Gravitational waves from pulsar glitches

Lila Warszawski,

Natalia Berloff & Andrew Melatos

Caltech, June 2009.

In the next 50 minutes...

- Neutron star basics
- Pulsar glitches, glitch statistics (& GWs)
- Superfluids and vortices (& GWs)
- Glitch models:
 - Avalanches
 - Coherent noise
 - Quantum mechanical (GPE) model
- Gravitational waves from glitches

Neutron star composition

What we know

- Pulsars are neutron stars that emit beams of radiation from magnetic poles.
- Pulsars are extremely reliable clocks (ΔTOA≈100ns).
- Glitches are sporadic changes in $v(\uparrow)$, and $dv/dt(\uparrow or \downarrow)$.
- Some pulsars glitch quasi-periodically, others glitch intermittently.
- Of the approx. 1500 known pulsars, 9 have glitched at least 5 times..
 - Some evidence for age-dependent glitch activity.

$$0.08 \,\mathrm{Hz} < \nu < 700 \,\mathrm{Hz}$$
$$-3.8 \times 10^{-10} \,\mathrm{Hz} \,\mathrm{s}^{-1} < \dot{\nu} < -1 \times 10^{-18} \,\mathrm{Hz} \,\mathrm{s}^{-1}$$

Glitching pulsars

Zou et al., MNRAS 2008

Anatomy of a glitch

A superfluid interior?

- Post-glitch relaxation slower than for normal fluid:
 - Coupling between interior and crust is weak.
- Nuclear density, temperature below Fermi temperature.
- Spin-up during glitch is *very* fast (<100 s).
 - <u>NOT</u> electomagnetic torque
 - →Interior fluid is an inviscid (frictionless) superfluid.

Superfluids & vortices

- SF doesn't 'feel' slow rotation of container
- Above v_{crit} SF rotates via vortices
 - quantum of circulation
 - 1/r velocity field per vortex
- Vortices form **Abrikosov** lattice
- v_{SF} determined by vortex density
- <L> determined by vortex positions

- Vortex core is empty
- Superposition of vortex & nucleus minimizes volume from which SF is excluded
- Pinning is the minimum energy state

GWs three ways

• Strongest signal from time-varying current quadrupole moment (s)

$$h \propto \frac{\partial^2}{\partial t^2} \int dV$$
 vorticity

- **Burst** signal (this talk):
 - Vortex rearrangement → changing velocity field
- Post-glitch ringing:
 - Viscous component of interior fluid adjusts to spin-up
- Stochastic signal:
 - Turbulence (eddies) [Melatos & Peralta (2009)]

Pulsar glitch statistics

Melatos, Peralta & Wyithe, 672, ApJ (2008)

- Glitch sizes vary up to 4 decs in $\Delta v/v$
- Fractional glitch size follows a *different* power law for each pulsar.

$$p(\Delta \nu/\nu) \propto (\Delta \nu/\nu)^{-a}$$

• Waiting times between glitches obey Poissonian statistics.

$$p(\lambda, \Delta t) = \lambda \exp(-\lambda \Delta t)$$

Cumulative fractional glitch size

Cumulative waiting time

Poisson waiting times

Warszawski & Melatos, MNRAS (2008)

The unpinning paradigm

Anderson & Itoh, 1975, Nature, 256, 25

- 1. Nuclear lattice + neutron superfluid (SF).
- 2. Rotation of crust \rightarrow vortices form \rightarrow SF rotates.
- 3. Pinned vortices co-rotate with crust.
- 4. Differential rotation between crust and $SF \rightarrow Magnus$ force.
- 5. Vortices unpin \rightarrow transfer of L to crust \rightarrow crust spins up.

Some flaws...

- To what do the vortices pin?
- Vortex separation ≈ 1cm (>> pinning site spacing)
 - Any nuclear lattice site → near continuous dist'n
 - Faults in the crust → inhomogeneous dist'n
- Why doesn't this result in periodic glitches?
 - If pinning strength is same everywhere and stress builds up uniformly...
 - \rightarrow glitches should all be same size.

Ignores important **collective** dynamics - challenge!

Reality check

- Superfluid flow should be turbulent:
 - Vortices form a *tangle* rather than a regular array.
- Simulations show that meridional flows develop
 - 3D is important here! (Peralta et al. 2005, 2006)
- How does superfluid spindown get communicated to crust?
 - Back-reaction on pinning lattice?
- Role of proton vortices, magnetic fields...

Avalanche model

Aim:

Using simple ideas about vortex interactions and Self-organized criticality, reproduce the observed statistics of pulsar glitches.

Coherent noise

Melatos & Warszawski, ApJ (2009) Sneppen & Newman PRE (1996)

- Scale-invariant behaviour <u>without</u> macroscopically inhomogeneous pinning distribution .
- Pinning strength varies from site to site, drawn from top-hat distribution centred on F_0 .
- Uniform Magnus force drawn from probability distribution based <u>only</u> on spin-down:

$$p(F_{\rm M}) = e^{-F_{\rm M}/\sigma}$$
$$\sigma \propto \dot{\nu}/\lambda$$

• Each pulsar has a different $p(F_M)$.

A schematic

Computational output

Model fits - Poissonian

- $F_0 \approx \Delta$ gives best fit in most cases.
- Broad pinning distribution agrees with theory: ≈ 2MeV ± 1MeV
- GW detection will make more precise

Gross-Pitaevskii equation

 γ (= 0.1) suggests presence of normal fluid, aids convergence grid of random pinning potentials tunes repulsive interaction μ (= 1) energy due to addition of a single particle $|\psi|^2$ superfluid density

Spherical cows

The potential

Tracking the superfluid

$$\psi = \sqrt{\rho}e^{i\theta}$$

Circulation counts number of vortices

$$\kappa N_{
m v} = \int {f v} \cdot {f dl} \qquad {f v} =
abla heta_{
m phase}$$

• Angular momentum L_z accounts for vortex positions

$$\langle \hat{L}_z \rangle = \int \rho \mathbf{x} \times \mathbf{v} d^3 \mathbf{x}$$

$$|\psi|^2 \quad \nabla \theta$$

Feedback equation

- Vortices move radially outward
 - → superfluid slows down
 - → superfluid loses angular momentum
- Conservation of momentum: stellar crust gains angular momentum
 - → crust speeds up:

$$\frac{d\nu_{\rm cr}}{dt} = -\frac{I_{\rm SF}}{I_{\rm cr}} \frac{d\nu_{\rm SF}}{dt} + \dot{\nu}_{\rm EM}$$

Glitch simulations

Points to ponder...

- Glitch-like spin-up events do indeed occur.
- Evidence of correlations in vortex motion
 - Avalanches?
 - Coherent noise if collective behaviour strong enough
- Cannot make simulation large enough to get glitch statistics, but we're working on it...
- Ratio of pinning sites and vortices is far from the 'true' regime.
- Use individual characteristic vortex motion as Monte Carlo input.

Gravitational waves

• Current quadrupole moment depends on velocity field

$$s^{lm} = c_l \int d^3x Y_{lm}^* r^l \mathbf{x} \cdot \nabla \times (\rho \mathbf{v})$$

• Wave strain depends on time-varying current quadrupole

$$h_{jk}^{\mathrm{TT}} = \frac{G}{c^5 r} \frac{\partial^2 s^{21}}{\partial t^2} T_{jk}^{\mathrm{B2,21}}$$

Simulations with GWs

Looking forward

- Wave strain scales as $\sqrt{N_{
 m vort}}$
 - Estimate strain from 'real' glitch:

$$h \approx 10^{-23} \left(\frac{\Delta t}{1 \text{ ms}}\right)^{-2} \left(\frac{N_{\text{vortices}}}{10^{19}}\right)^{1/2}$$

- First source?
 - Close neutron star (not necessarily pulsar)
 - Old, populous neutron stars ($\sim 10^8$)
 - Many pulsars aren't timed might be glitching
- Place limit on shear from turbulence [Melatos & Peralta (2009)]
- How to turn spectrogram into template appropriate to LIGO?
 - Incorporate new signals into LIGO pipelines.
 - Discriminate between burst types

What can we learn?

Nuclear physics laboratory <u>not possible on Earth</u>

- QCD equation of state (mass vs radius)
- Compressibility: soft or hard?
- State of superfluidity
- Viscosity: quantum lower bound?
- Lattice structure:
 - Type, depth & concentration of **defects**

Of interest to many diverse scientific communities!

Conclusions

- Many-pronged attack on the glitch problem motivated by **observed** pulsar glitch statistics.
- 'Real' glitch mechanism may be blend of avalanches, coherence and quantum effects.
- First principles simulations inform GW predictions.
- First calculation gravitational wave signal resulting from vortex rearrangement
 - detectable by LIGO?