

LIGO-G0900516-v3

Einstein@Home

search for periodic gravitational waves in early S5 LIGO data

Holger Pletsch

for the LIGO Scientific Collaboration

Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Hannover, Germany

Search overview

The first Einstein@Home search in S5 LIGO data

- All-sky broad-band search for **periodic** gravitational waves, such as from rotating non-axisymmetric neutron stars:
 - » Searched frequency range: 50 Hz < f < 1500 Hz
 - » Searched range of frequency derivatives: $-f/\tau < \dot{f} < 0.1f/\tau$, with $\tau = 1000$ yrs for f < 400Hz and $\tau = 8000$ yrs for f > 400Hz.
 - » Goal: high-confidence detection (not upper limits).
- Input data: 840 hours selected from 66 days of early \$5 LIGO run:
 - » H1 4-km detector: 22 x 30-hour segments,
 - » L1 4-km detector: 6 x 30-hour, segments.
- » Removed understood instrumental lines from the data.
- Huge parameter-space search: Distributed over more than 100 000 computers volunteered by the general public via **BOINC** (Berkeley Open Infrastructure for Network Computing).
- Details: http://arxiv.org/abs/0905.1705

LIGO

Search method

Coherent matched-filtering over each 30-hour segment (\mathcal{F} -statistic)

- » Data is convolved with a set of signal **template** waveforms corresponding to all possible sources.
- Templates in 4D parameter space (\mathbf{f} , $\dot{\mathbf{f}}$, α , δ)
 - » placed at approximately equal distance,
 - » distance measure (metric) defined from fractional loss in expected \mathcal{F} -statistic.

as previous E@H S4 search: Phys. Rev. D 79, 022001 (2009).

Same methods

- Template **grid** of maximum possible loss in \mathcal{F} (mismatch m):
 - m = 15% for f < 400Hz, m = 40% for f > 400Hz.
- Template **grid** is a Cartesian product of a uniformly spaced grid in frequency **f**, uniformly spaced grid in **f** and metric-based grid on the sky (different for each data segment).
- » In total: ≈10¹⁶ templates!

LIGO

Data-processing

Einstein@Home:

Uses idle computing cycles volunteered by the general public, based upon BOINC.

- Divide huge parameter space into small workunits:
 - » Each workunit has computing time of order 1 day.
 - » Workunits sent to out to participating hosts.
 - » Hosts return finished work in a top-list of most significant events (in \mathcal{F} -statistic).
 - » Validation: same work done on hosts owned by two different users, then results automatically compared.
 - » In total 16 446 454 workunits.
- Total processing time on E@H project:
 - » 6 months.

Total result data volume to post-process:

» 0.6 TB compressed, 2.5 TB uncompressed.

Einstein@Home screensaver

- About 100 000 active participants:
 - » About 100 Tflops.

CO

Post-processing

Goal: Find candidates from the 28 different data segments which cluster closely together in the 4D parameter space ($\mathbf{f}, \mathbf{f}, \alpha, \delta$).

Steps:

- » Shift candidate event frequencies to a fixed fiducial time so they can be compared
- "Bin' candidate events into 4D cells"
- » Search for cells which have candidate events from many of the 28 data segments

Cells are chosen to be as small as possible consistent with:

- » Cell size in sky > largest sky-grid separations (use metric-based model in declination)
- » Cell size in frequency > frequency-grid spacing + (spin-down grid spacing) x 30 hours
- » Cell size in spin-down > spin-down grid spacing

Veto regions of parameter space

- » Exclude regions where stationary instrumental lines tend to appear due to global correlations. Physically: regions of minimum Doppler modulation.
- » In this search, about 13% of total search parameter-space is vetoed.

Pletsch, PRD 78, 102005 (2008).

Sensitivity estimation LSC

- Average false alarm probability per 0.5Hz band in Gaussian noise of
 - \rightarrow obtaining 10 (of 28) coincidences: 10⁻³ \rightarrow expect a few in 1.5 kHz of Gaussian noise.
 - \Rightarrow obtaining 20 (of 28) coincidences: 10^{-21} \Rightarrow confident detection.

At what strain h₀ would 90% of sources be **confidently** detected?

- » Determined by MC simulations in each 0.5Hz band.
- Simulated source population probed for detection
 - >> Uniformly distributed over the sky.
 - >> Uniformly distributed in the nuisance parameters.
- In most sensitive band 125 225Hz, > 90% of sources with $h_0 \ge 3 \times 10^{-24}$ were confidently detected.
- Comparison to previous Einstein@Home S4 analysis:
 - » Improved sensitivity by a factor ≈ 3.

Results

Coincidence analysis results:

Further postprocessing steps:

1. A posteriori cleaning

» Removing instrumental lines of *known* origin.

2. Parameter-space veto

» Discriminating parameterspace regions of Doppler stationarity.

3. Detector coincidence veto

» Discriminating candidates whose coincidences come from a single detector only.

Final results:

- » Left: 10 coincidences of 28 possible (but 10 also expected by chance).
- » No credible signal found.

GO

Future directions

- Einstein@Home now running a hierarchical search in later S5 LIGO data using the Hough transform method.
 - » Incoherent combination step done on hosts,
 - » 121 data segments of 25 hours each (from H1 and L1),
 - » Increase in sensitivity by a factor ≈ 4.
- A more sensitive method currently under development:
 - » "Global-Correlation Transform" technique,
 - » Substantial increase in sensitivity by a factor ≈ 6,
 - » Planned for search of future LIGO S6 data.
- Those of you who run Einstein@Home: THANK YOU!
- Everyone else, sign-up to join at:

http://einstein.phys.uwm.edu

Krishnan et al... PRD 70, 082001, (2005).

Pletsch and Allen, ArXiv:0906.0023, (2009).