}
10. Distortion

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & \multicolumn{1}{|c|}{ Distortion Free? } \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. .Q_TOP37P
.Serial No \(\qquad\)
Test Engineer.....Xen
Date .4/3/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.2 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.2 & \(\checkmark\) \\
\hline -1v & -2.42 & \(\checkmark\) & -2.41 & \(\checkmark\) & -2.42 & \(\sqrt{ }\) & -2.42 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) & 2.42 & \(\sqrt{ }\) & 2.41 & \(\sqrt{ }\) & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.3 & \(\checkmark\) & 24.4 & \(\checkmark\) & 24.2 & \(\checkmark\) & 24.3 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|l|l|c|c|c|}
\hline \begin{tabular}{l} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{l} 
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c} 
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer.....Xen. \(\qquad\)
Date 4/3/10

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}
```

Unit

```
\(\qquad\)
``` Q TOP38P
Serial No
Test Engineer.....Xen
Date
5/3/10
```

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` .Q_TOP38P \(\qquad\)
```

Test Engineer.....Xen.
Date
5/3/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

                                    Q_TOP38P
                                    Serial No
    ```
\(\qquad\)
```

Test Engineer.....Xen.
Date
.5/3/10

```
\(\qquad\)
``` Serial No
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Also, changed capacitors C50 and C51 from 4.7uF to the correct value of 10uF on CH 1 .

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer. .Xen.
Date. 5/3/10.

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit.
                Q_TOP38P
Test Engineer. Xen \(.5 / 3 / 10\)
``` \(\qquad\)
\(\qquad\)

\section*{6. Power}

\section*{Check the polarity of the wiring:}

\section*{3 Pin Power Connector}

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to +/-3V.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|l|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c}
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 11.93 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.93 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.84 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
Test Engineer.....Xen. 5/3/10
\(\qquad\) ,

Date 5/3/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP38P

Serial No \(\qquad\)
Test Engineer. . Xen
Date. 5/3/10.
\(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.9 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.35 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.25 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer. .Xen
Date 5/3/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c}
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pass/Fail: \\
Equal? \\
(+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|l|c|}
\hline Ch. & Nominal & \begin{tabular}{l}
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{l}
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{l}
Pass/Fail: \\
Equal? \\
(+/- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.395 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.395 & Pin 7 to Pin 8 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.398 & \(\sqrt{ }\) \\
\hline
\end{tabular}
10. Distortion

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & \multicolumn{1}{|c|}{ Distortion Free? } \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP38P. \(\qquad\)
Test Engineer. .Xen 5/3/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) & -24.4 & \(\checkmark\) & -24.1 & \(\checkmark\) \\
\hline -7v & -17.1 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.0 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\checkmark\) & -12.2 & \(\checkmark\) & -12.1 & \(\checkmark\) \\
\hline -1v & -2.41 & \(\sqrt{ }\) & -2.4 & \(\sqrt{ }\) & -2.4 & \(\sqrt{ }\) & -2.4 & \(\checkmark\) \\
\hline 0v & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\checkmark\) & 2.41 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.0 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) & 16.9 & \(\checkmark\) \\
\hline 10v & 24.5 & \(\sqrt{ }\) & 24.2 & \(\sqrt{ }\) & 24.4 & \(\sqrt{ }\) & 24.2 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|l|l|c|c|c|}
\hline \begin{tabular}{l}
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{l}
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c}
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c}
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer.....Xen.
. \(/ 3 / 10\)
\(\qquad\)

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c}
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}
```

Unit

```
\(\qquad\)
``` Q TOP39P
Serial No
Test Engineer.....Xen
Date
5/3/10
```

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

\qquad

``` Q_TOP39P \(\qquad\)
```

Test Engineer.....Xen.
Date
5/3/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 Q_TOP39P
 Serial No
    ```
\(\qquad\)
```

Test Engineer.....Xen.
Date
5/3/10

```
\(\qquad\)

\section*{3. Inspection}

\author{
Workmanship \\ Inspect the general workmanship standard and comment: \(\sqrt{ }\)
}

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Unit.
Q_TOP39P
Serial No
Test Engineer.....Xen.
Date
5/3/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & 0V & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & \multicolumn{1}{l|}{ OK? } \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit.
Q_TOP39P
Test Engineer. Xen $.5 / 3 / 10$

``` \(\qquad\)
\(\qquad\)

\section*{6. Power}

\section*{Check the polarity of the wiring:}

\section*{3 Pin Power Connector}

Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to +/-3V.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|l|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.03 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.98 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.02 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

All Outputs smooth DC, no oscillation?

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
Test Engineer.....Xen. 5/3/10
\(\qquad\)
Date

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP39P.

Serial No \(\qquad\)
Test Engineer. . Xen
Date. 5/3/10.
\(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & 3.3 to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.46 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch2 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.25 & 3 to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.25 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer. .Xen
Date 5/3/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c} 
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{l} 
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{l} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{l} 
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.396 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.396 & Pin 7 to Pin 8 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.396 & Pin 11 to Pin 12 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.395 & Pin 15 to Pin 16 & 0.397 & \(\sqrt{ }\) \\
\hline
\end{tabular}
10. Distortion

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & \multicolumn{1}{|c|}{ Distortion Free? } \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP39P. Serial No \(\qquad\)
Test Engineer. . Xen
Date 5/3/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.1 & \(\checkmark\) & -17.0 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\checkmark\) & -12.2 & \(\checkmark\) & -12.3 & \(\checkmark\) & -12.2 & \(\checkmark\) \\
\hline -1v & -2.42 & \(\sqrt{ }\) & -2.41 & \(\sqrt{ }\) & -2.4 & \(\sqrt{ }\) & -2.4 & \(\checkmark\) \\
\hline 0v & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\checkmark\) & 17.0 & \(\checkmark\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.2 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.2 & \(\sqrt{ }\) & 24.3 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|l|l|c|c|c|}
\hline \begin{tabular}{l} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{l} 
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c} 
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer.....Xen.
. \(/ 3 / 10\)
\(\qquad\)

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}
```

Unit

```
\(\qquad\)
``` Q TOP40P
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen
Date
5/3/10
```


## Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` Q_TOP40P
``` \(\qquad\)
``` Serial No
``` \(\qquad\)
```

Test Engineer.....Xen.
Date
5/3/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 Q_TOP40P
    ```
\(\qquad\)
\(\qquad\)
```

Test Engineer.....Xen.
Date
5/3/10

```

\section*{3. Inspection}

\author{
Workmanship \\ Inspect the general workmanship standard and comment: \(\sqrt{ }\)
}

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Unit.
Q_TOP40P
Serial No
Test Engineer.....Xen.
Date
5/3/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & 0V & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & \multicolumn{1}{l|}{ OK? } \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit.
Q_TOP40P
Test Engineer. Xen

```
\(\qquad\)
\(\qquad\)
Date 5/3/10 \(\qquad\)

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|l|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 12.01 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.96 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.03 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
Test Engineer.....Xen. 5/3/10
\(\qquad\)
Date

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP40P.

Serial No \(\qquad\)
Test Engineer. Xen.
Date. 5/3/10

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.35 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xē
Date .5/3/10. \(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3 to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.25 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer. .Xen
Date 5/3/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c} 
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{l} 
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{l} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{l} 
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.395 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.396 & Pin 7 to Pin 8 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.396 & Pin 11 to Pin 12 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.395 & Pin 15 to Pin 16 & 0.397 & \(\sqrt{ }\) \\
\hline
\end{tabular}
10. Distortion

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & \multicolumn{1}{|c|}{ Distortion Free? } \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP40P Serial No \(\qquad\)
Test Engineer. .Xen 5/3/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & Ch2 olp & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) \\
\hline -7v & -17.1 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.2 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\sqrt{ }\) & -12.3 & \(\sqrt{ }\) & -12.4 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.41 & \(\checkmark\) & -2.42 & \(\checkmark\) & -2.42 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.2 & \(\sqrt{ }\) & 17.1 & \(\sqrt{ }\) & 17.0 & \(\checkmark\) & 17.1 & \(\sqrt{ }\) \\
\hline 10v & -24.5 & \(\checkmark\) & 24.5 & \(\checkmark\) & 24.4 & \(\checkmark\) & 24.5 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|l|l|c|c|c|}
\hline \begin{tabular}{l} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{l} 
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c} 
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
```

Unit.
Q_TOP40P
\qquad

```
Test Engineer.....Xen.
Date................5/3/10.
```

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

| | Ch1 | Ch2 | Ch3 | Ch4 |
| :---: | :---: | :---: | :---: | :---: |
| Not
 Clipping? | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

| | Theoretical o/p | Measured | OK? |
| :--- | :---: | :---: | :---: |
| Ch1 | 5v to 6v | 5.55 | $\sqrt{ }$ |
| Ch2 | 5v to 6v | 5.55 | $\sqrt{ }$ |
| Ch3 | 5v to 6v | 5.56 | $\sqrt{ }$ |
| Ch4 | 5v to 6v | 5.55 | $\sqrt{ }$ |

LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN

```
Unit
Q_TOP41P

Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit

```
\(\qquad\)
```

 Q_TOP41P.
    ```
\(\qquad\)
\(\qquad\)
```

Test Engineer.....Xen.
Date
8/3/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 Q_TOP41P
    ```
\(\qquad\)
\(\qquad\)
```

Test Engineer.....Xen.
Date
8/3/10

```

\section*{3. Inspection}

\author{
Workmanship \\ Inspect the general workmanship standard and comment: \(\sqrt{ }\)
}

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Unit.
Q_TOP41P.
Serial No
Test Engineer.....Xen.
Date.
.8/3/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & 0V & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & \multicolumn{1}{l|}{ OK? } \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit.
Q_TOP41P
Test Engineer. Xen

```
\(\qquad\)
```

Date 8/3/10

```
\(\qquad\)

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|l|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
+/- 0.5v?
\end{tabular} \\
\hline+12 v TP5 & 12.05 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.92 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -14.99 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & 400 mA \\
\hline-16.5 v & 300 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
Test Engineer.....Xen. 8/3/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Unit.}
\(\qquad\) Q_TOP41P. Serial No
Test Engineer. .Xen.
Date. .8/3/10
\(\qquad\)

\section*{8. Corner frequency tests}

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 530 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.35 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.66 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.67 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch2 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer.....Xen
8/3/10. \(\qquad\)
Date
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.2 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.2 & 3 to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.2 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.2 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit.
.Q_TOP41P
.Serial No \(\qquad\)
Test Engineer.. .Xen
Date 8/3/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c} 
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+/-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.202 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.202 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{l} 
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{l} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{l} 
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.396 & Pin 3 to Pin 4 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.397 & Pin 7 to Pin 8 & 0.398 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.395 & Pin 11 to Pin 12 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.395 & Pin 15 to Pin 16 & 0.397 & \(\sqrt{ }\) \\
\hline
\end{tabular}
10. Distortion

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & \multicolumn{1}{|c|}{ Distortion Free? } \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP41P. Serial No \(\qquad\)
Test Engineer. .Xen
Date .8/3/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & \begin{tabular}{l}
Ch2 \\
o/p
\end{tabular} & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.5 & \(\sqrt{ }\) & -24.4 & \(\checkmark\) & -24.5 & \(\checkmark\) & -24.5 & \(\checkmark\) \\
\hline -7v & -17.2 & \(\sqrt{ }\) & -17.1 & \(\checkmark\) & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.41 & \(\checkmark\) & -2.42 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) & -2.41 & \(\checkmark\) \\
\hline Ov & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.42 & \(\checkmark\) & 2.41 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\sqrt{ }\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.1 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.1 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) \\
\hline 10v & 24.3 & \(\checkmark\) & 24.2 & \(\checkmark\) & 24.5 & \(\checkmark\) & 24.5 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|l|l|c|c|c|}
\hline \begin{tabular}{l} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{l} 
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c} 
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer.....Xen.
Date.
8/3/10

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}
```

Unit................Q_TOP42P

```
\(\qquad\)
``` Serial No
Test Engineer.....Xen
Date
8/3/10
```

Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` Q_TOP42P
``` \(\qquad\)
\(\qquad\)
```

Test Engineer.....Xen.
Date
8/3/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 \(_{\text {DVM }}\) Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline V/I calibrator & TENMA & \(72-7730\) & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

 Q_TOP42P
    ```
\(\qquad\)
\(\qquad\)
```

Test Engineer.....Xen.
Date
8/3/10

```

\section*{3. Inspection}

\author{
Workmanship \\ Inspect the general workmanship standard and comment: \(\sqrt{ }\)
}

Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

\section*{Links:}

Check that links W4 and W5 are present on each channel. If not, connect them.

Unit. Q_TOP42P.

Serial No
Test Engineer.....Xen.
Date.
.8/3/10

\section*{4. Continuity Checks}

J2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & DESCRIPTION & To J1 PIN & OK? \\
\hline 1 & PD1P & Photodiode A+ & 1 & \(\sqrt{ }\) \\
\hline 2 & PD2P & Photodiode B+ & 2 & \(\sqrt{ }\) \\
\hline 3 & PD3P & Photodiode C+ & 3 & \(\sqrt{ }\) \\
\hline 4 & PD4P & Photodiode D+ & 4 & \(\sqrt{ }\) \\
\hline 5 & 0V & & & \(\sqrt{ }\) \\
\hline 6 & PD1N & Photodiode A- & 14 & \(\sqrt{ }\) \\
\hline 7 & PD2N & Photodiode B- & 15 & \(\sqrt{ }\) \\
\hline 8 & PD3N & Photodiode C- & 16 & \(\sqrt{ }\) \\
\hline 9 & PD4N & Photodiode D- & 17 & \(\sqrt{ }\) \\
\hline
\end{tabular}

J5
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & & To J1 PIN & OK? \\
\hline 1 & Imon1P & & 5 & \(\sqrt{ }\) \\
\hline 2 & Imon2P & & 6 & \(\sqrt{ }\) \\
\hline 3 & Imon3P & & 7 & \(\sqrt{ }\) \\
\hline 4 & Imon4P & & 8 & \(\sqrt{ }\) \\
\hline 5 & 0V & & 18 & \(\sqrt{ }\) \\
\hline 6 & Imon1N & & 19 & \(\sqrt{ }\) \\
\hline 7 & Imon2N & & 20 & \(\sqrt{ }\) \\
\hline 8 & Imon3N & & 21 & \(\sqrt{ }\) \\
\hline 9 & Imon4N & & & \\
\hline
\end{tabular}

\section*{Power Supply to Satellite box}

J1
\begin{tabular}{|l|l|l|c|}
\hline PIN & SIGNAL & DESCRIPTION & \multicolumn{1}{l|}{ OK? } \\
\hline 9 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 10 & V+ (TP1) & +17v Supply & \(\sqrt{ }\) \\
\hline 11 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 12 & V- (TP2) & -17v Supply & \(\sqrt{ }\) \\
\hline 13 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 22 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 23 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 24 & OV (TP3) & & \(\sqrt{ }\) \\
\hline 25 & OV (TP3) & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{5. TEST SET UP}


Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate \(1 \mathrm{vpk} / \mathrm{pk}\) when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

\section*{Connections:}

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, \(4=\) positive input
J3 pins 6, 7, 8, \(9=\) negative input
J3 pin 5 = ground
Power
J1 pin 9, \(10=+16.5 \mathrm{v}\)
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, \(25=0 \mathrm{v}\)
Outputs
Ch1+ = J4 pin \(1 \quad\) Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15
```

Unit.
Q_TOP42P
Test Engineer. Xen

```
\(\qquad\)
```

Date 8/3/10

``` \(\qquad\)
\(\qquad\)

\section*{6. Power}

\section*{Check the polarity of the wiring:}

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to \(+/-3 \mathrm{~V}\).
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to \(+/-16.5 \mathrm{v}\).
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:
\begin{tabular}{|l|c|c|c|}
\hline Regulator & Output voltage & Output noise & \begin{tabular}{c} 
Nominal \\
\(+/-\mathbf{0 . 5 v} ?\)
\end{tabular} \\
\hline+12 v TP5 & 11.99 & 1 mV & \(\sqrt{ }\) \\
\hline+15 v TP4 & 14.91 & 1 mV & \(\sqrt{ }\) \\
\hline-15 v TP6 & -15.06 & 5 mV & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{All Outputs smooth DC, no oscillation?}

Record Power Supply Currents
\begin{tabular}{|l|l|}
\hline Supply & Current \\
\hline+16.5 v & \\
\hline-16.5 v & 400 mA \\
\hline
\end{tabular}

If the supplies are correct, proceed to the next test.
\(\qquad\)
Test Engineer.....Xen.
\(\qquad\)
Date 8/3/10

\section*{7. Relay Operation}

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

\section*{Filter}
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{2}\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{n}\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Switches
\begin{tabular}{|c|c|c|c|}
\hline Channel & \multicolumn{2}{|c|}{ Indicator } & OK? \\
\hline & ON & OFF & \\
\hline Ch1 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP42P Serial No
Test Engineer. Xen.
Date 8/3/10
\(\qquad\)
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}\) and 100 Hz for each channel
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \(\mathbf{1 H z}\) & \(\mathbf{1 0 H z}\) & \(\mathbf{1 0 0 H z}\) & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 5.0 & 5.0 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at \(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\) and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.4 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.45 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.35 & 3.3 v to 3.7 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.68 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.69 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.66 & 0.48 to 0.75 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.47 & 0.4 v to 0.5 v & \(\checkmark\) \\
\hline Ch2 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.47 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.46 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

Test Engineer.....Xē
Date .8/3/10. \(\qquad\)
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for \(1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}\), and 1 KHz .
0.1 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch2 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch3 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline Ch4 & 4.85 & 4.7 v to 5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch2 & 3.3 & 3 to 3.4 v & \(\sqrt{ }\) \\
\hline Ch3 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline Ch4 & 3.3 & 3 v to 3.4 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

10 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.5 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.48 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.49 & 0.4 v to 0.5 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

100 Hz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.15 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}

1kHz
\begin{tabular}{|l|c|c|c|}
\hline & Output & Specification & Pass/Fail \\
\hline Ch1 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch2 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch3 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline Ch4 & 0.16 & 0.14 v to 0.16 v & \(\sqrt{ }\) \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer. .Xen.
Date 8/3/10

\section*{9. Monitor Outputs}

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{c} 
Output: \\
TP9 to TP13
\end{tabular} & Monitor Pins & \begin{tabular}{c} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Pass/Fail: \\
Equal? \\
(+I-0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(1.16-1.28\) & 1.202 & Pin 1 to Pin 2 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(1.16-1.28\) & 1.202 & Pin 5 to Pin 6 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(1.16-1.28\) & 1.203 & Pin 9 to Pin 10 & 1.202 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(1.16-1.28\) & 1.203 & Pin 13 to Pin 14 & 1.202 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Current monitors}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Ch. & Nominal & \begin{tabular}{l} 
Output \\
across coil \\
resistor
\end{tabular} & Monitor Pins & \begin{tabular}{l} 
Monitor \\
Voltage
\end{tabular} & \begin{tabular}{l} 
Pass/Fail: \\
Equal? \\
(+I- 0.1v)
\end{tabular} \\
\hline \(\mathbf{1}\) & \(0.37-0.41\) & 0.395 & Pin 3 to Pin 4 & 0.396 & \(\sqrt{ }\) \\
\hline \(\mathbf{2}\) & \(0.37-0.41\) & 0.396 & Pin 7 to Pin 8 & 0.397 & \(\sqrt{ }\) \\
\hline \(\mathbf{3}\) & \(0.37-0.41\) & 0.396 & Pin 11 to Pin 12 & 0.398 & \(\sqrt{ }\) \\
\hline \(\mathbf{4}\) & \(0.37-0.41\) & 0.396 & Pin 15 to Pin 16 & 0.397 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{10. Distortion}

Filter out. Increase input voltage to 10 v peak, \(\mathrm{f}=1 \mathrm{kHz}\). Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.
\begin{tabular}{|l|c|}
\hline & \multicolumn{1}{|c|}{ Distortion Free? } \\
\hline Ch1 & \(\sqrt{ }\) \\
\hline Ch2 & \(\sqrt{ }\) \\
\hline Ch3 & \(\sqrt{ }\) \\
\hline Ch4 & \(\sqrt{ }\) \\
\hline
\end{tabular}

Unit. \(\qquad\) Q_TOP42P. .Serial No \(\qquad\)
Test Engineer. Xen.
Date .8/3/10

\section*{11. DC Stability}

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & J3 pins 1,6 & & J3 pins 2,7 & & J3 pins 3,8 & & J3 pins 4,9 & \\
\hline & Ch1 o/p & Ch1 stable ? & \[
\begin{aligned}
& \text { Ch2 } \\
& \text { o/p }
\end{aligned}
\] & Ch2 stable ? & Ch3 o/p & Ch3 stable ? & Ch4 o/p & Ch4 stable ? \\
\hline -10v & -24.4 & \(\sqrt{ }\) & -24.4 & \(\sqrt{ }\) & -24.0 & \(\sqrt{ }\) & -24.3 & \(\checkmark\) \\
\hline -7v & -17.2 & \(\checkmark\) & -17.1 & \(\checkmark\) & -16.9 & \(\checkmark\) & -17.1 & \(\checkmark\) \\
\hline -5v & -12.3 & \(\checkmark\) & -12.3 & \(\checkmark\) & -12.0 & \(\checkmark\) & -12.3 & \(\checkmark\) \\
\hline -1v & -2.42 & \(\sqrt{ }\) & -2.41 & \(\checkmark\) & -2.4 & \(\sqrt{ }\) & -2.4 & \(\checkmark\) \\
\hline Ov & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) & 0 & \(\sqrt{ }\) & 0 & \(\checkmark\) \\
\hline 1v & 2.42 & \(\sqrt{ }\) & 2.42 & \(\sqrt{ }\) & 2.4 & \(\sqrt{ }\) & 2.42 & \(\checkmark\) \\
\hline 5v & 12.2 & \(\checkmark\) & 12.2 & \(\checkmark\) & 12.0 & \(\sqrt{ }\) & 12.2 & \(\checkmark\) \\
\hline 7v & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\sqrt{ }\) & 17.0 & \(\checkmark\) \\
\hline 10v & 24.3 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.3 & \(\sqrt{ }\) & 24.3 & \(\checkmark\) \\
\hline
\end{tabular}

Unit.
Serial No \(\qquad\)
Test Engineer
Date

\section*{12. Crosstalk Tests}

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

\subsection*{12.1 Full Test}

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).
\begin{tabular}{|l|l|c|c|c|}
\hline \begin{tabular}{l} 
INPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{l} 
OUTPUT \\
CHANNEL
\end{tabular} & \begin{tabular}{c} 
Output at \\
10Hz
\end{tabular} & \begin{tabular}{c} 
Maximum \\
o/p
\end{tabular} & @ Freq \\
\hline Channel 1 & Channel 2 & & & \\
\hline Channel 2 & Channel 1 & & & \\
\hline Channel 2 & Channel 3 & & & \\
\hline Channel 3 & Channel 2 & & & \\
\hline Channel 3 & Channel 4 & & & \\
\hline Channel 4 & Channel 3 & & & \\
\hline
\end{tabular}
\(\qquad\)
Test Engineer.....Xen.
Date.
8/3/10

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}


Contents
1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

\section*{1. Description}

\section*{Block diagram}


\section*{2. Description}

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of \(20 \mathrm{~dB} / \mathrm{decade}\) up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.
```

Unit.

```
\(\qquad\)
```

 Q_TOP43P
    ```
\(\qquad\)
``` Serial No
``` \(\qquad\)
```

Test Engineer . Xen.
9/3/10
Date 9/3/10......

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.
Q_TOP43P

```
\(\qquad\)
Test Engineer ....Xen.
```3/2/10
```

$\qquad$

```
Date
```


## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Also, IC4 and IC12 changed on CH3.

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	0V			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

Power Supply to Satellite box
J1

PIN	SIGNAL	DESCRIPTION	OK?
9	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
10	$\mathrm{~V}+$ (TP1)	+17 v Supply	$\sqrt{ }$
11	V - (TP2)	-17 v Supply	$\sqrt{ }$
12	V - (TP2)	-17 v Supply	$\sqrt{ }$
13	0 V (TP3)		$\sqrt{ }$
22	0 V (TP3)		$\sqrt{ }$
23	0 V (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	0 V (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
 Q_TOP43P
Test Engineer . Xen
3/2/10
```

                                    Serial No
    
## 6. Power

## Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   +/- 0.5v?
+12 v TP5	12.03	1 mV	$\sqrt{ }$
+15 v TP4	14.92	1 mV	$\sqrt{ }$
-15 v TP6	-15.04	5 mV	$\sqrt{ }$

## All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	400 mA
-16.5 v	300 mA

If the supplies are correct, proceed to the next test.
$\qquad$品
$\qquad$ 3/2/10......

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.
Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{n}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. $\qquad$ Q_TOP43P Serial No
Test Engineer ....Xen.........
Date $\qquad$ $.3 / 2 / 10 \ldots .$.

## 8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch3	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch4	3.4	$3.3 v$ to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

$\qquad$
$\qquad$
Date .3/2/10......
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	$3 v$ to 3.4 v	$\sqrt{ }$
Ch2	3.25	3 v to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.2	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.48	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

$\qquad$
Test Engineer .Xen.........
Date 3/2/10......

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+I- 0.1v)
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+/- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.395	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	$\operatorname{Pin} 7$ to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.395	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.398	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. Q_TOP43P. Serial No $\qquad$
Test Engineer ....Xen.........
Date 3/2/10......

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$
-7v	-17.0	$\checkmark$	-17.2	$\checkmark$	-17.0	$\checkmark$	-17.0	$\checkmark$
-5v	-12.2	$\sqrt{ }$	-12.2	$\sqrt{ }$	-12.2	$\checkmark$	-12.2	$\checkmark$
-1v	-2.4	$\checkmark$	-2.41	$\checkmark$	-2.4	$\sqrt{ }$	-2.4	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\checkmark$	0	$\sqrt{ }$	0	$\checkmark$
1v	2.42	$\sqrt{ }$						
5v	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$
7v	17.0	$\checkmark$	17.0	$\sqrt{ }$	17.0	$\sqrt{ }$	17.1	$\sqrt{ }$
10v	24.5	$\sqrt{ }$	24.5	$\sqrt{ }$	24.3	$\checkmark$	24.5	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date $\qquad$

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1 v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit. Q_TOP43P
```

```
Test EngineerXen
```

```
Test EngineerXen
``` Serial No \(\qquad\)
Date
3/2/10

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|c|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch3 & \(\mathbf{5 v}\) to 6v & 5.53 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{LIGO Laboratory / LIGO Scientific Collaboration} Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009

\section*{Quad TOP Coil Driver Board Test Plan}

\section*{R. M. Cutler, University of Birmingham}

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

\section*{QUAD TOP COIL DRIVER BOARD TEST PLAN}
```

Unit.

```
\(\qquad\)
``` Q TOP44P
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen
Date
9/3/10
```


## Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

```
 Q_TOP44P
 Serial No
```

$\qquad$

```
Test Engineer.....Xen.
Date
9/3/10
```


## 2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

```
Unit.
```

$\qquad$

```
 Q_TOP44P
 Serial No
```

$\qquad$

```
Test Engineer.....Xen.
Date
9/3/10
```


## 3. Inspection

## Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Also, replaced IC12 on CH 4 .

## Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer.....Xen.
Date.
8/3/10

## 4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

## Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

## 5. TEST SET UP



Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

## Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit.
 Q_TOP44P
Test Engineer. Xen
```

$\qquad$

```
Date 8/3/10
```

$\qquad$

## 6. Power

## Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal   $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.02	1 mV	$\sqrt{ }$
+15 v TP4	14.91	1 mV	$\sqrt{ }$
-15 v TP6	-14.99	5 mV	$\sqrt{ }$

## All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.
$\qquad$
Test Engineer.....Xen. 8/3/10

## 7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

## Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{n}$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. $\qquad$ Q_TOP44P Serial No
Test Engineer. Xen.
Date 8/3/10
$\qquad$
8. Corner frequency tests

Apply a signal to the input, amplitude 1v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13 at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch2	3.4	3.3 to 3.7 v	$\sqrt{ }$
Ch3	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch4	3.35	3.3 v to 3.7 v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.67	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\checkmark$
Ch2	0.47	0.4 v to 0.5 v	$\checkmark$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\checkmark$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\checkmark$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.46	0.4 v to 0.5 v	$\sqrt{ }$

$\qquad$
Test Engineer.....Xen
8/3/10. $\qquad$
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch2	3.3	3 to 3.4 v	$\sqrt{ }$
Ch3	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.3	3 v to 3.4 v	$\sqrt{ }$

10Hz

	Output	Specification	Pass/Fail
Ch1	0.5	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.48	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

$\qquad$
Test Engineer. .Xen.
Date 8/3/10.

## 9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output:   TP9 to TP13	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   $\mathbf{( + / - \mathbf { 0 . 1 v } )}$
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

## Current monitors

Ch.	Nominal	Output   across coil   resistor	Monitor Pins	Monitor   Voltage	Pass/Fail:   Equal?   (+I- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	Pin 7 to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.395	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.396	Pin 15 to Pin 16	0.398	$\sqrt{ }$

## 10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. $\qquad$ Q_TOP44P .Serial No $\qquad$
Test Engineer. .Xen
9/3/10

## 11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.4	$\checkmark$	-24.4	$\checkmark$	-24.4	$\checkmark$	-24.4	$\checkmark$
-7v	-17.1	$\checkmark$	-17.0	$\checkmark$	-17.1	$\checkmark$	-17.1	$\checkmark$
-5v	-12.3	$\sqrt{ }$	-12.2	$\checkmark$	-12.2	$\checkmark$	-12.3	$\checkmark$
-1v	-2.42	$\sqrt{ }$	-2.4	$\sqrt{ }$	-2.42	$\sqrt{ }$	-2.41	$\checkmark$
Ov	0	$\sqrt{ }$	0	$\checkmark$	0	$\checkmark$	0	$\checkmark$
1v	2.42	$\checkmark$	2.42	$\checkmark$	2.42	$\checkmark$	2.41	$\checkmark$
5v	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$	12.2	$\checkmark$
7v	17.1	$\checkmark$	17.0	$\checkmark$	17.1	$\sqrt{ }$	17.0	$\checkmark$
10v	24.3	$\sqrt{ }$	24.2	$\sqrt{ }$	24.4	$\sqrt{ }$	24.3	$\checkmark$

Unit.
Serial No $\qquad$
Test Engineer
Date

## 12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

### 12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT   CHANNEL	OUTPUT   CHANNEL	Output at   10Hz	Maximum   o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

$\qquad$
Test Engineer.....Xen.
Date..................9/3/10

## 13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not   Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.57	$\sqrt{ }$
Ch3	5v to 6v	5.55	$\sqrt{ }$
Ch4	5v to 6v	5.57	$\sqrt{ }$

## LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
## Quad TOP Coil Driver Board Test Plan

## R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

## QUAD TOP COIL DRIVER BOARD TEST PLAN

```
Unit
```

$\qquad$

``` Q TOP45P
``` \(\qquad\)
``` Serial No
Test Engineer.....Xen
Date
9/3/10
```


## Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

## 1. Description

## Block diagram



## 2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit
```

$\qquad$

``` Q_TOP45P \(\qquad\)
```

Test Engineer.....Xen.
Date
9/3/10

```

\section*{2. Test equipment}
```

Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box

```

Record the Models and serial numbers of the test equipment used below.
\begin{tabular}{|c|c|c|c|}
\hline Unit (e.g. DVM) & Manufacturer & Model & Serial Number \\
\hline DVM & Fluke & 115 & \\
\hline Signal Generator & Agilent & 33250 A & \\
\hline Oscilloscope & ISO-TECH & ISR622 & \\
\hline PSU*2 & Farnell & L30-2 & \\
\hline DVM & Fluke & 77 III & \\
\hline DVM & TENMA & \(72-7730\) & \\
\hline V/I calibrator & Time Electronics & 1044 & \\
\hline
\end{tabular}
```

Unit.

```
\(\qquad\)
```

                Q_TOP45P
                                    Serial No
    ```
\(\qquad\)
```

Test Engineer.....Xen.
Date
9/3/10

```
\(\qquad\)
``` Serial No
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Also, changed capacitors C50 and C51 on all channels from 4.7 uF to 10 uF .

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Test Engineer.. Xen.
9/3/10
\qquad
Date. \qquad

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	$0 V$			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		8	$\sqrt{ }$
4	Imon4P			$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit
                                Q_TOP45P
Test Engineer. Xen
```

\qquad

```
Date 9/3/10
```

\qquad

6. Power

Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal $+/-\mathbf{0 . 5 v} ?$
+12 v TP5	12.06	1 mV	$\sqrt{ }$
+15 v TP4	14.90	1 mV	$\sqrt{ }$
-15 v TP6	-15.09	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.
\qquad
Test Engineer.....Xen. 9/3/10
\qquad
Date

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	\sqrt{n}	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Unit. \qquad Q_TOP45P.

Serial No \qquad
Test Engineer. Xen.
Date. .9/3/10
\qquad
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.35	$3.3 v$ to 3.7 v	$\sqrt{ }$
Ch2	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch3	3.45	3.3 v to 3.7 v	$\sqrt{ }$
Ch4	3.4	3.3 v to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.68	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	\checkmark
Ch2	0.47	0.4 v to 0.5 v	\checkmark
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

Test Engineer.....Xen
Date .9/3/10 \qquad
8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.2	3 v to 3.4 v	$\sqrt{ }$
Ch2	3.2	3 to 3.4 v	$\sqrt{ }$
Ch3	3.2	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.25	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.48	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

\qquad
Test Engineer. .Xen
Date 9/3/10

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.202	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+I- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	$\sqrt{ }$
$\mathbf{2}$	$0.37-0.41$	0.396	Pin 7 to Pin 8	0.397	$\sqrt{ }$
$\mathbf{3}$	$0.37-0.41$	0.395	Pin 11 to Pin 12	0.397	$\sqrt{ }$
$\mathbf{4}$	$0.37-0.41$	0.397	Pin 15 to Pin 16	0.399	$\sqrt{ }$

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. \qquad Q_TOP45P. .Serial No \qquad
Test Engineer. .Xen
Date .9/3/10

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	$\begin{aligned} & \text { Ch2 } \\ & \text { o/p } \end{aligned}$	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	\checkmark	-24.4	\checkmark	-24.5	\checkmark	-24.4	\checkmark
-7v	-17.1	\checkmark	-17.1	\checkmark	-17.1	\checkmark	-17.0	\checkmark
-5v	-12.3	\checkmark	-12.2	\checkmark	-12.2	\checkmark	-12.2	\checkmark
-1v	-2.4	$\sqrt{ }$	-2.41	$\sqrt{ }$	-2.41	$\sqrt{ }$	-2.41	\checkmark
Ov	0	$\sqrt{ }$	0	\checkmark	0	\checkmark	0	\checkmark
1v	2.42	\checkmark	2.41	\checkmark	2.42	\checkmark	2.42	\checkmark
5v	12.2	\checkmark	12.2	\checkmark	12.2	\checkmark	12.2	\checkmark
7v	17.1	\checkmark	17.0	\checkmark	17.0	$\sqrt{ }$	17.0	\checkmark
10v	24.5	$\sqrt{ }$	24.3	$\sqrt{ }$	24.4	$\sqrt{ }$	24.5	\checkmark

Unit.
Serial No \qquad
Test Engineer
Date

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

\qquad
Test Engineer.....Xen.
Date.................9/3/10

13. Dynamic Range Tests

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.

	Ch1	Ch2	Ch3	Ch4
Not Clipping?	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.

	Theoretical o/p	Measured	OK?
Ch1	5v to 6v	5.56	$\sqrt{ }$
Ch2	5v to 6v	5.56	$\sqrt{ }$
Ch3	5v to 6v	5.55	$\sqrt{ }$
Ch4	5v to 6v	5.57	$\sqrt{ }$

LIGO Laboratory / LIGO Scientific Collaboration

 Lıgo-to900231-v3 Advanced LIGO UK 30 November 2009
Quad TOP Coil Driver Board Test Plan

R. M. Cutler, University of Birmingham

Distribution of this document:
Inform aligo_sus
This is an internal working note
of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research
University of Glasgow
Phone +44 (0) 1413305884
Fax +44 (0) 1413306833
E-mail k.strain@physics.gla.ac.uk
Engineering Department
CCLRC Rutherford Appleton Laboratory
Phone +44 (0) 1235445297
Fax +44 (0) 1235445843
E-mail J.Greenhalgh@rl.ac.uk

School of Physics and Astronomy
University of Birmingham
Phone +44 (0) 1214146447
Fax +44 (0) 1214143722
E-mail av@star.sr.bham.ac.uk
Department of Physics
University of Strathclyde
Phone +44 (0) 14115483360
Fax +44 (0) 1415522891
E-mail N.Lockerbie@phys.strath.ac.uk
http://www.ligo.caltech.edu/
http://www.physics.gla.ac.uk/igr/sus/
http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html
http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm

QUAD TOP COIL DRIVER BOARD TEST PLAN

```
Unit................Q_TOP47P
```

\qquad

``` Serial No
Test Engineer.....Xen
Date 10/3/10
```


Contents

1. Description
2. Test Equipment
3. Inspection
4. Continuity Checks
5. Test Set Up
6. Power
7. Relay operation
8. Corner Frequency Tests
9. Monitor Outputs
10. Distortion
11. DC Stability
12. Crosstalk Tests
13. Dynamic range

1. Description

Block diagram

2. Description

Each TOP Driver board consists of four identical channels and three power regulators, which provide regulated power to the four channels.

Taking the diagram block by block, the first block contains relays which switch the circuit between the normal inputs and the test inputs.

The second block contains a low pass filter with a corner frequency of 1 Hz , followed by a complimentary zero at 10 Hz . To a good approximation, the gain is reduced by a factor of 0.7 at 1 Hz , the attenuation increases at a rate of $20 \mathrm{~dB} / \mathrm{decade}$ up to the corner frequency of the zero at 10 Hz , after which the characteristic levels off. This filter may be switched in and out as required by relay control. Operational amplifiers follow which have a gain of 1.2.

The third block contains a filter with a similar characteristic, the main difference being that this filter is not switchable.

This is followed by the output buffer stage, consisting of an operational amplifier followed by a power driver buffer. The power driver is unity gain, and the operational amplifier provides the gain in this stage. The loop is closed around the buffer/operational amplifier pair. The current limit is set to 0.25A.

The outputs are buffered by unity gain voltage followers which drive the monitor board.

```
Unit.
                                Q_TOP47P
```

\qquad
\qquad

```
Test Engineer.....Xen.
Date
10/3/10
```


2. Test equipment

```
Power supplies (At least +/- 20v variable, 1A)
Signal generator (capable of delivering 10 v peak, 0.1 Hz to 10 KHz ))
Digital oscilloscope
Analogue oscilloscope
Agilent Dynamic Signal Analyser (or similar)
Low noise Balanced Driver circuit
Relay test box
```

Record the Models and serial numbers of the test equipment used below.

Unit (e.g. DVM)	Manufacturer	Model	Serial Number
DVM	Fluke	115	
Signal Generator	Agilent	33250 A	
Oscilloscope	ISO-TECH	ISR622	
PSU*2	Farnell	L30-2	
DVM	Fluke	77 III	
DVM	TENMA	$72-7730$	
V/I calibrator	Time Electronics	1044	

```
Unit.
```

\qquad

```
                Q_TOP47P
```

\qquad
\qquad

```
Test Engineer.....Xen.
Date
9/3/10
```


3. Inspection

Workmanship

Inspect the general workmanship standard and comment: $\sqrt{ }$
Removed capacitors C102, C103, C104 and C105 on all channels and replaced C102 and C103 with 33pF polypropylene capacitors.

Also, U1 has been replaced.

Links:

Check that links W4 and W5 are present on each channel. If not, connect them.

Unit. Q_TOP47P.

Serial No
Test Engineer.....Xen.
Date.
$.9 / 3 / 10$

4. Continuity Checks

J2

PIN	SIGNAL	DESCRIPTION	To J1 PIN	OK?
1	PD1P	Photodiode A+	1	$\sqrt{ }$
2	PD2P	Photodiode B+	2	$\sqrt{ }$
3	PD3P	Photodiode C+	3	$\sqrt{ }$
4	PD4P	Photodiode D+	4	$\sqrt{ }$
5	0V			$\sqrt{ }$
6	PD1N	Photodiode A-	14	$\sqrt{ }$
7	PD2N	Photodiode B-	15	$\sqrt{ }$
8	PD3N	Photodiode C-	16	$\sqrt{ }$
9	PD4N	Photodiode D-	17	$\sqrt{ }$

J5

PIN	SIGNAL		To J1 PIN	OK?
1	Imon1P		5	$\sqrt{ }$
2	Imon2P		6	$\sqrt{ }$
3	Imon3P		7	$\sqrt{ }$
4	Imon4P		8	$\sqrt{ }$
5	0V		18	$\sqrt{ }$
6	Imon1N		19	$\sqrt{ }$
7	Imon2N		20	$\sqrt{ }$
8	Imon3N		21	$\sqrt{ }$
9	Imon4N			

Power Supply to Satellite box

J1

PIN	SIGNAL	DESCRIPTION	OK?
9	V+ (TP1)	+17v Supply	$\sqrt{ }$
10	V+ (TP1)	+17v Supply	$\sqrt{ }$
11	V- (TP2)	-17v Supply	$\sqrt{ }$
12	V- (TP2)	-17v Supply	$\sqrt{ }$
13	OV (TP3)		$\sqrt{ }$
22	OV (TP3)		$\sqrt{ }$
23	OV (TP3)		$\sqrt{ }$
24	OV (TP3)		$\sqrt{ }$
25	OV (TP3)		$\sqrt{ }$

5. TEST SET UP

Note:
(1) Input signal to differential amplifier is generally stated in the tests below. There is therefore an inherent gain of 2 in the system.
(2) Some signal generators will indicate $1 \mathrm{vpk} / \mathrm{pk}$ when the output is in fact 1 v Peak into the high impedance Differential driver used. The test procedure refers to the actual voltage out of the signal generator.

Connections:

Differential signal inputs to the board under test:
J3 pins 1, 2, 3, $4=$ positive input
J3 pins 6, 7, 8, $9=$ negative input
J3 pin 5 = ground
Power
J1 pin 9, $10=+16.5 \mathrm{v}$
J1 pin 11,12 = -16.5
J 1 pins 22, 23, 24, $25=0 \mathrm{v}$
Outputs
Ch1+ = J4 pin $1 \quad$ Ch1- = J4 pin 9
Ch2+ = J4 pin 3
Ch2- = J4 pin 11
Ch3+ = J4 pin 5
Ch3- = J4 pin 13
Ch4+ = J4 pin 7
Ch4- = J4 pin 15

```
Unit.
                Q_TOP47P
Test Engineer. Xen
```

\qquad

```
Date 9/3/10
```

\qquad

6. Power

Check the polarity of the wiring:

3 Pin Power Connector
Set the power supply outputs to zero.
Connect power to the unit
Increase the voltages on the supplies to $+/-3 \mathrm{~V}$.
Determine that the supply polarities are correct on TP1 and TP2.
If they are, increase input voltages to $+/-16.5 \mathrm{v}$.
Record the output voltages, measured on a 4 digit DVM, from each regulator Observe the output on an analogue oscilloscope, set to AC. Measure and record the peak to peak noise on each output.
Record regulator outputs:

Regulator	Output voltage	Output noise	Nominal +/- 0.5v?
+12 v TP5	12.08	1 mV	$\sqrt{ }$
+15 v TP4	14.92	1 mV	$\sqrt{ }$
-15 v TP6	-15.05	5 mV	$\sqrt{ }$

All Outputs smooth DC, no oscillation?

Record Power Supply Currents

Supply	Current
+16.5 v	
-16.5 v	400 mA

If the supplies are correct, proceed to the next test.
\qquad
Test Engineer.....Xen. 9/3/10
\qquad
Date

7. Relay Operation

Operate each relay in turn.
Observe its operation. LEDs should illuminate when the relays are operated.

Filter

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	\sqrt{n}	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Test Switches

Channel	Indicator		OK?
	ON	OFF	
Ch1	$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$
Ch2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ch4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

```
Unit.
``` \(\qquad\)
``` Q_TOP47P Serial No
Test Engineer.....Xen.
Date 9/3/10
```

\qquad
\qquad
8. Corner frequency tests

Apply a signal to the input, amplitude 1 v peak, Frequency 1 Hz .
8.1 Both Filters out: Remove W4 and W5

Measure and record the Peak to Peak output between TP9 and TP13
at $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 100 Hz for each channel

	$\mathbf{1 H z}$	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	Specification	Pass/Fail
Ch1	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	5.0	5.0	4.7 v to 5 v	$\sqrt{ }$

8.2 Switched filter in: Remove W5, insert W4

Switch in the filter and test the response at $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz . Measure and record the Peak to Peak output between TP9 and TP13.
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch2	3.4	3.3 to 3.7 v	$\sqrt{ }$
Ch3	3.4	3.3 v to 3.7 v	$\sqrt{ }$
Ch4	3.4	3.3 v to 3.7 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.68	0.48 to 0.75 v	$\sqrt{ }$
Ch2	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch3	0.67	0.48 to 0.75 v	$\sqrt{ }$
Ch4	0.66	0.48 to 0.75 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	\checkmark
Ch2	0.47	0.4 v to 0.5 v	\checkmark
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.47	0.4 v to 0.5 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.46	0.4 v to 0.5 v	$\sqrt{ }$

8.3 Fixed filter in: Remove W4, insert W5

Measure and record the peak to peak output between TP9 and TP13 at 0.1 Hz . Repeat for $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 KHz .
0.1 Hz

	Output	Specification	Pass/Fail
Ch1	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch2	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch3	4.85	4.7 v to 5 v	$\sqrt{ }$
Ch4	4.85	4.7 v to 5 v	$\sqrt{ }$

1Hz

	Output	Specification	Pass/Fail
Ch1	3.3	3 v to 3.4 v	$\sqrt{ }$
Ch2	3.2	3 to 3.4 v	$\sqrt{ }$
Ch3	3.25	3 v to 3.4 v	$\sqrt{ }$
Ch4	3.25	3 v to 3.4 v	$\sqrt{ }$

10 Hz

	Output	Specification	Pass/Fail
Ch1	0.49	0.4 v to 0.5 v	$\sqrt{ }$
Ch2	0.47	0.4 v to 0.5 v	$\sqrt{ }$
Ch3	0.48	0.4 v to 0.5 v	$\sqrt{ }$
Ch4	0.48	0.4 v to 0.5 v	$\sqrt{ }$

100 Hz

	Output	Specification	Pass/Fail
Ch1	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.15 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.15 v to 0.16 v	$\sqrt{ }$

1kHz

	Output	Specification	Pass/Fail
Ch1	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch2	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch3	0.16	0.14 v to 0.16 v	$\sqrt{ }$
Ch4	0.16	0.14 v to 0.16 v	$\sqrt{ }$

\qquad
Test Engineer. . Xen
Date
10/3/10

9. Monitor Outputs

Remove W4 and W5. With a 39 ohm dummy load on each channel, apply a 1 v r.m.s input at 10 Hz and compare the differential output differential output on each monitor pair for each channel.
Voltage monitors

Ch.	Nominal	Output: TP9 to TP13	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+/-0.1v)
$\mathbf{1}$	$1.16-1.28$	1.202	Pin 1 to Pin 2	1.202	$\sqrt{ }$
$\mathbf{2}$	$1.16-1.28$	1.202	Pin 5 to Pin 6	1.203	$\sqrt{ }$
$\mathbf{3}$	$1.16-1.28$	1.202	Pin 9 to Pin 10	1.202	$\sqrt{ }$
$\mathbf{4}$	$1.16-1.28$	1.202	Pin 13 to Pin 14	1.202	$\sqrt{ }$

Current monitors

Ch.	Nominal	Output across coil resistor	Monitor Pins	Monitor Voltage	Pass/Fail: Equal? (+I- 0.1v)
$\mathbf{1}$	$0.37-0.41$	0.396	Pin 3 to Pin 4	0.397	
$\mathbf{2}$	$0.37-0.41$	0.397	Pin 7 to Pin 8	0.398	
$\mathbf{3}$	$0.37-0.41$	0.396	Pin 11 to Pin 12	0.397	
$\mathbf{4}$	$0.37-0.41$	0.395	Pin 15 to Pin 16	0.397	

10. Distortion

Filter out. Increase input voltage to 10 v peak, $\mathrm{f}=1 \mathrm{kHz}$. Dummy 39 Ohm loads. Observe the voltage across each load with an oscilloscope.

	Distortion Free?
Ch1	$\sqrt{ }$
Ch2	$\sqrt{ }$
Ch3	$\sqrt{ }$
Ch4	$\sqrt{ }$

Unit. \qquad Q_TOP47P. \qquad Serial No \qquad
Test Engineer. .Xen
10/3/10

11. DC Stability

Use the precision voltage source via a break out box on the input (J3). All filters off. Record the differential output voltage between TP7 and TP11. Check stability while slowly increasing the output voltage. (Link W2 in)

	J3 pins 1,6		J3 pins 2,7		J3 pins 3,8		J3 pins 4,9	
	Ch1 o/p	Ch1 stable ?	Ch2 olp	Ch2 stable ?	Ch3 o/p	Ch3 stable ?	Ch4 o/p	Ch4 stable ?
-10v	-24.5	$\sqrt{ }$	-24.5	$\sqrt{ }$	-24.4	$\sqrt{ }$	-24.5	$\sqrt{ }$
-7v	-17.2	\checkmark	-17.1	\checkmark	-17.1	\checkmark	-17.2	\checkmark
-5v	-12.2	$\sqrt{ }$	-12.2	$\sqrt{ }$	-12.2	\checkmark	-12.3	\checkmark
-1v	-2.41	\checkmark	-2.41	\checkmark	-2.4	$\sqrt{ }$	-2.41	\checkmark
Ov	0	$\sqrt{ }$	0	\checkmark	0	$\sqrt{ }$	0	\checkmark
1v	2.42	$\sqrt{ }$						
5v	12.2	\checkmark	12.2	\checkmark	12.1	\checkmark	12.2	\checkmark
7v	17.1	$\sqrt{ }$	17.1	$\sqrt{ }$	17.0	\checkmark	17.1	$\sqrt{ }$
10v	24.3	\checkmark	24.5	\checkmark	24.3	\checkmark	24.5	\checkmark

Unit.
Serial No \qquad
Test Engineer
Date

12. Crosstalk Tests

The purpose of these tests is to determine the level of crosstalk between each of the channels. As this is a lengthy test, and is mainly a function of board layout, it may be decided to perform the full test on a sample board only, and repeat the quick test on subsequent units.

12.1 Full Test

As crosstalk is a function of board layout, this test is only necessary on a sample basis.

Use the HP Dynamic signal analyser to measure the cross talk between adjacent channels.

Apply the source, set at 1v r.m.s, to each channel in turn, via the differential driver, while grounding the inputs to adjacent channels.

Measure the transfer function to adjacent channels.
Record the maximum outputs on adjacent channels, and record the frequency at which this occurs. (Assuming an output signal is detectable).

INPUT CHANNEL	OUTPUT CHANNEL	Output at 10Hz	Maximum o/p	@ Freq
Channel 1	Channel 2			
Channel 2	Channel 1			
Channel 2	Channel 3			
Channel 3	Channel 2			
Channel 3	Channel 4			
Channel 4	Channel 3			

```
Unit.
                Q_TOP47P
\(\qquad\)
```

Test Engineer.....Xen.

```
\(\qquad\)
```

Test Engineer.. 10/3/10

``` \(\qquad\)

\section*{13. Dynamic Range Tests}

In this test, the board is tested at maximum dynamic range. Connect a 39 Ohm, 1W (or more) load resistor to the output of each channel. Switch out the input filter. Apply a 10 v peak sinusoidal signal at 10 Hz to the input to the input. Check that the signal on TP10 on one of the channels is 10 v peak.

Observe the differential output voltage across the load resistors with an oscilloscope. Check that the waveforms are not clipping.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ch1 & Ch2 & Ch3 & Ch4 \\
\hline \begin{tabular}{c} 
Not \\
Clipping?
\end{tabular} & \(\sqrt{ }\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline
\end{tabular}

If the waveforms are not clipping, measure the output peak differential voltage across each load resistor, and record it in the table below.
\begin{tabular}{|l|c|c|c|}
\hline & Theoretical o/p & Measured & OK? \\
\hline Ch1 & 5v to 6v & 5.56 & \(\sqrt{ }\) \\
\hline Ch2 & 5v to 6v & 5.57 & \(\sqrt{ }\) \\
\hline Ch3 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline Ch4 & 5v to 6v & 5.55 & \(\sqrt{ }\) \\
\hline
\end{tabular}```

