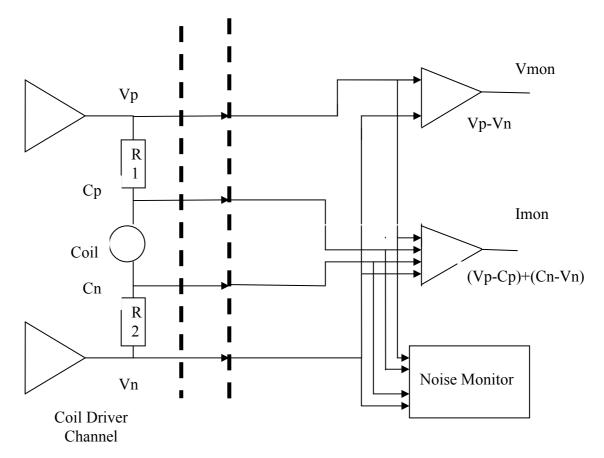
LIGO Laboratory / LIGO Scientific Collaboration

Distribution of this document: Inform aligo_sus

This is an internal working note of the Advanced LIGO Project, prepared by members of the UK team.

Institute for Gravitational Research University of Glasgow Phone +44 (0) 141 330 5884 Fax +44 (0) 141 330 6833 E-mail k.strain@physics.gla.ac.uk Engineering Department CCLRC Rutherford Appleton Laboratory Phone +44 (0) 1235 445 297 Fax +44 (0) 1235 445 843 E-mail J.Greenhalgh@rl.ac.uk School of Physics and Astronomy University of Birmingham Phone +44 (0) 121 414 6447 Fax +44 (0) 121 414 3722 E-mail <u>av@star.sr.bham.ac.uk</u> Department of Physics University of Strathclyde Phone +44 (0) 1411 548 3360 Fax +44 (0) 1411 552 2891 E-mail <u>N.Lockerbie@phys.strath.ac.uk</u>

http://www.ligo.caltech.edu/ http://www.physics.gla.ac.uk/igr/sus/ http://www.sr.bham.ac.uk/research/gravity/rh,d,2.html http://www.eng-external.rl.ac.uk/advligo/papers_public/ALUK_Homepage.htm


QUAD MONITOR BOARD TEST PLAN

Serial No
Test Engineer
Date

Contents

- 1. Block diagram
- 2. Test equipment
- 3. Description
- 4. Inspection
- 5. Power
- 6. Circuit operation
 - 6.1.1 Noise Amplifier 6.1.2 Voltage Monitor 6.1.3 Current Monitor 6.1.4 RMS Circuit

1. BLOCK DIAGRAM

1. Block diagram of one channel of the monitor board. Each board houses four such channels.

2. TEST EQUIPMENT

Variable +/- 15v power supply Precise DVM Oscilloscope Signal generator

The Coil Drive Simulator test equipment output is similar to the Coil Driver Channel shown above, except that the Coil is replaced by two 3.9K resistors in series.

Other resistors may be connected in parallel with this as required during the tests which follow.

3. DESCRIPTION

The function of the Monitor Board is to monitor the outputs from a drive board. It has four identical channels, one per drive board channel. Similar Monitor Boards are used to monitor the UIM Driver, the Top Driver and the PUM drivers.

Inputs

The inputs of the monitor Board are connected to the two amplifier outputs and the coil feeds. The Driver Board and the monitor Board are both mounted in a Drive unit.

The signals which are monitored on each channel are: the positive and negative output voltages from the drive amplifiers, and the positive and negative output voltages developed across the coil.

These four signals are used to measure the amplifier output voltage, the current through the coil and the output noise on each of the drive amplifier channels.

Output Voltage

The Amplifier Output Voltage is measured in IC9, by subtracting the Positive Amplifier output from the Negative Amplifier Output. The output is scaled by a factor of 3, so, for example, inputs of +15v and -15v, the sum of which is 30v, would give an output of 30v/3 = 10v.

Coil Current

The coil current is calculated by IC8, by measuring the sum of the voltages across the two output resistors (R1 and R2 on the block diagram.) The amplifier performs the following calculation:

{(Pos Voltage Output) – (Negative Voltage Output)} - {(Pos Coil Voltage) - (Negative Coil Voltage)}

The voltage across the coil is subtracted from the voltage across the Amplifier output. This gives the voltage across the output resistors, which is proportional the coil current.

The test equipment has 3.9K resistors for R1 and R2. The coil is simulated by two 3.9K resistors in series. Each resistor will therefore drop a quarter of the sum of the two outputs. The summing amplifier has a gain of 1/3, so for +/- 15v in the output will be 5v.

IC10 is an r.m.s. converter chip, which calculates the true r.m.s. output current. It is followed by an amplifier. The overall scaling factor of the r.m.s. converter and amplifier circuits is 1/3.

Noise Measurement

As the noise level amounts to a few pico amps, it is extremely difficult to measure directly. Instead, the noise voltage across the amplifier outputs is monitored. This enables the coil noise current to be estimated. Four amplifier stages each coupled with a high pass filter are used, followed by a two stage low pass filter.

Serial No
Test Engineer
Date

4. Inspection

Workmanship

General	OK?
Comments	

Visual overall check	OK?
Solder joint	OK?
Placement	OK?

Modifications

Serial No
Test Engineer
Date

NOTES

Serial No Test Engineer Date

5. Power

Measure output voltages from the regulators as follows: Increase input voltages from zero up to +/-3v. Determine that polarities are correct. If they are correct, increase the voltages until rated input voltages are reached (+/-16.5v)

Record regulator the regulator output voltages:

Regulator	Output voltage	Pass/Fail (Nominal +/-0.5v)
+15v (TP4)		
-15v (TP6)		

If output voltages are satisfactory, proceed to next section.

Record the regulator noise levels, check for stability, and record the powe supply current.

Regulator	Stable?	Output Noise level pk/pk	Current (Amps)
+15v (TP4)			
-15v (TP6)			

Serial No
Test Engineer
Date

6. Circuit operation

Test the operation of each channel. The Coil Driver Simulator board will normally be used for these tests.

6.1.1 NOISE AMPLIFIER

6.1.1.1 INPUT BUFFER GAINS

Test that the gain of each of the input buffers, IC1 and IC6 is 25.

Pass band Gain

Set frequency to 20 Hz Set Amplitude 100mV peak (Signal generator indicates 100mV pk/pk) Ground reference = Power 0v

Positive input:

	Input (TP8) (mV peak)	Output -IC1/6 (V peak)	Expected value (V peak)	Pass/Fail
Ch1			2.4V to 2.6V	
Ch2			2.4V to 2.6V	
Ch3			2.4V to 2.6V	
Ch4			2.4V to 2.6V	

Negative Input:

	Input (TP9) (mV peak)	Output - IC6/6 (V peak)	Expected value (V peak)	Pass/Fail
Ch1			2.4V to 2.6V	
Ch2			2.4V to 2.6V	
Ch3			2.4V to 2.6V	
Ch4			2.4V to 2.6V	

6.1.1.2 GAIN AT THE CORNER FREQUENCY

Set frequency to 5 Hz: Amplitude= 100mV pk/pk Ground reference = Power 0v

Positive input:

	Input - TP8 mV peak	Output - IC1/6 V peak	Expected value (V peak)	Pass/Fail
Ch1			1.6v to 1.9v	
Ch2			1.6v to 1.9v	
Ch3			1.6v to 1.9v	
Ch4			1.6v to 1.9v	

Serial No Test Engineer Date

Negative Input:

	Input - TP9 mV peak	Output - IC6/6 V peak	Expected value V peak	Pass/Fail
Ch1			1.6v to 1.9v	
Ch2			1.6v to 1.9v	
Ch3			1.6v to 1.9v	
Ch4			1.6v to 1.9v	

6.1.1.3 Summing Amplifier

Pass band Gain

Set frequency to 20 Hz Set Amplitude 100mV pk/pk (sig gen o/p = 100mV peak) Apply input between TP8 and TP9

	Input - TP8 toTP9 (mV peak)	Output TP5 V peak	Expected value (V Peak)	Pass/Fail
Ch1			4.8v to 5.2v	
Ch2			4.8v to 5.2v	
Ch3			4.8v to 5.2v	
Ch4			4.8v to 5.2v	

Serial No Test Engineer Date

Gains of Successive Stages:

Make measurements at 100 Hz, then at 5 Hz starting by setting the TP5 voltage to 1V peak for each frequency.

	100Hz			5Hz				
	Ch1 mV	Ch2 mV	Ch3 mV	Ch4 mV	Ch1 mV	Ch2 mV	Ch3 mV	Ch4 mV
TP5								
TP4								
TP6								
TP7								

Calculate the ratios of successive outputs from the table above. Check that successive outputs have a ratio of x2 \pm 0.1 at 100Hz, and 1.4 \pm 0.1 at the 5 Hz the corner frequency.

	100Hz			5Hz			P/F		
	Ch1	Ch2	Ch3	Ch4	Ch1	Ch2	Ch3	Ch4	
TP4/TP5									
TP6/TP4									
TP7/TP6									

Low Pass Output Stage

Set signal generator to give 10V peak on **TP7**. Measure and record the output at 500Hz and 5Khz **TP10**, and compare with the specifications at those frequencies.

		500Hz (V peak)	Spec @ 500hz	OK?	5 KHz (V peak)	Spec @ 5KHz	OK?
Ch1	TP10		9.7 to 10v			4 to 5.5v	
Ch2	TP10		9.7 to 10v			4 to 5.5v	
Ch3	TP10		9.7 to 10v			4 to 5.5v	
Ch4	TP10		9.7 to 10v			4 to 5.5v	

Serial No
Test Engineer
Date

6.1.2 VOLTAGE MONITOR

Set the signal generator to give 3V peak at 30 Hz between TP8 and TP9. Measure the output on TP12.

	Input -TP8, TP9 (Volts peak)	Output -TP12 (Volts peak)	Expected value (Volts peak)	Pass/Fail
Ch1			1.9 to 2.1v	
Ch2			1.9 to 2.1v	
Ch3			1.9 to 2.1v	
Ch4			1.9 to 2.1v	

6.1.3 CURRENT MONITOR

Current monitoring is done by measuring the voltage dropped across two resistors carrying the output current. The current monitor circuit has a gain of 1/3.

The circuit is tested by applying selected voltages across the current monitor inputs, and observing the current monitor output.

Connect the Monitor Test Unit to the 16 way header on the monitor board, and power it up.

Connect the signal generator to its input.

Set

Frequency to 100Hz The input voltage between TP8 and TP9 to 3v Peak Ground reference = Power 0V

Select the following four settings in turn:

(1) Open circuit – representing zero current - zero output expected

(2) Half – giving 3 volts of current monitor signal and 1 volt out.

(3) Quarter – giving 4.5 volts of current monitor signal and 1.5 volts out

(4) Short circuit - giving 6 volts of monitor signal and 2 volts out

Test	TP11 Expected V	TP11 Ch1	TP11 Ch2	TP11 Ch3	TP11 Ch4	Pass/ Fail
(4) 0	0	(V)	(V)	(V)	(V)	(V)
(1) 0v in	0v +/- 0.1v					
(2) 3v in	1v +/- 0.1v					
(3) 4.5vin	1.5v +/- 0.1v					
(4) 6v in	2v +/- 0.1v					

Serial No
Test Engineer
Date

6.1.4 RMS CIRCUIT

The r.m.s circuit monitors the r.m.s current flowing in the coil. A square wave of the same peak amplitude as a sine wave should give an output $\sqrt{2}$ times as high.

Sine Wave Test

Set frequency to 30 Hz Without the resistance box,

l/p sine wave amplitude (between TP8 and TP9)	r.m.s dc output (TP13)	Expected value (volts DC)	Pass/ Fail
3V Peak			
Ch1		0.707 (0.69 to 0.71)	
Ch2		0.707 (0.69 to 0.71)	
Ch3		0.707 (0.69 to 0.71)	
Ch4		0.707 (0.69 to 0.71)	
1.5V peak			
Ch1		0.35v (0.33 to 0.37)	
Ch2		0.35v (0.33 to 0.37)	
Ch3		0.35v (0.33 to 0.37)	
Ch4		0.35v (0.33 to 0.37)	

Square Wave Test

Compare the output for a sine wave input just measured with the output for a square wave input. Set input level to a 3v peak and the frequency to 30 Hz.

3v peak Square Wave	Expected value Pas (volts dc) Fail	
Ch1, TP13	1v (0.9 to 1.1v)	
Ch2, TP13	1v (0.9 to 1.1v)	
Ch3, TP13	1v (0.9 to 1.1v)	
Ch4, TP13	1v (0.9 to 1.1v)	

DC input

Apply a 3v dc input between TP8 and TP9.

3v DC	Expected value (volts dc)	Pass/ Fail
Ch1, TP13	1v (0.9 to 1.1v)	
Ch2, TP13	1v (0.9 to 1.1v)	
Ch3, TP13	1v (0.9 to 1.1v)	
Ch4, TP13	1v (0.9 to 1.1v)	