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In counting experiments, one can set an upper limit on the rate of a Poisson process based on a
count of the number of events observed due to the process. In some experiments, one makes several
counts of the number of events, using different instruments, different event detection algorithms, or
observations over multiple time intervals. We demonstrate how to generalize the classical frequentist
upper limit calculation to the case where multiple counts of events are made over one or more time
intervals using several (not necessarily independent) procedures. We show how different choices
of the rank ordering of possible outcomes in the space of counts correspond to applying different
levels of significance to the various measurements. We propose an ordering that is matched to the
sensitivity of the different measurement procedures and show that in typical cases it gives stronger
upper limits than other choices. As an example, we show how this method can be applied to searches
for gravitational-wave bursts, where multiple burst-detection algorithms analyse the same data set,
and demonstrate how a single unified upper limit can be set on the gravitational-wave burst rate.

PACS numbers:

I. INTRODUCTION

Classical confidence intervals are a standard technique
for setting upper or lower limits or error ranges based
on the results of an experiment. One of the most famil-
iar applications is to the counting experiment, in which
one attempts to measure or place a limit on the rate
of a physical Poisson process by counting the number
of occurrences of the process observed during some pe-
riod of time. For example, for a single measurement
(a single count of events) with low background and an
expected physical rate comparable to or lower than the
background, one typically sets an upper limit; ¢.e., a one-
sided confidence interval. Given a count n, the upper
limit is that value of the physical rate such that the a
priori probability of measuring more than n events in
the experiment exceeds some chosen confidence level.

Various issues may complicate the procedure for set-
ting the upper limit. For example, if the background is
large, there is a well-known problem that the upper con-
fidence limit may be the empty set when the observed
number of events is much lower than that expected from
the background. Another more subtle issue is that the
decision to report an upper limit versus a two-sided con-
fidence interval can, if based on the data, cause under-
coverage, rendering the result invalid. Techniques for ad-
dressing these issues have been presented in the litera-
ture, for example, by the Feldman-Cousins technique [1]
and the loudest event technique [2, 3]. These can also be
addressed by Bayesian methods; see for example [3-8].

In this paper we are concerned with a different compli-
cation: when more than one count is made of the number
of events. One example of where this situation arises is
searches for gravitational-wave (GW) bursts with LIGO
and similar detectors [9-11]. In this scenario the GW
signals are expected to have amplitudes near the noise
floor of the detectors, and the rate of detectable events
is expected to be of order the inverse of the observation
time or less. To improve chances of detection, multi-

ple independent algorithms are used to analyse the data
[12, 13], each producing its own list of candidate GW
bursts. These algorithms will generally show some cor-
relation between which events they detect, and may also
show some correlation between the background noise fluc-
tuations they detect, but in both cases the correlation is
only partial. Furthermore, the data set itself typically is
not of uniform sensitivity. For example, the longest data-
collection run to date for the LIGO-GEO-Virgo network
lasted more than two years [14]. Over this time the sensi-
tivity of each of the instruments changed. Furthermore,
at any given time during this run, anywhere between 1
and 5 detectors may have been operating. The challenge
to the data analyst in such an experiment is this: given
multiple counts of events collected from processing sev-
eral data sets of different sensitivities and with different
algorithms, how does one set a single limit on the physical
event rate?

There are many options. The simplest is to take the
union of all of the event lists and observation time, effec-
tively converting the multiple observations into a single
observation, and computing the upper limit using a stan-
dard technique. This approach ignores differences in the
quality of the data from the different epochs, and in the
algorithms themselves. Alternatives include discarding
results from select data sets or algorithms (presumably
the less sensitive ones), again with the aim of reducing
the observations to effectively a single count. These ap-
proaches invariably involve loss of information from the
experiment. Intuitively, one expects to be able to set
stronger limits if one uses all of the information from the
experiment rather than only a subset of the information.

In this article we propose a general formalism for set-
ting classical upper limits on experiments involving mul-
tiple pipelines, where a pipeline denotes the analysis of
a single data set by a single algorithm. We character-
ize the observational results and the sensitivities of the
experiment in terms of logical combinations of pipelines.
We show that various choices such as taking the union



of data sets correspond to particular choices of weighting
of measurements. We propose a specific weighting choice
based on the efficiencies (sensitivities) of the logical com-
binations, and show that it gives stronger upper limits
than other choices in typical cases. Furthermore, the effi-
ciency weighting choice makes use of all of the experiment
results, naturally handles correlated measurements, and
tends to be robust against occasional background con-
tamination of counts.

This paper is organized as follows. In Section II we
review how one sets a classical upper limit on the rate of
a Poisson-distributed process in a counting experiment,
ignoring background. In Section III we generalize the
single-count procedure to the case of multiple counts,
again ignoring background. We discuss various choices
of the weighting to obtain upper limits, including our
sensitivity-based proposal. We demonstrate each pro-
cedure for the case of a counting experiment using two
pipelines with low background. In Section IV we demon-
strate how the same procedure naturally handles multiple
data sets. Section V contains a few brief remarks on the
applicability of the method.

II. SINGLE-PIPELINE CASE

We briefly review how one sets a classical upper limit
(a one-sided confidence interval) on the rate of a Poisson-
distributed process via a counting experiment, ignoring
any background.

Consider an experiment that measures the number of
events of a specific random process that occurs in a time
T. We assume that the events occur independently of one
another, with a mean rate p that is unknown a priori.
We further assume that the experiment has a probabil-
ity € of successfully detecting (counting) any given event.
Then the actual number of events that will be counted in
a given time 7T is Poisson distributed, as is easily demon-
strated.

Let us divide the observation time T into M equal
sub-intervals of length T/M. In the limit of large M,
the probability of one event occurring in any given sub-
interval is uT'/M < 1, and the probability of more than
one event in the same interval is negligible. The proba-
bility of detecting a total of N events over the full time
T is derived from binomial statistics as the probability
of N “successes” in M “trials”. Defining A = pT as the
expected mean number of events occurring, we have

P(Nle\) = Jim_ (lz@ (E)NQ_E)M_N
. <€27)!Ne_d' (2.1)

This is the familiar Poisson distribution for process with
mean number of detected events €.

Given an actual measured number n, the Poisson dis-
tribution (2.1) can be used to set an upper limit on the

value of A, or equivalently on u. Heuristically, values of
A much larger than n/e are unlikely to produce only n
detected events. More formally, we select a confidence
level a € (0,1). The frequentist upper limit A\, at confi-
dence level « given n measured events is that value of A
at which there is an a priori probability o of measuring
more than n events. Implicitly, A\, is given by

a = Y P(Nleh)=1-Y P(NleXa). (2.2)
N=n+1 N=0

We define the cumulative probability C(n|e)) as the a
priori probability of detecting n or fewer events:

C(nled) = > P(NleA). (2.3)
N=0
We can write the upper limit formula for A, as
C(nleds) =1 —a. (2.4)

For example, the 90% confidence level (o = 0.9) upper
limit for zero observed events (n = 0) is

2.30
0.1 = C(O|€)\90%> = e_€>‘90% ,)\90% = —. (25)
€
For n = 1 observed events the upper limit is higher
(weaker):
3.89
0.1 = (1 + edggyg)e A90%  Aggoy = —— . (2.6)
€

To be rigorous, one must prove that the upper limit
formula (2.4) has a coverage of at least a. The coverage
is defined as the fraction of measurements in an ensemble
of identical experiments for which the derived upper limit
is greater than or equal to the true rate Aiue. To be a
valid upper limit with confidence level «;, one must show
that Ao > Atrue in a fraction > a of experiments for any
possible value of Atyue-

It is straightforward to prove that the upper limit for-
mula (2.4) has the coverage a. First, we note two prop-
erties [18] of C(n|eX):

C(nlex) > C(mleN) for n > m; (2.7)
dC(nleX)
—h <o (2.8)

Let us suppose that the true value of the rate is A\¢ue. Let
m be the largest integer such that C(m|eArue) < 1 — a.
By definition of m, in a fraction > « of experiments the
measured number of events n will be larger than m. For
these cases C'(n|eAtrue) > 1—a. Applying the upper limit
formula (2.4) and noting (2.8), we see that in these cases
the derived upper limit A\, will be greater than A¢ye. The
coverage is thus established.

We should note that we have ignored a possible exper-
imental background (a contribution to n due to “noise”
or effects other than the physical effect of interest). We



note that, since a background will increase n above the
value due to the physics of interest, the upper limit we
have derived remains valid (provides minimum coverage),
though it will be weaker (higher) than in the case of zero
background. Techniques to account for the contribution
of the background have been proposed in, e.g, [1]. In this
paper we do not attempt to account for backgrounds.
The method as presented is therefore most applicable to
the case where the background contribution to n is much
less than unity.

III. MULTIPLE-PIPELINE CASE

A. Formulation

The simplest example of a multiple-pipeline experi-
ment is one in which two different methods or “pipelines”
are used to count events (by processing the same data,
watching the same sky, etc.) over the same epoch T.
(We’ll consider the case of disjoint data sets in Sec-
tion IV.) Denote the pipelines by A and B. Any given
event may be detected by pipeline A only, by pipeline
B only, by both A and B, or by neither pipeline. We
characterise the sensitivity of the expriment by the three
numbers €4, €g, and €4p:

€4: The probability that any given foreground event
will be detected by pipeline A but not detected by
pipeline B;

ep: The probability that any given foreground event
will be detected by pipeline B but not detected by
pipeline A;

eap: The probability that any given foreground event
will be detected by both pipeline A and pipeline
B.

Correspondingly, the outcome of the counting experiment
is a set of three numbers n4, ng, and nyp:

n4: The number of events detected by pipeline A but
not detected by pipeline B;

np: The number of events detected by pipeline B but
not detected by pipeline A; and

nap: The number of events detected by both pipeline A
and pipeline B.

To interpret (na,np,nap) in terms of an upper limit
on A, we first need to compute the joint probability
P((na,np,naplea, €, eap,\). This is straightforward;
repeating the logic of the single-pipeline case, it is easy
to see that

P(Na,Np,Naglea,ep,€ap, )

_ i (MY (M= Na) (M= Na=Np) (ead\™
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P(NA|€A/\)P(NB|€B)\)P(NAB|€AB)\). (31)

Here we have defined the total number of events detected,

Nror = Na+ Ng+ Nap, (3.2)
and the probability of a given event being detected by
any combination of pipelines,

€ETOT = €4+ €B + €AB - (3.3)
We see that by choosing to characterise the outcome
of the experiment by the number of events detected by
logical combinations of pipelines, the joint probability
factorises to the product of single-pipeline probabilities
(2.1). The measurements of N4, Ng, and N4pg can there-
fore be regarded as statistically independent experiments.
This is a key simplification that makes deriving a com-
bined upper limit straightforward.

Similarly, for three pipelines A, B, and C, we have

P(Na,N,Nc,Nag,Npc,Nca, Napclea,ep e, ...

- €AB,€BC,€CA; EABC; A)
= P(NA|€A/\)P(NB|EB)\)P(N0|€C)\)P(NAB|€AB/\)
XP(NBC|€BC/\)P(NCA|€CA>\)P(NABC|€ABC)\) (3.4)

and so forth. In the general case of p pipelines, there
are ¢ = 2P — 1 distinct combinations by which an event
may be detected. Using the vector notation N and €,
where the vector index i € [1,...,q] labels the distinct
combinations, we have

P(N|& ) = HP(NHQ‘)\)-

i=1

(3.5)

B. Defining an Upper Limit

To set an upper limit we need first to define a cumu-
lative probability distribution C(7i|€, \) corresponding to
(3.5), analogous to (2.3). Since the space of observa-
tion {N} is multi-dimensional, we have a great deal of
freedom in how we choose to sum over {N} to define the
cumulative distribution. Put another way, we must chose
a rank ordering of {N}. (For an unbiased limit, this must
be done before the measurement of 7.)

To construct a confidence belt, we choose a one-
parameter family of surfaces S(¢) that foliates the ob-
servation space {N}. This family is chosen so that for
every value of the parameter ¢, the surface S(¢) divides
the space {]\7 } into two regions: a acceptance region of



low number of events (including the origin, and the sur-
face S(C) itself), and a rejection region of high number
of events. Our choice of the family S(¢) is arbitrary, ex-
cept that the outward normal to each surface must have
non-negative components everywhere; this is required to
prove coverage, as shown below. As we shall see, our
freedom in the choice of the S(¢) corresponds to how the
various pipelines are “weighted” in contributing to the
upper limit.

Because of the foliation, every point N in the obser-
vation space lies on exactly one such surface, which we
refer to as an exclusion surface. Hence, each point N
can be associated with a single parameter value, ¢(N).
This gives us a rank ordering of the N defining whether a
given N’ contains “more,” the “same,” or “fewer” events
than N”. The family S(¢) therefore maps the multi-
dimensional space {1\7 } to a one-dimensional space. This
allows us to define a cumulative probability Cs(7i|€, A) by

Cs(gN) = )

NI¢(N)<¢(7)

P(NIE N, (3.6)

where the sum is taken over all N for which ¢(N) < ¢(7);

i.e., over all N that contain as few events or fewer than
7.

Given a family of exclusion surfaces S(¢) and a mea-
sured number of events 77, we may use the cumulative
probability Cs to set an upper limit on A in the same
way as is done for the single-pipeline case. Specifically,
for a measured number of events 7, the upper limit A\,
at confidence level « is

Cs(AE ) =1 —a. (3.7)

That is, the upper limit A, on the rate is that value
for which in a fraction « of an ensemble of experiments
one would measure a number of events that falls in the
rejection region of S({(#7)). Put another way, the upper
limit is the rate for which one should measure “more”
than 77 events (a value of ¢ larger than {(7)) in a fraction
« of an ensemble of experiments.

We will consider various simple choices of families S(¢)
and their interpretations shortly. First, however, we
prove that the algorithm (3.7) has coverage a.

C. Coverage

We now prove that the upper limit formula (3.7) has
a coverage of at least a. The proof follows that for the
single-pipeline case in Section II. Again, we note two
properties of Cs(7i|€, \):
Cs(fl|€, ) > Cs(m|e,N)  for
dCs (7€, A)
dA

(See Appendix A for the proof of (3.9).) Let us suppose
that the true value of the rate is Aiyue. Let m be the

() > ¢(m);
< 0. (3.9)

(3.8)

vector with nonnegative integer components and with the
largest value of {(m) such that Cgs(m|€ Arue) < 1 — a
By definition of m, in a fraction > « of experiments the
measured number of events 7 will have ((7) > ((m).

—

For these cases Cs(¢(n)|€Atrue) > 1 — . Applying the
upper limit formula (3.7) and noting (3.9), we see that
in these cases the derived upper limit A\, will be greater
than A¢rue. The coverage is thus established.

As stated before, our choice of exclusion surfaces is ar-
bitrary except that the outward normal to the contour
must have non-negative components everywhere. This
restriction ensures that a non-zero background contribu-
tion will increase the measured ( over its zero-background
value. From (3.7)-(3.9) it follows that the limit will be
higher than in the zero-background case, but coverage
will be maintained.

D. Choosing Exclusion Surfaces

We now turn to the question of how to select the family
of exclusion surfaces to obtain the strongest limits. For
simplicity, we restrict ourselves henceforth to the simple
case of plane surfaces. In this case, a family of exclusion
surfaces is set by choosing the vector k that is normal to
the planes. The parameter for the family is then ¢ (]\7 ) =
k- N (the magnitude of k is irrelevant). For a given
observation 7 the upper limit A, is given by

P(N|gAo) =1—a.
k>0

(3.10)
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Note that the sum is taken over all N satisfying the con-
dition

—

(—N)-k>0. (3.11)

We now explore several simple choices of exclusion
surfaces with ready physical interpretations: taking the
logical AND or OR combinations of pipelines, and us-
ing only the most sensitive pipeline. We then propose
a new choice of exclusion surfaces: k = € i.e., we
weight the measurements by the relative sensitivity of
their pipelines. We show that this efficiency-weighted
approach has several advantages over the other choices
discussed. In particular, it gives upper limits that are
better than those from the other common choices for
most outcomes of the experiment.

1.  OR combination

One obvious way to orient the exclusion surfaces is to
set the normal vector k = (1,1,...,1). This choice treats
all distinct pipeline combinations equally. For a given
observation 7 the upper limit on A is then given by (3.7)



with the sum taken over all N satisfying the condition

ZNi < an

(3.12)

or simply

Nror < nror . (3.13)

That is, the upper limit depends only on the total num-
ber of events detected, regardless of which pipelines or
combinations of pipelines detected them. We see that
this choice of exclusion contour is equivalent to setting
an upper limit based on a single pipeline which is formed
by taking the “OR” combination of all events detected
by all pipelines or combinations of pipelines.

For example, consider the case of two pipelines A and
B. If no events are detected, the upper limit at confidence
level a = 0.9 is given by

0.1 = C;((0,0,0)|€ Ago)

—e€ A
— e fTOoT 90%

(3.14)

where eror = €4 + €g + €4p. This has the solution

2.30
eror

Ago = (3.15)

This has the same form as in the single-pipeline case,
(2.5), with the replacement € — epor.

Now consider the case of one event detected (it does
not matter whether the lone event is detected by A, by
B, or by both). The upper limit is given by

0.1 = P((0,0,0)[€ Ago%) + P((1,0,0)[€; Agos )
+ P((0,1,0)|€ Ago%) + P((0,0, 1)[€ Ao )

= (1+ erorAggy)e” TOTro0% (3.16)
which has the solution
3.89
Ago = . (3.17)
€ETOT

This again has the same form as in the single-pipeline
case, (2.6), with the replacement € — eror.

The OR combination has the advantage that it has
the largest efficiency of any combination, since an event
is counted if any of the pipelines detect it. This leads
to strong upper limits when no events are detected. The
disadvantage is that the background is also summed over
all pipeline combinations, potentially leading to a high
false alarm rate and poor limits if any of the pipeline
samples are contaminated by background.

2. AND combination

A “conservative,” choice for detecting events is to de-
mand that all pipelines observe an event for it to be
counted as a possible signal. It is easy to see that this

is equivalent to choosing contours with normal vector
k= (0,...,0,1). The upper limit for observation 7 is
then given by (3.7) with the sum is taken over all N
satisfying the condition

Ny, <ng, (3.18)

where n, is the number of events detected in coincidence
by all pipelines. Because of the factorization of the joint
probability (3.5), the upper limit becomes

S oSS P A

Ni=0 Ny 1=0N,=0

> P(N1|el/\a)]

N1=0

11—«

Z P(Ng-1lég—1Aa)
Ng_1=0

Tq

X Z P(Nglegha)
N,=0

Z P(NylegAa),

Ny=0

(3.19)

We see that the upper limit reduces to that for an effec-
tive single pipeline formed by taking the AND combina-
tion of all pipelines. This has the same form as in the
single-pipeline case, (2.5), with the replacement € — €.

Consider again the case of two pipelines A and B, and
suppose we had decided a priori to compute an AND
upper limit. If no events were detected by any pipeline,
then the 90% confidence upper limit is given by (2.5)
with € — e4p.

Ago% = 67 . (320)

AB
Since exp < eror, the AND combination gives a weaker
limit for a given number of measured events.

Now consider the case in which one event is detected.
The limit now depends on which pipeline combination
detected the event. If only one of the pipelines detected
the event, then n, = 0, and the 90% confidence upper
limit is given by (3.20). If both pipelines detected the
event then n, =1 and

3.89
Agos = —— -

3.21
. (3.21)

These has the same form as in the single-pipeline case,
(2.5), (2.6), with the replacement € — e4p.

The AND combination has the advantage of being the
combination least susceptible to background contamina-
tion, since an event is only counted if it is detected by all
pipelines. For example, the AND combination is partic-
ularly robust if the pipelines have different responses to
the background noise. The disadvantage is that the effi-
ciency is also the lowest of any combination, for the same
reason. In particular, the AND sensitivity is limited by
the least sensitive pipeline.



8. SINGLE combination

Another simple choice for setting the upper limit is to
consider only the measurement by the single most sen-
sitive pipeline, and ignoring all of the others. The most
sensitive pipeline is the one with the largest detection
efficiency computed when ignoring the other pipelines;
e.g., for the two-pipeline case it is the larger of €4 +€ap
(for A) or eg+eap (for B). The procedure for computing
the upper limit in this case is simply to apply (2.4). We
note here that it is another special case of the multiple-
pipeline procedure. For example, for two pipelines where
A is the more sensitive, the SINGLE limit is equivalent
to choosing

k=(1,0,1). (3.22)
If no events are detected by A, then the 90% confidence
upper limit is given by (2.5) with € — €4 + €ap:

2.30
Agoyy = —— . (3.23)
€A+ €AB

If one event is detected by A, the limit is

3.89
€a+eap

The efficiency and background of the SINGLE com-
bination are intermediate between those of the OR and
AND combinations. In general, eror > €4 +€ap > €ap,
so for a given number of measured events (for example,
0), OR will give the strongest limit, AND the weakest,
and SINGLE an intermediate value. On the other hand,
the background is highest for OR and lowest for AND,
so there is a greater chance of having n > 0 events in the
OR combination. Unfortunately, for an unbiased analysis
one must choose the upper limit method before counting
events, so it is difficult to make the best choice between
the AND, OR, and SINGLE options a priori.

)\90% = (324)

4. Efficiency-weighted combination

The AND, OR, and SINGLE options are just three
examples of how one may select the exclusion surfaces
for the multiple-pipeline counting experiment. As just
discussed, the relative strength of the upper limits one
can achieve with these options depends on the number of
events detected by each pipeline combination, which one
does not know a priori in a blind analysis.

An obvious drawback of the AND and OR examples
is that the exclusion surfaces are selected without regard
to the known sensitivities € of the various pipeline com-
binations. One expects that the strongest upper limits
should involve use of this information. As a trivial exam-
ple, a pipeline combination with zero detection probabil-
ity (¢; = 0) should be ignored when setting upper limits
(n; should be ignored). The SINGLE combination makes

some limited use of the known sensitivities, but throws
away all of the information produced by the less-sensitive
pipelines, even if they are only slightly less sensitive than
the best one.

A more natural way to incorporate the efficiency in-
formation in the upper limit procedure is to orient the
exclusion surfaces according to the measured efficiencies.
For plane exclusion surfaces, the simplest choice is

k=¢. (3.25)
We term this choice the efficiency weighted combination,
or EFF.

Heuristically, the efficiency weighted combination is an
intelligent choice because it places the largest emphasis
on the measurements made by the most sensitive combi-
nations of pipelines. To see one of the desirable proper-
ties of this choice, consider a repeated experiment. In an
ensemble of experiments, the expected number of detec-
tions by each pipeline combination ¢ is proportional to
€;; specifically,

(1) = Atrue€ - (3.26)
For repeated experiments it follows that
)\true - <,'1> ._,6 . (327)
€€

Suppose the observed number of events is 7’ in one exper-
iment, and 7’ in a second. Which measurement should
give the higher upper limit? If (@’ — @) - € > 0, then
the second measurement is consistent with a higher limit
on A. If (7" — ') - €= 0, then the two measurements

imply the same upper limit on A\. The choice k =  for
the exclusion contours enforces these requirements.

5. Example: Two Pipelines

Consider once more the case of two pipelines A and B.
Let us suppose that the target signals are characterized
by an amplitude p, and that the detection efficiencies
of A and B separately, E4 = €4 + €ap, Ep = €5 +
€ap, and their logical combinations €4,€ep,cap, are as
shown in Figure 1. This scenario is typical of searches for
gravitational-wave bursts by LIGO and similar detectors
[12, 15-17]. Our objective is to set an upper limit on A
as a function of the signal amplitude p.

Since both E4 and Ep — 1 at large p, eap — 1 as well,
while €4 and ep are nonzero for only a limited range of
signal amplitudes. In this toy model, A is sensitive to
slightly weaker signals than B, so €4 > e¢p. However,
since both €4 and ep are nonzero, each pipeline is able to
detect some signals that the other pipeline misses. There-
fore, one expects that combining the measurements of the
two pipelines should be able to provide more information
on the event rate than either pipeline alone.

Let us now compare the performance of four differ-
ent choices of exclusion surfaces: AND, OR, SINGLE,
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FIG. 1: Efficiencies for two pipelines A and B. In our toy
model, the signal is characterized by an amplitude p. The
dotted lines E4 = €4 +€eap, Ep = ¢g +€ap show the efficien-
cies of the two pipelines considered separately. The continu-
ous lines show the efficiencies of the logical combinations of
the pipelines: €4 (A not B), eg (B not A), and eap (A and
B).

and EFF. Consider first the case where no events are
detected. The upper limits from each combination are
shown in Figure 2. All combinations give Aggy = 2.3 at
high amplitude, where e4g — 1. In particular, the EFF
upper limit is

0.1

C7((0,0,0)[€, Agoo)

— e—ETOT)\QO%7 (328)
2.30

Agoy = ——, (3.29)
€ror

identical to the OR limit. The EFF and OR combina-
tions give the strongest limits for weak signals because
of their better efficiency (which is eror, the sum of the
efficiencies of all pipeline combinations).

Now consider the case of one event detected by the
weaker pipeline B: 7 = (0,1,0). The upper limits are
shown in Figure 3. The OR combination does poorly
at high amplitudes because of the detected event. The
AND limit is much better at high amplitudes because A
did not see the event, but still poor at low amplitudes
because e — 0. The SINGLE combination performs
well, giving the same result as the n = 0 case, because it
ignores the event counted by the less sensitive pipeline.
The EFF upper limit is computed by summing over

—

N -€<ii-€=¢€p.

For signal amplitudes p > 1, ep is the smallest efficiency,
so the allowed terms are N € {(0,0,0),(0,1,0)}. The
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FIG. 2: Upper limits as a function of signal amplitude when
no events are detected. All methods give the asymptotic limit
2.3 for large amplitudes. The EFF and OR combinations give
the strongest limits at low amplitude because they have better
detection efficiency than the AND and SINGLE combinations.

EFF limit is then

0.1 = P((0,0,0)[€; Agoz) + P((0,1,0)|€ Ago% )
= (14 epAgoy)e TOTr0% (3.30)

The extra egA term makes the EFF upper limit only
slightly higher than the 2.3/eror value obtained in the
n = 0 case, as can be seen from Figure 3. For p < 1, eg >
eap and the upper limit includes additional (e4p\)NV45
terms. This causes the EFF limit to increase, but again
only slightly, as e4p is typically much smaller than eg4,
ep at these low amplitudes.

We see that the EFF combination effectively ignores
the event counted by the insensitive pipeline combination
B, and gives a limit as good as or even slightly better
than that from the SINGLE combination.

Now turn to the case in which one event is detected by
the more sensitive pipeline, A: 7 = (1,0,0). The upper
limits are shown in Figure 4. Again, the OR combination
does poorly at high amplitudes because of the detected
event. The SINGLE combination does even worse, since
the event was found by the more sensitive pipeline, and
the SINGLE combination has lower efficiency than the
OR combination. The AND combination again performs
well at high amplitudes and poorly at low amplitudes.
The EFF upper limit is computed by summing over

—

N-€<ni-€=e€qu.

The number of terms in the sum depends on the relative
values of €4, €g, and e4p. In this simple example, for
p > 1.4 ex = 2¢g < eap and the allowed terms are
N e {(0,0,0),(1,0,0),(0,1,0),(0,2,0)}. The EFF limit
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FIG. 3: Upper limits as a function of signal amplitude when
one event is detected by the less sensitive pipeline (B). The
OR combination asymptotes to the single-event value 3.9.
The lone event is not counted by the AND, SINGLE com-
binations, which give the n = 0 limit 2.3. The EFF combi-
nation ignores the event at high amplitudes (where eg — 0),
while at lower amplitudes the EFF limit is very close to the
SINGLE limit as eg < €4. The thin dashed line is the best
possible upper limit from the counting experiment: that for
zero observed events using the EFF or OR combinations (see
Figure 2).

is given by

0.1 = (1 + 6,4)\90% + €BA90%

+ €% Nogo, e TOTA00% (3.31)
Since €4 and eg are small at high amplitudes, the upper
limit is again similar to the n = 0 value of 2.3/eror.
For p < 14, e4 > eap and the cumulative distribu-
tion C(7i|€, Aa) in (3.10) includes additional (eqpA)N45
terms. This causes the EFF limit to increase, becoming
similar to that from the OR combination. In short, the
EFF combination gives the strongest limits at high am-
plitudes because pipeline B should have seen the event
there and did not, and it gives the strongest limits at low
amplitudes because it has better efficiency than the AND
combination.

Finally, consider the case of a single event detected
by both pipelines: 7 = (0,0,1). In this case all com-
binations give the asymptotic limit of 3.9 at large am-
plitudes, as seen in Figure 5. The relative limits of the
AND, OR, and SINGLE combinations are the same as
in the n = 0 case. We see, however, that the EFF com-
bination outperforms all other combinations (including
OR) in the low-amplitude limit. In fact, the EFF limit
reaches nearly the n = 0 value at low signal amplitudes.
This counter-intuitive result has a simple explanation:
at low amplitudes (p < 1), the probability e4p of a real
event being detected jointly by A and B is much smaller
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FIG. 4: Upper limits as a function of signal amplitude when
one event is detected by the more sensitive pipeline (A). The
OR and SINGLE combinations asymptote to the single-event
value 3.9. The lone event is not counted by the AND combi-
nation, which gives the n = 0 limit 2.3. The EFF combination
ignores the event at high amplitudes (where e4 — 0), while at
lower amplitudes the EFF limit is very close to the OR limit
for n = 1. The thin dashed line is the best possible upper
limit from the counting experiment: that for zero observed
events using the EFF or OR combinations (see Figure 2).

than the probabilities €4, €g of it being detected by ei-
ther pipeline alone. The observation n4p > 0 is there-
fore inconsistent with the hypothesis of a low-amplitude
signal. The efliciency weighted combination therefore
ignores this measurement for the low-amplitude upper
limits, and the limit is dominated by the measurements
na=0=ng.

It is worth noting that the upper limits obtained from
the efficiency-weighted procedure are neither monotonic
nor continuous; this is most evident in Figure 5. The
limits are not monotonic because the efficiencies €4, €p,
€ap of the logical combinations of pipelines are not mono-
tonic, as shown in Figure 1. The origin of the disconti-
nuities is slightly more subtle; it arises from the need to
sum over a discrete set of N in (3.10). For the efficiency-
weighted combination, the condition (3.11) depends on
the assumed signal amplitude through the efficiencies,
k = &p). Therefore, the sum may include different num-
bers of terms for different signal amplitudes. The discon-
tinuities occur at signal amplitudes where another term
satisfies the condition to be included in the sum in (3.10),
N.-e¢<i-é& In turn, this happens when the ratio of ef-
ficiencies equals a rational number. We stress that these
discontinuities are a general feature of using efficiencies
to weight the pipeline combinations, and that they are
not indicative of any problem with the procedure. The
upper limits at different p values are limits on different
signal models, and therefore they need not be continuous
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FIG. 5: Upper limits as a function of signal amplitude when a
single event is detected by both pipelines (A and B). All com-
binations give the asymptotic limit of 3.9 at large amplitudes.
The EFF combination ignores this event at low amplitudes
(where eap < €a,€ep) and tends to the zero-event limit for
p < 1. The thin dashed line is the best possible upper limit
from the counting experiment: that for zero observed events
using the EFF or OR combinations (see Figure 2).

or monotonic functions of p. Indeed, this behaviour is
advantageous, as seen in Figure 5, where the efficiency-
weighted upper limit is able to drop below the OR limit
at low amplitudes.

In each of the cases considered, efficiency weighting
gives upper limits as approximately as strong as or
stronger than any of the other choices. Without efficiency
weighting, the best remaining combination is different for
the different cases: AND, OR, and SINGLE each per-
form best for at least one of the cases tested. While we
must chose the weighting before measuring 7 for the up-
per limit procedure to have the proper coverage, there is
no way to know a priori whether to choose AND, OR, or
SINGLE. The efficiency-weighted combination, however,
gives optimal or near-optimal performance in all cases.

We can gain insight into the strong performance of the
efficiency weighting choice by examining the form of the
upper limit equation (3.10):

l—a=(14eda+eN2 4 .. Fegdg +...)e E@F)Aa

(3.32)
The set of efficiencies ¢; appearing in the exponential is
determined by the choice of pipeline combination used
for the upper limit. The set of €; terms appearing in the
factor in front of the exponential depends on the set of
measured events 77 as well as the pipeline combination
chosen. As a rule, adding efficiency terms in the expo-
nential decreases the upper limit. Adding efficiency terms
to the factor in front of the exponential increases the
upper limit. For the AND and SINGLE combinations,
only some of the efficiencies appear in the exponential.

With the OR and EFF combinations, the efficiencies for
all pipeline combinations appear in the exponential, giv-
ing the maximum efficiency possible (eror). Between
these two, the EFF combination will typically give fewer
terms in the prefactor when events are detected with the
less sensitive pipeline combinations. This will result in
a lower limit than the OR combination. It may have
more terms when the most sensitive combination sees
the event, thus giving a higher limit than the OR com-
bination in these cases. As seen in Figure 5, this loss in
upper limit tends to be small; since the extra terms are
associated with low-efficiency pipeline combinations, and
appear with powers of those small ¢;.

IV. MULTIPLE DATA SETS

The formalism we have developed for multiple algo-
rithms analyzing a common data set can be applied
equally well to the analysis of multiple sets of data. For
example, we may have data from several observation pe-
riods, each characterised by the use of a different set of
instruments, or over which the sensitivity of the instru-
ments changed, etc. In this case, the analyses of the sepa-
rate data epochs may be considered as separate pipelines
for purposes of setting an upper limit.

As a simple example, consider the case of a single al-
gorithm used to analyse data from two disjoint data sets
A and B, with durations T4, T. The sensitivity of the
experiment is characterised by the two numbers

€4: The probability that any foreground event will be
detected during period A;

ep: The probability that any foreground event will be
detected during period B.

Correspondingly, the outcome of the experiment is the
set of two numbers

n4: The number of events detected during period A;
np: The number of events detected during period B.

Since any given event can be detected during period A
or period B but not both, we have eap = 0, nap =
0. We see immediately that this is a special case of the
two-pipeline analysis, where we treat the analysis of the
separate data sets as separate pipeline measurements. In
fact, it is a particularly simple case, as we know €45 = 0,
nap =0 a priori.

Note that we define the efficiencies €4, €g in terms
of the probability of events from anywhere in the entire
observation period T being detected during periods A or
B. We are taking the union of the data sets to treat them
as one large set. This is the most convenient approach,
since it matches precisely how the multiple-pipeline case
was developed. It saves us from including the separate
observation times T4, T explicitly in our upper limit
calculations. Instead, they are included implicitly in the



upper limit (Xeror)

i OR [SINGLE| EFF
(0,0,0)] 2.3 3.8 2.3
(0,1,0)| 3.9 3.8 3.1
(1,0,0)] 3.9 6.5 3.9

TABLE I: Comparison of upper limits obtained for various
possible outcomes of a counting experiment on two data sets
A and B with e4 = 3ep/2. The cases are: no events detected
(7 = (0,0,0)); one event detected in B (77 = (0,1,0)); one
event detected in A (7 = (1,0,0)). These numbers should be
divided by eror = 5ea/3 = bep/2 to yield the actual limits.

efficiencies. For example, €4 has a maximum possible
value of T4 /(T4 + Tg).

For concreteness, let us suppose we have two data sets
of equal length, Ty = Tp = 0.57". Suppose also that the
instruments used were more sensitive during period A,
such that e4 = 3ep/2 and eror = €4 + €g = Hes/3 =
5ep /2. Table I compares the upper limits obtained by the
OR (combining event counts from both periods), SIN-
GLE (only counting events from the more sensitive pe-
riod), and EFF combinations for zero or one detected
event. (The AND combination is not applicable to this
case, since e4p = 0.)

In each case, the EFF combination gives the best upper
limit. For no detected events, the EFF and OR combi-
nations give the limit 2.3/eror as before. The SINGLE
limit is a factor 5/3 higher, because it uses only 3/5 of the
integrated sensitivity of the experiment (e4 = 3eror/5).
For one event detected in the less sensitive period B, the
EFF combination gives the best upper limit — even bet-
ter than SINGLE. This may be surprising, in that the
SINGLE upper limit is computed for zero events. We see
that the extra sensitivity gained by including the B mea-
surement in the EFF upper limit more than offsets the
loss in the limit due to having a detected event. Finally,
for the case of one event detected in the more sensitive
period A, the EFF limit matches the OR limit. Interest-
ingly enough, the SINGLE combination performs worse
than EFF in all cases; for the given efficiencies, we always
get a better limit by using all of the data.

For a larger difference in efficiencies, the differences in
upper limits are more pronounced. Table IT compares
the upper limits for e4 = 2ep, eror = 3€4/2 = 3ep.
The OR limits are unchanged. The SINGLE limits are
better than those in Table I because the SINGLE com-
bination now contains 2/3 of the integrated sensitivity
of the experiment (e4 = 2eror/3) instead of only 3/5.
The changes in the EFF limits are more complicated.
For one event detected in the less sensitive period B,
the EFF combination still gives the best upper limit
— slightly better than before, because the weighting of
B is less than in the previous case. For one event de-
tected in A, the EFF limit is between the OR limit
and the SINGLE limit. The increase over the limit in
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upper limit (Xeror)
i OR [SINGLE| EFF
(0,0,0)] 2.3 3.5 2.3
(0,1,0)] 3.9 3.5 3.0
(1,0,0)] 3.9 5.8 4.3

TABLE II: Comparison of upper limits obtained for various
possible outcomes of a counting experiment on two data sets
A and B with e4 = 2e. The cases are: no events detected
(7 = (0,0,0)); one event detected in B (7 = (0,1,0)); one
event detected in A (7 = (1,0,0)). These numbers should be
divided by eror = 3€4/2 = 3ep to yield the actual limits.

Table I is due to the fact that for €4 = 2¢p, the cu-
mulative sum in (3.10) now includes the terms N =
{(0,0,0), (1,0,0),(0,1,0),(0,2,0)}, whereas for e4 =
1.5¢p it includes only N = {(0,0,0), (1,0,0), (0,1,0)}.

Note that the EFF limits are particularly robust
against background events contaminating the less-
sensitive data sets. This allows the sub-optimal data
to be used to strengthen scientific results without fear
of “spoiling” the upper limits. In particular, note that
the average of the upper limits for the single-event cases
(7 = (1,0,0) and (0,1,0)) is best for the EFF combina-
tion in both Table I and Table II. So, if the data sets have
equal background probability (assumed <« 1), the EFF
combination will on average give the best upper limits
for low true event rates.

Finally, since we have seen benefits from treating mul-
tiple data sets separately, one might ask if we should al-
ways split up data sets. In particular, why not sub-divide
all data sets ad infinitum? The answer comes from noting
that the benefits of EFF combination arise from exploit-
ing differences in the efficiencies ¢;. If the differences in
efficiency between two data sets are negligible, then there
is no benefit to treating them separately. For example,
for two sets of data with identical efficiencies, the EFF
and OR combinations will always give identical limits:
since nap = 0 always, choosing k = &will always give
the same results as k = (1,...,1). One therefore gets no
benefit from sub-dividing epochs of constant sensitivity.

V. SUMMARY

We have proposed a general technique for setting up-
per limits on Poisson processes from counting experi-
ments involving multiple data sets and multiple event-
counting algorithms (which we collectively refer to as
multiple “pipelines”). This technique is an extension of
the standard procedure for one-sided classical confidence
intervals. There are two key features. First, we charac-
terize the measurements by the logical combinations of
pipelines — the number of events counted by A-and-B,
by A-and-not-B, etc. Second, we select a rank-ordering
of the space of possible measurements which is based on



the relative detection efficiencies of these logical combi-
nations. This efficiency weighting uses all of the counts
from the experiment, but assigns more significance to
those counts from pipeline combinations which are ex-
pected to detect more foreground events. We have seen
that in typical cases for low background and low fore-
ground event rate, the efficiency weighting tends to give
stronger upper limits than selecting the AND or OR com-
bination of pipelines, or selecting the single most sensi-
tive pipeline only. In particular, the efficiency weighting
procedure tends to be robust against modest background
contamination of the event counts. This allows all of the
observation results to contribute to the upper limit while
reducing the chances that background contamination of
some counts will weaken it.

As a final note, let us point out that the concept of
a “pipeline” is quite general — it is nothing more than
a way of defining a count of events. We have seen that
different pipelines may consist of different algorithms ap-
plied to the same data, or the same algorithm applied
to different data sets. Distinct pipelines may also be
defined in other ways, such as by applying a single algo-
rithm to a single data set and segregating the resulting
events into groups by some other attribute. For exam-
ple, in gravitational-wave burst searches the background
is largely due to events detected at low frequencies (< 200
Hz). Dividing events into low-frequency (< 200 Hz) and
high-frequency (> 200 Hz) sets would produce limits on
high-frequency gravitational waves that are not compro-
mised by the low-frequency background. Multiple ap-
plications of the same algorithm with different counting
thresholds can also be treated as separate pipelines and
handled by our method.

dCs(file,N) 3 Nyel ANt y
dX - L N !
N|¢(N)<((7)

(e )™
—(€1+ +€q) Ny

Consider the contribution of the term N’ = (N}, ..., Ny)
to the sum. We see that the positive terms arise from
taking the derivative of the AYN:. Each such positive
term is exactly cancelled by a negative term coming
from the derivative of the exponential from the term
N" = (N{,...,N/ —1,...,N}). N" will always be in-
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Appendix A: Derivative of Cs(i|€, \)

In this appendix we prove equation (3.9),

dCs (e, )

Al
) < 0, (A1)

where 77, €, and the family S({) are held fixed.

First, we recall the definition (3.6) of the cumulative
probability Cs,

Cs(@len) = > P(NEN)
Niew<¢a)
Z HP(NZ-\Q)\)
NI¢(N)<¢(m) =1
q

= > I

Q)\ Ni e,
(N»)' e M. (A2)
1 v

NI¢(N)<¢() @

Taking the derivative with respect to A yields

NN @M Nyeg AN
N, N N,
(eq)‘)Nq

| e T (A3)
!

(

cluded in the sum if N’ is included because of the require-
ment that the normal to the surfaces S(¢) must have only
non-negative components. Therefore, all positive terms
in (A3) are cancelled and the derivative must be negative.

[1] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873
(1998).
[2] P. R. Brady, J. D. E. Creighton, and A. G. Wiseman,

Class. Quant. Grav. 21, S1775 (2004), gr-qc/0405044.
[3] R. Biswas, P. R. Brady, J. D. E. Creighton, and
S. Fairhurst (2007), 0710.0465.



[4] O. Helene, Nuclear Instruments and Methods in Physics
Research A 228, 120 (1984).

[5] H. B. Prosper, Nuclear Instruments and Methods in

Physics Research A 241, 236 (1985).

H. B. Prosper, Phys. Rev. D 37, 1153 (1988).

D. A. Williams, Phys. Rev. D 38, 3582 (1988).

H. B. Prosper, Phys. Rev. D 38, 3584 (1988).

http://www.ligo.caltech.edu/.

http://wuw.virgo.infn.it/.

http://www.geo600.uni-hannover.de/.

B. Abbott et al., Phys. Rev. D 69, 102001 (2004).

12

[13] F. Beauville, M.-A. Bizouard, L. Blackburn, L. Bosi,
P. Brady, L. Brocco, D. Brown, D. Buskulic, S. Chatterji,
N. Christensen, et al., Classical and Quantum Gravity
22, 51293 (2005).

4] B. Abbott et al. (2007), arXiv:0711.3041.

5] B. Abbott et al., Phys. Rev. D 72, 062001 (2005).

6] B. Abbott et al., Phys. Rev. D 72, 122004 (2005).

7] B. Abbott et al., Class. Quantum Grav. 24, 5343 (2007).

[

[

[

[1

[18] From (2.1), dC(n|eX)/d\ = —e" T A"e™* /nl < 0 for A >
0.



