G0900457-v1

Adv LIGO BSC-ISI Stage 0

Design Review

Celine Ramet May, 22nd 2009

Overview

- LASTI prototype
- New design approach
- New design analysis
- Yet to be added...

LASTI Prototype

- 11 parts
- 1077 lbs (967+110)
- 1st natural frequency: 77 Hz
- 1st natural frequency Stage0+ Fig support structure: 27 Hz

LASTI Prototype (2)

FEA Static

	z Displac	ement	% between Z
Post #	bottom fle	exure rod	displacement
	mm	mil	
1	0.770	30.3	
2	0.757	29.8	7.85
3	0.710	27.9	

Stage 0 is asymmetrically deformed under load

Fig 2 & 3: Nodal displacement contours on deformed structure (max 0.220 mm)

New Design Approach

- Monolithic (6"+6")
 - -2 parts
 - 1195 lbs

Assembly checked in the vault D0900896

Exploded view

New Design Approach (2) Shape Comparison

- Blue: old design
- Green : new design
- Same height
- Same interior shape
- •1.75" larger on all sides

New Design Approach (3) Webbing

Allow sufficient
bolting of the 2 parts

•Allow bolting & support of blade posts and lockdowns

Maximize
'horizontal' webbing
to oppose static
deformation

FEA: Nodal Displacement Comparison

LASTI Prototype

Monolithic

Same scale

FEA (2): Elastic Strain Comparison

LASTI Prototype

Monolithic

Same scale

FEA (3): Bottom Flexure Rod Displacement

	Post #	X Displa	icement	y Displacement		x-y displacement		z Displacement		% between Z displacement
		mm	mil	mm	mil	mm	mil	mm	mil	
	1	-0.059	-2.339	-0.117	-4.624	0.132	5.182	0.770	30.316	
LASTI Prototype	2	-0.229	-9.019	0.035	1.370	0.232	9.123	0.757	29.813	7.85
	3	0.277	10.913	0.073	2.868	0.287	11.283	0.710	27.937	
	1	-0.037	-1.444	-0.111	-4.370	0.117	4.602	0.735	28.918	
Monolithic	2	-0.179	-7.028	0.037	1.458	0.182	7.178	0.729	28.710	6.36
	3	0.194	7.624	0.063	2.464	0.204	8.012	0.688	27.079	

Yet to be added...

- ³/₄ inch fillets inside
- Screws locations
 - Larger webbing around screws
 - Thinner webbing in between
- Deep counterbores & partial threads
- No blind tapped holes
- Vented pockets for vacuum AND cleaning
- Thicker "top plate" below critical parts (such as blade posts) ?

Yet to be added... (2) Hardware

- Alignment pins
 - Taper or 'multi-stage'
 - Offset from center (to avoid 180 deg rotation)
- Eyebolts to move assembly
- Nitronic heli-coil?

Questions? Comments? Suggestions?

Vertical Asymmetry measured at LASTI

- Blade vertical stiffness: 2700pds/in
- Loading asymmetry: 80pds
- Virtual Tip Blades height asymmetry: 80/2700~30mils
- (stop allows only +-12 mils deviation)

Bottom/Top views

AL alloys properties

AL	Density (lb/in^3)	Tensile Strength	Young Modulus
	· · · ·	(ksi)	(ksi)
6061-T6	0.0975	45	10.0e3
7075-T6	0.1015	83	10.4e3
2024-T4	0.1012	68	10.6e3

Source: Mechanical Engineer's Handbook-Materials and Mechanical Design (3rd Ed.), Myer Kutz, Ed John Wiley & Sons

Vacuum capable

Goals

- Address known problems
 - Wrong materials, etc...
- Simplify assembly
 - Reduce parts number
 - Reduce parts with small differences
 - Simplify alignment
 - Reduce tolerances on cutouts
- Increase stiffness

LASTI Prototype BSC-Stage 0 (2)

• FEA Static

- Curved blades w/ infinite Young Modulus
- Stage 0 fixed at the

Static Analysis

Doct #	z Displ	acement	% between Z
POSL #	bottom	flexure rod	displacement
	mm	mil	
1	0.735	28.90	
2	0.729	28.71	6.36
3	0.688	271.1	

Fig 1: Nodal displacement contours on deformed structure (max 0.120 mm)

Fig 2: Elastic strain contours on deformed structure (max 0.856 mm)