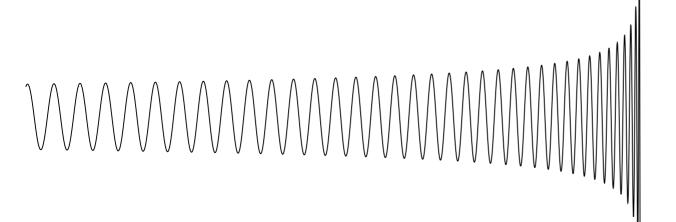
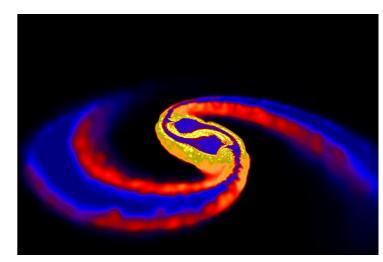


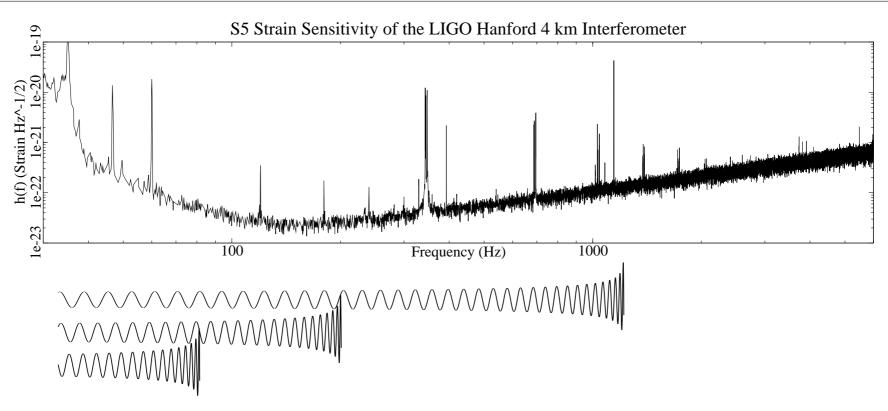
Searches for Gravitational Waves from Compact Binary Coalescences with LIGO and Virgo

Kipp Cannon, for the LIGO Scientific Collaboration and the Virgo Collaboration


May 28, 2009

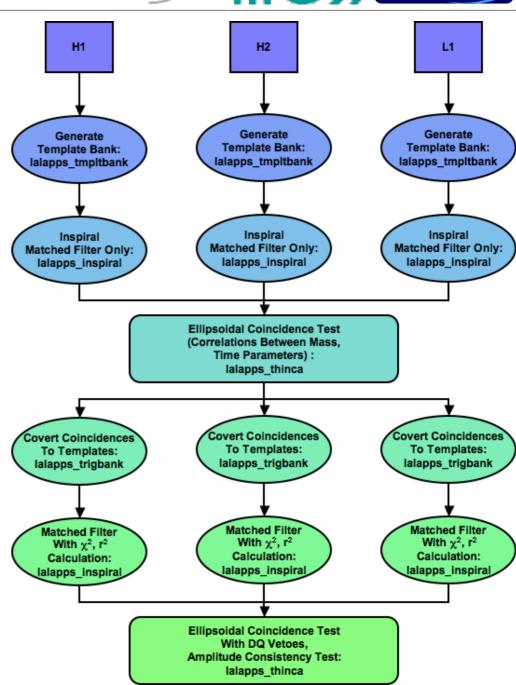


What the searches are targeting


- Binary systems of massive compact objects in close orbits: neutron stars (NS), black holes (BH), primordial black holes (PBH).
- Orbits decay by radiating energy as gravitational waves.
- Component objects eventually collide and merge.

NS-NS merger. Credit: Daniel Price and Stephan Rosswog

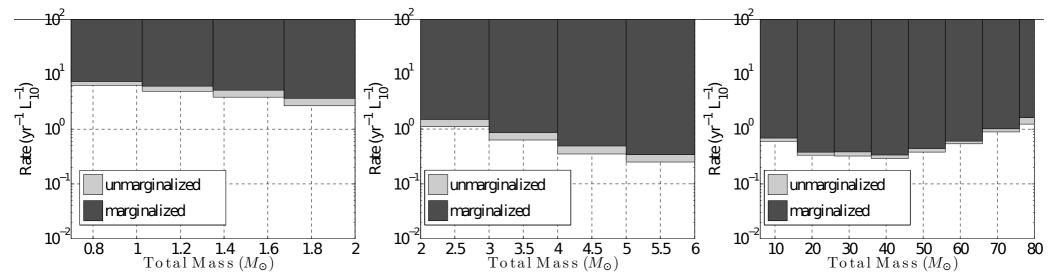
• Initial LIGO and Virgo, etc., are sensitive to the last few tens of seconds or less of the gravitational wave signal before the merger.


Classes:

- − low-mass systems, total mass $\in 2 M_{\odot} \dots 35 M_{\odot}$, e.g., neutron star − neutron star, neutron star − black hole, black hole − black hole.
- high-mass systems, total mass $\in 25 \mathrm{M}_{\odot} \dots 100 \mathrm{M}_{\odot}$,
- black-hole ring-downs, mass $\in \sim 85~M_{\odot}\ldots \sim 390~M_{\odot}$.

How the search is conducted

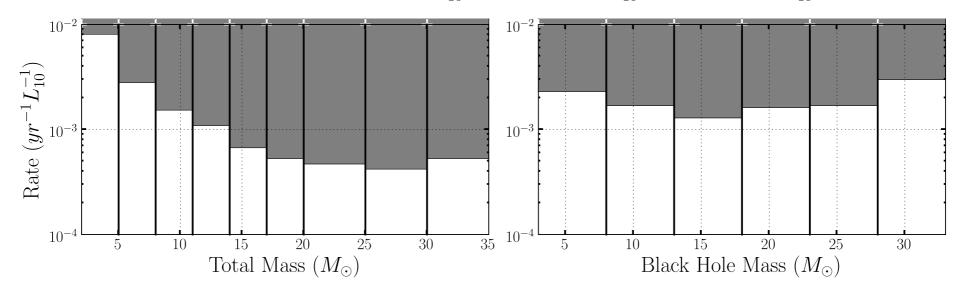
- A "template bank" of waveforms spanning the parameter space is constructed.
- Using a frequency-domain noise-weighted inner product, the strain output of each instrument is projected onto each of the template waveforms, yielding an SNR time series for each template.
- A thresholding and clustering algorithm is applied to each SNR time series, and a list of the template waveforms that matched the data above threshold and the times at which they matched is collected.
- Coincidence in time and waveform parameters is demanded across multiple instruments; subsets of the instruments are allowed in several combinations.
- Large time offsets are applied to the event lists prior to coincidence to estimate false-alarm rate.
- Simulated signals are added to the data streams in software to measure the detection efficiency.


LIGO-G0900451

Recent publications

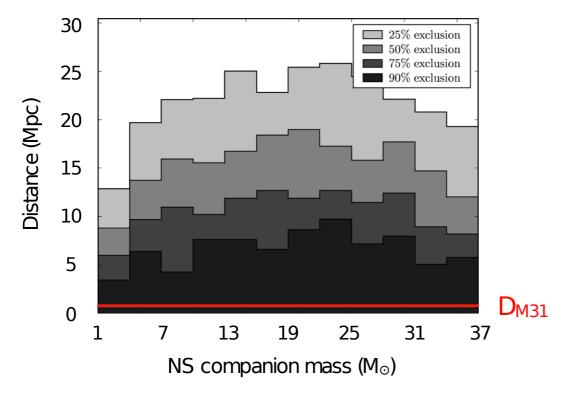
Third and fourth science runs (S3 & S4)

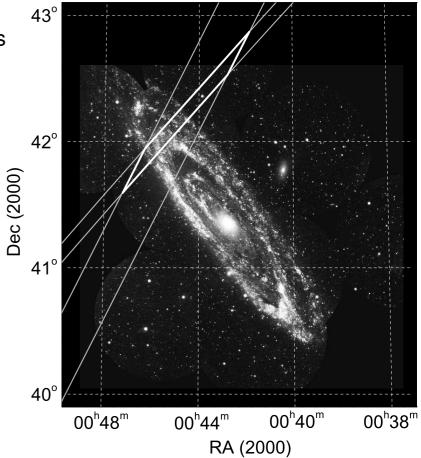
- \bullet Six analyses: for each of S3 & S4: PBH/PBH (0.3–1 ${
 m M}_{\odot}$), NS/NS (1–3 ${
 m M}_{\odot}$), BH/BH (3–35 ${
 m M}_{\odot}$).
- Phys.Rev. D77:062002 (2008); arXiv:0704.3368.
- No detections; assuming binary systems with components whose masses are Gaussian distributed around $0.75 M_{\odot}$, $1.4 M_{\odot}$, and $5.0 M_{\odot}$ respectively, set 90% confidence event rate upper limits of $4.9 a^{-1} L_{10}^{-1}$, $1.2 a^{-1} L_{10}^{-1}$, and $0.5 a^{-1} L_{10}^{-1}$ respectively ($L_{10} = 10^{10} \times$ the blue light luminosity of the Sun)



CONTINUED ...

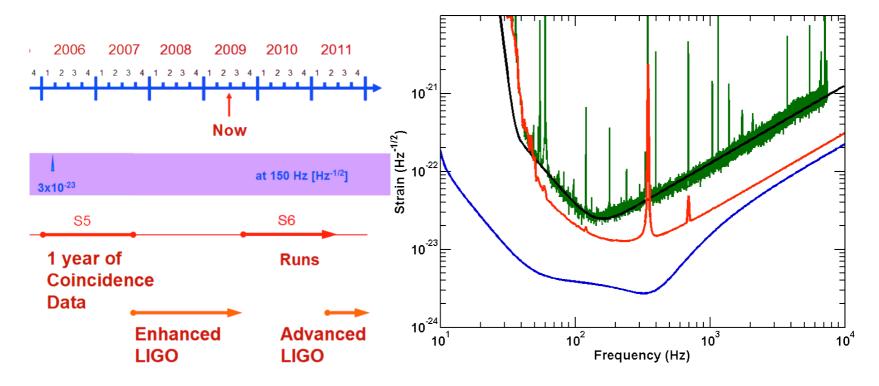
LIGO's fifth science run (S5)


- Results from first 18 months of data in "low mass" regime $M_{\rm total} \in [2~{\rm M}_{\odot}, 35~{\rm M}_{\odot}],~M_{1,2} \ge 1~{\rm M}_{\odot}$ to appear in Phys.Rev. D; available as arXiv:0901.0302 (1st year) and arXiv:0905.3710 (update from months 12–18).
- Sensitive to a distance of up to 150 Mpc depending on mass.
- No detections; assuming a compact binaries population with a Gaussian mass distribution representing binary neutron star systems, black hole-neutron star binary systems, and binary black hole systems, set 90%-confidence upper limits of $1.4 \times 10^{-2} \, \mathrm{a^{-1} L_{10}^{-1}}$, $3.6 \times 10^{-3} \, \mathrm{a^{-1} L_{10}^{-1}}$, $7.3 \times 10^{-4} \, \mathrm{a^{-1} L_{10}^{-1}}$ respectively.



Gamma-Ray Burst GRB 070201 in fifth science run (S5)

- Short GRB: possible compact binary merger, possible SGR.
- Error box for location of electromagnetic source covers a portion of M31 (at $D \sim 770 \ \mathrm{kpc}$).
- LIGO null result excludes compact binary merger in M31 as source with confidence > 99%.
- Ap.J. 681(2):1419–1430 (2008); arXiv:0711.1163

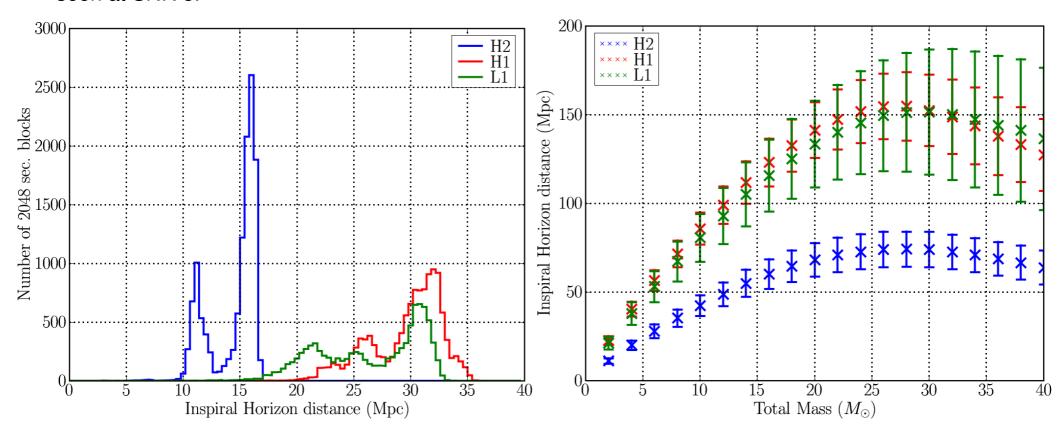


GRB 070201 error box. Credit: Mazets et al., arXiv:0712.1502

S6/VSR2 and Advanced Detector Preview

- The newly constructed Enhanced LIGO interferometers will be used for sixth science run, expected to begin in July and last for about 1.5 years.
- Following S6, the Advanced LIGO interferometers will be installed. Advanced LIGO is fully funded, construction of components was begun a year ago and is progressing on schedule and within budget.
- Advanced LIGO Science run to begin by 2014.
- First detection possible in S6 (knock on wood!), detection is believed to be certain with Advanced LIGO 200 Mpc range, plausible NS/NS event rates of nearly 1/week.

New Analysis Techniques in Development


- Detector improvements increase our sensitivity. Software improvements do, too!
- Multi-dimensional event classification for better discrimination of signals from noise.
- Coherent methods, to impose better multi-instrument waveform consistency, estimate direction to source, etc..
- Low-latency techniques (even sub-template latency) for rapid candidate event identification and correlation with EM transients.
- Smarter data management techniques to eliminate data volume bottlenecks allowing pipeline's internal thresholds to be lowered.
- Hardware-accelerated signal processing techniques using GPUs to make more computational resources available for Monte Carlo simulation studies, etc...
- Studies of event populations not just the "loudest event" might allow a statistical detection: believable evidence of an excess of events without being able to identify which events, specifically, are the gravitational waves.

LIGO-G0900451 9

Extra Slides ...

• First calendar year low-mass horizon distance — distance at which an optimally-oriented source would be seen at SNR 8.

Publication plans for fifth science run

- LIGO's fifth science run spanned Nov 4, 2005, to Sept 30, 2007.
- Virgo's first science run (VSR1) spanned May 18, 2007, to October 1, 2007 (last ~ 4.5 months of S5).
- Agreement between collaborations allows full data sharing.
- S5/VSR1 searches in progress:
 - low-mass search in LIGO months 12-18
 - low-mass LIGO-Virgo search in months 19–24
 - LIGO-only high-mass search $M_{\rm total} \in [25~{\rm M}_{\odot}, 100~{\rm M}_{\odot}]$ in full 2 years
 - externally-triggered GRB search in full 2 years (18 short GRBs in S5 after data quality cuts)
 - black hole ring-down search in full 2 years
- When setting rate upper limits, results will be combined using previous runs as Bayesian priors. I.E., there will be a series of low mass upper limits published, the last of which will provide the complete result for the entire S5 run.

LIGO-G0900451 11