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%0 GW Theo ry
- o AssUme = 77;w + Ay

® EFEs to linear order in h,, (Lorenz gauge V“’ﬁw = 0)

h,, =—1671,,

where

- Euv = Ry — Ny h/2 is the trace reverse of R .
- LI is the wave operator for Minkowski metric 77, .
- 1},, is the stress energy of the source of £, .

Homogeneous solutions describe wave propagation.

Inhomogeneous solutions describe wave production.
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. ¢ Pl.'o'.pagati'o'n (ho'mogeneousequa‘ltion):' .

Solutions to Llh,,, = 0 are

huy = Ay sin (kgz® + ¢)

where

- A, is the symmetric amplitude tensor.

- k% is the wave 4-vector, k” = w is the frequency.
Wave eqn: k“k, = 0.Lorenz cond: £#A,, = 0.

® |[nTT gauge:
- transverse condition: A0 = A,, =0
- traceless condition: A", = 0 — A,, = —A4,,
- remaining components: A,, = A, and A,, = A, .
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%o GW Theo ry
. L Productlon (InhOm‘Dge”e"us equatlon)

Einstein (1916) found that an approximate solution of
hy, = —1671,, is

2 82 - | 1 STF
hJTkT(t) =5 / T —r) a2l d3x :

where:

- 1 is the distance from the source to the observer,
- T is the proper time of the observer; and

- ST'F' denotes a symmetric trace-free projection.

This quadrupole formalism is valid when the gravitational
wavelength is much greater than the size of the source.
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e Question: How do gravitational waves effect matter?
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# GW Theory
e Dlrect observatlon of GWs is a dauntlng prospect

Toy calculation:
Particle of mass m in orbit of radius /2 and frequency w.

T = md(z — Rcoswt)d(y — Rsinwt)d(2)

4GmR*w*

hy = - cos(2w(t — 1))
4GmR*w*

hy = - sin(2w(t — 1))

For a star in the virgo cluster:
m ~ 10%%g, R ~ 10°m,r ~ 10**m,w ~ 100Hz
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® Most sensitive GVV detectors are interferometers.
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® Most sensitive GV detectors are interferometers.
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2P0 GW Detectors #*=2
® Real instruments are considerably more complex.

ETMy
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® Real instruments are considerably more complex.

Legend:
ETM - End Test Mass BS - Beam Splitter AS - Antisymmetric MC - Mode Cleaner
ITM - Input Test Mass PR - Power Recycling REFL - Reflected Ref - Reference
ETMy
|
Mode
Cleaner
Bl TMy
] BS BS BS BS
Far
GG ool 7 ol e —] .
PRM I'TMx
V N A A A A
SREF Smc SREFL Ser Sas
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® Real instruments are considerably more complex.

Legend:
ETM - End Test Mass BS - Beam Splitter AS - Antisymmetric MC - Mode Cleaner
ITM - Input Test Mass PR - Power Recycling REFL - Reflected Ref - Reference
ETMy
|
Mode
Cleaner
Bl ™y
] BS BS BS BS
Far
GG ool 7 ol e —] .
PRM I'TMx
y N A A VN A
SREE Smc SREFL Spr Sas

Fabry-Perot Interferometer - arms are locked at low
frequencies by feedback loops from output signals.
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me GW Detectors "ﬁg@

° Interferometers are subject to many noise sources.

Seismic

Bl < ]
Thermal / Noise

= Noise
E '2 \
\ 4
NG-TAG Lake /1 I
Shot A

Frequency (Hz)

- thermal noise and seismic noise move the test masses.
- shot noise is phase noise due to uncertainty principle.
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G.. Detecto rs -
o A world-W|de network of GW mterferometers has
been constructed.

Map Credit: NASA ‘s Earth Observatory
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- GW Detectors

e A world-wide network of GW interferometers has
been constructed.
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20 GW Detectors #®=2
" e The North American interferometers are the Laser
Interferometer Gravitational-VWave Observatory Lab.
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o - GW Detectors =
e The North Anﬁericén interferometers are .thé Laser '.“
Interferometer Gravitational-VWave Observatory Lab.

Hanford WA, USA
LIGO 4.0 km and 2.0 km

PR B Livingston LA, USA §
- -~ LIGO 4.0 km

Funding: NSF
Management: CIT and MITL‘
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h ® The North Amerlcan mterferometers are the LIGO Lab
LIGO Lab + LIGO Scientific Collaboration (LSC) = LIGO.

Hanford WA, USA
LIGO 4.0 km and 2.0 km

PR B Livingston LA, USA §
- -~ LIGO 4.0 km

Funding: NSF
Management: CIT and MITL‘
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® The LSC is itself an international collaboration.
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- . Th.e"'LSC.Z i§ i’ts'elf‘ah;iﬁterna‘tional coilaborétic;n.
- 689 scientists at 63 institutions
- 10 countries on four continents
- Data sharing agreement with GEO
- Experimental design partnership with AIGO

- Data sharing agreement with Virgo

- Joint papers published with TAMA

LIGO-G0900434-v4 14 May 16,2009
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GW Detectors

° We have achleved our |n|t|al science objectlve one year
of coincident data at design sensitivity.
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% ault GW Sou rces
e Detectable sources are dlctated by the sensitive
frequency band of the detectors.
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Interferometric detectors are sensitive to gravitational
waves in the 50-1000 Hz range.
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. Detectable sources are dlctated by the sensitive
frequency band of the detectors.
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4& GW Sources

. Detectable sources are dlctated by the sensitive
frequency band of the detectors.

- minimum frequency implies maximum size

Umaz ~ ¢/ 60Hz = 0.007 Ry

- This is smaller than any main sequence stars or even
white dwarfs.

- Sources will be systems containing neutron stars or
black holes or other dense objects.
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® For the purpose of gravitational wave detection, it is
convenient to divide GWV sources as follows:

Source . .

. Short Duration Long Duration
Categories
Theoretical >

-
Waveform '
Binary Inspirals Neutron Stars
No
Theoretical
Waveform -
Unmodeled Bursts
LIGO-G0900434-v4 19 May 16,2009

Tuesday, May 19, 2009



00 i PNAT G i o

® For the purpose of gravitational wave detection, it is
convenient to divide GWV sources as follows:

Source . .

. Short Duration Long Duration
Categories
Theoretical >

-
Waveform '
Binary Inspirals Neutron Stars
No
Theoretical
Waveform -
Unmodeled Bursts
LIGO-G0900434-v4 19 May 16,2009

Tuesday, May 19, 2009



% GW Sources "@9:9

o Compact bmary msplral is the orbital motion of the
binary companions (black holes or neutrons stars).

- modeled using post-Newtonian formalism. 2PN is
sufficient for detection of all but the last 10’s of cycles.

- extends from formation of binary to end of secular

evolution, 0 < f < 4100M s /My, . For detection by
LIGO, My < 4100Hz Mg, /60Hz ~ 70

- for binary or orbital radius a(?) L
and frequency w,

82 2 2 o |]1 I 1
~ 5120 (t) ~ W a (t) |||r‘|’|\‘,‘l||]|u| Hmy

I l

LIGO-G0900434-v4 20 May 16,2009
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From Kepler’s law, w? ~ a™?,

so  h~1/a(t) ~w?/3 .
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4& - GW Sou rces s =

. Unmodeled Burst Sources are any short duratlon
( < 1 second) source which is not well modeled.

- examples include supernovae, soft gamma repeaters,
gamma ray bursts, and black hole binary mergers, etc.

- models may exist, but are not considered sufficient to
base detection algorithms on.

- this is the best category for serendipitous discoveries.

Black Hole Merger Simulation Supernova Simulation

Ott, Burrows, Dessart and Livne
Campanelli, Lousto, Faber, Nakano, Zlochower
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Neutron Stars will produce gravitational waves if they
are not axisymmetric.

- Assuming a neutron star is a rigid, asymmetric triaxial
body then it will emit GVVs at twice the rotational
frequency v.

- Rotational period has to be ~ 0.5 - 40 ms for detection.

- GW frequency will be approximately constant at solar
system barycenter - we know what signal looks like.

- Some neutron stars are pulsars, so we know their
parameters such as sky position, frequency, spin-down, ...

- The GW strain from a neutron star with moment of

inertia / about the axis of rotation is bound by
h < \/Iv/r?v ~ 10~%* for neutron stars.
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. Stochastlc background sources are any lsotroplc
population of sources which emit overlapping GWs.

- Population of astrophysical or cosmological sources.

- Examples include GWs from inflation, stringy
cosmologies, unresolvable binary populations, etc.

- Produces unpolarized, isotropic, Gaussian GVVs.

- Could allow us to see back to GUT times or earlier.

- GW energy described by Qg 1= pfc dp(ffw .

- Theory allows for a wide range: 107'* < Qo < 1.

- Big Bang Nucleosynthesis provides observational
constraint on gravitational wave energy density at all
frequencies. Implies Qg <1072
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% GW Data Analy5|s

VYA sample the GW output of the mterferometer to get
strain values s; = s(j At),j € N,

- when there is no signal, the data are noise, s; = n;.

- if there is a signal, the data are sums of noise and GW
signal strains, s; = n; + h;.

- noise at each frequency is (approximately) Gaussian,
but low frequency noise dominates the data.
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GW Data Analy5|s L =

o When accurate waveforms can be caIcuIated matched
filter is the optimal search to look for GWV signals.

Source . .

. Short Duration Long Duration
Categories
Theoretical >

®
Waveform |
Binary Inspirals Neutron Stars
No
Theoretical
Waveform £
Unmodeled Bursts
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% GW Data Analy5|s

o When accurate waveform h( ) can be caIcuIated
matched filter is the optimal search for GWV signals.

- sample h(t) at same
rate as GWV data s(t).

- define signal-to-noise
p=|h-s] /O-}_i.ﬁ

- when there’s no GW
Ss=n —o0,=1.

-if§:ozf_£+ﬁ , then
(p) x « . For large
enough «, (p) > o,
which means signal
is probable.

s(t) (counts)
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- sample h(t) at same
rate as GWV data s(t).

- define signal-to-noise
p=|h-s] /O-}_i.ﬁ

- when there’s no GW
Ss=n —o0,=1.

-if§:ozf_£+ﬁ , then
(p) x « . For large
enough «, (p) > o,
which means signal
is probable.

s(t) (counts)
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GW Data Analy5|s L =

o When accurate waveforms are not I<nown 1 advance
use time-frequency methods (or wavelet equivalents).

Source . .

. Short Duration Long Duration
Categories
Theoretical >

®
Waveform |
Binary Inspirals Neutron Stars
No
Theoretical
Waveform £
Unmodeled Bursts
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%o - GW Data Analysis

® \VWhen accurate waveforms are not known in advance,
use time-frequency methods (or wavelet equivalents).

ter ‘F

- take a slice of interferometer M Ilﬁ i mi v Wﬂlmwwr
data and Fourier transform it. |l
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® \VWhen accurate waveforms are not known in advance,
use time-frequency methods (or wavelet equivalents).

ened L ) Interfer D I

- take a slice of interferometer
data and Fourier transform it.
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%” - GW Data Analysis =

® \VWhen accurate waveforms are not known in advance,
use time-frequency methods (or wavelet equivalents).

ened L ) Interfer D I

- take a slice of interferometer
data and Fourier transform it.

- plot the Fourier coefficient
magnitudes on a vertical line.
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% °-  GW Data Analysis '@2.9

® VWhen accurate waveforms are not known in advance,
use time-frequency methods (or wavelet equivalents).

Vhitened LIGO Interferomete f

- take a slice of interferometer
data and Fourier transform it.

- plot the Fourier coefficient
magnitudes on a vertical line.

Frequency (Hz)
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% °-  GW Data Analysis '@2.9

® VWhen accurate waveforms are not known in advance,
use time-frequency methods (or wavelet equivalents).

Vhitened LIGO Interferomete f

- take a slice of interferometer
data and Fourier transform it.

- plot the Fourier coefficient
magnitudes on a vertical line.

- repeat for subsequent slices

N
I
of data. >
()]
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® \VWhen accurate waveforms are not known in advance,
use time-frequency methods (or wavelet equivalents).

- f

- take a slice of interferometer
data and Fourier transform it.

- plot the Fourier coefficient
magnitudes on a vertical line.

- repeat for subsequent slices

N
I
of data. >
()]
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%” -~ GW Data Analysis =

® \VWhen accurate waveforms are not known in advance,
use time-frequency methods (or wavelet equivalents).

- f

- take a slice of .inte rfe rometer ‘t“w"1”“‘WWMW#MWWW
data and Fourier transform it. |

- plot the Fourier coefficient
magnitudes on a vertical line.

- repeat for subsequent slices
of data.

Frequency (Hz)

- search for boxes with
statistical significance.
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GW Data Analy5|s

. Neutron stars emit S|gnals at almost fixed frequency

However, frequency at detector is doppler modulated.

Source ]
] Short Duration
Categories
Theoretical >
3
Waveform
Binary Inspirals
No
Theoretical
Woaveform £
Unmodeled Bursts

Long Duration

Neutron Stars

LIGO-G0900434-v4

33
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% GW Data Analy5|s "@g@

. Neutron stars emit S|gnals at almost fixed frequency
However, frequency at detector is doppler modulated.

- choose a length of time 7 such that the doppler shift
Af < 1/7.Neutron star signal stays in single freq. bin.

- Fourier transform data slices of length 7.

- add slices with frequency offset to account for doppler
modulation for that slice (using Earth ephemeris).

- complex phase of noise is random and noise amplitude
grows with total observation time 7" as /7T .

- signal phase is grows linearly, and signal amplitude grows
linearly with observation time.

- sensitivity therefore grows with time, and the minumum
detectable signal amplitude decreases as h \/hn/T.
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% GW Data Analy5|s e 2=

e To search for neutron stars at every sky posmon LIGO
frequency and with every possible set of spin down
parameters is computationally prohibitive.

Einstein@Home 16:13:17
World Year of Physics 2005 W

http://einstein.phys.uwm.edu

> 225,000 users
> 875,000 hosts

> 200 countries
> |40 Tflops

zer: Eric Myers
Total credit: 289852
Host credit: 3851
Team: Piratesi@Hoame

Zearch information:
Rav: 11227
DE: 57.24

FPercen t done: 4. 323%
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60 - W Data Analvsic 5SS
7%~ GVWY Data Analysis =

® Stochastic background signals from the early universe are
Gaussian signals embedded in Gaussian detector noise.

Source . .

. Short Duration Long Duration
Categories
Theoretical >

®
Waveform |
Binary Inspirals Neutron Stars
No
Theoretical
Waveform £
Unmodeled Bursts
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% GW Data Analy5|s "@9:9

. Stochastlc background S|gnals from the early universe are
Gaussian signals embedded in Gaussian detector noise.

- Detection with a single detector unfeasible. However,
signal will be correlated in different detectors.

- Cross correlate data from one or more detector pairs
to look for stochastic background.

- Detector geometry determines
degree of correlation signal has

at each frequency.
- For constant Q2(f) = Qg

All-Sky Overlap Reduction Functions

o gp s1(H) V() s2(f) | R ——
Y~ | df St j S
<IOY> = <O'Y> X QO\/7 time 300 400 500 600

Frequency (Hz)
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9“ Lo g Qutling

® Gravitational Wave (GW):
® Theory
® Detectors
® Sources

® Data Analysis

® Results
® Future
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9“ Lo g Qutling s

® Gravitational Wave (GW):
® Theory
® Detectors
® Sources
® Data Analysis

® Results
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4& GW Results "@g@

e No grawtatlonal waves have been detectécl yet.
® S5 results just beginning to be published.

® Observational results on:
- neutron star binaries, black hole binaries, macho
binaries.
- GRBs, SGRs, things that go bump in the night.
- SCO-XI1, radio pulsars, unidentified neutron stars.
- stochastic backgrounds from inflation, string
cosmologies.

® | will present only some of the highlights (in my
opinion).
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o GW Results 2

® Weare starting to constrain parameter space for string
cosmologies (Jones, Sarangi, Tye; Damour & Vilenkin):

- PrediCted in Reconnection Probability P = 1073
string-theory
inspired inflation.

- string cusps act
as GWV sources.

- loop size scale set | 8
by gravitational o
. 3 :
back-reaction. <
- allowed range for
reconnection - _ —
probabilities 1-10-3. P ingTension
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%& GW Results o

o Soft Gamma Repeaters (SGRs) are modeled as magnetars
whose B fields occasionally violently disrupt their crusts.

- SGR EM emissions —®H+— O : WNB 11ms 100-200Hz
£ ~0 | 10 %%——— () WNB 11ms 100-1000Hz
) Peak or A= 1S, HeaPH- - O WNB 100ms 100-200Hz

- IO42 B IO45 erg/ S. W-—*—’ () WNB 100ms 100-1000Hz
- 4 known SGRs RDL 200ms 2590Hz

- distances ~ |5 kpc e
- GW emission models? |y
- non-radial modes (rd) JEEGEEESLEPEIE
- Gaussian bursts (wnb) |IEssSistita

. RDC 200ms 1590Hz -
B PredICted GW energy RDC 200ms 1090Hz —HHIGH— O

RDL 200ms 1590Hz

... Auriga 2005

EGW 5 1048 ergs T a7 48 Iog:gEgo [e’ig]
(IOka’ MNRAS’ 2001 ) Assumed: distance - 10 kpc, freq. band - |- 3 kHz.

LIGO-G0900434-v4 4] May 16,2009



%& GW Results o

o The pulsar W|th the hlghest spin down rate in LIGOs
band is the crab pulsar. Likely energy loss mechanisms
include magnetic dipole radiation, particle acceleration in
the magnetosphere, and GWVs.

n orior |

—uniform prior |
- -restricted prior |
—spln—down I|m|t

- with errors in parameter
estimation, as much as
80% of energy loss could
have been from GWs.

- S5 analysis shows that it
is less than 6%.

- these ellipticities begin to
inform quark matter
equations of state.

gm®

'
o
ap)

o

T

—

o

T

)
=

Y

@)
et
C
@
£
@)
£

ellipticity
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%& GW Results

e GRB 07020I gamma ray burst (T9O =0.15 s) Feb I 2007

- Location consistent with
M31 spiral arms (0.77 Mpc).

- Short GRB: could be inspiral kT
of compact binary system .
(NS/BH), or perhaps soft -
gamma repeater. |

£
o

- Hanford 4 km and 2 km

interferometers were taking
data during this GRB.

Fi1G. 1.— The IPN3 ( ) (y-ray) error box overlaps with the spi-
ral arms of the Andromeda galaxy (M31). The inset image shows the full
error box superimposed on an SDSS ( ) ima of M31. The main
fi gure shows the overlap of the erro or box and the : 1)11'11 arms of M31 in UV
light ( ).
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9“” GW Results L‘@E@

. Matched ﬁlter anaIyS|s for |nsp|ral S|gnal

Search parameters:
Moy <mq < 3Mg = 5% exclusion
M@ S (D, S 4OM@

Search results:

o
v
—
e 0]
o
o
N
N
©
O
—
7]
>N
=
(ol
(o]
[ -
)
[7)]
<

Compact binary

in M31 ruled out 10 15 20 25 30 35
at 99% confidence. m,
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9“ Lo g Qutling

® Gravitational Wave (GW):
® Theory
® Detectors
® Sources

® Data Analysis

® Results
® Future
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9“ Lo g Qutling s

® Gravitational Wave (GW):
® Theory
® Detectors
® Sources

® Data Analysis

® Results
® Future
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%“Lp GW Future I"ﬁgg

. Now underway
- more S5 results are being calculated and will be
published soon. Many will be joint LSC/Virgo papers.
- Advanced LIGO, with new technologies to lower noise,
by factor ~10 is now funded and under development.
- Enhanced LIGO, with some new technologies to lower
noise by factor ~2 is now being comissioned.

® Next few months:
- Enhanced LIGO comes on line and Sé begins.
- Real time event sharing with EM astronomers.

® Farther on:
- S6 scheduled to end late 2010, early 201 1.

- Advanced LIGO scheduled to begin ops ~2015.
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o GW Future  #2

® What does enhanced LIGO get us!?

astro-ph/040209 1, Nutzman et al.
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%” S GW Future = '39\99

® What does enhanced LIGO get us!?

- a factor of 2 in
horizon NS-NS
binary rate goes up
by 6.5 times.

- estimated rate for
initial LIGO is

(7]
9
X
©
(g}
O
)
c
()
ol
2
-
o
Ll
4
$
>N
=
>
G
@)
|
()
O
-
-
Z

0.015/yr.
- ~ 10% chance of
0.1 ]
Neutron Star Horizon Distance NS-NS In enhanced
astro-ph/040209 1, Nutzman et al. LIGO.
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® What does advanced LIGO get us!

[}

[n ]
[ip]
(]
LT,
o
I3
—
e
(i}
=
-
[1i]
I3
=
i
L

— Susp. thermal

Internal thermal
— Zuantum noise
== T 0fal Noise

Freguency (Hz)
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%” SRR TRAB T '39\99

® What does advanced LIGO get us!

- estimated rate for
NS-NS binaries:

~20/year to ~350Mpc

e d
.

10

- estimated rate for
BH-BH binaries:
~| 6/year to ~z=2

I
—
i
[n ]
[ip]
(]
LT,
o
I3
—
e
[
=
-
[1i]
I3
=
i
L

— Susp. thermal

il - 3 minutes of

==hL_ 0 advanced LIGO gives
same science
opportunity as S5.

Freguency (Hz)
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Enhanced LIGO wi | LIGO today
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Extra Slides
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= .7; GW Theo ry
e Questlon How do grawtatlonal waves effect matter’

Spacetime distortion creates tidal force. Two stationary
particles separated by vector £ feel tidal acceleration

atQ 504 RaOﬁO gﬁ :

In the TT gauge, the only non-vanishing components of
the Riemann tensor are:

10
R%0z0 = —RY0y0 = =552 Nae 2
R RY _ 100
Oy0 — Ox0 — 2 012 txy

., then tidal strain is

AJEI/IEl = 5\ /h2, + 12,
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% sril GW Detecto rs
e Strong |nd|rect ewdence of GWs has already been seen.
PSR 5%9'1341.6 4

Weisberg and Taylor, 2003

1.9 Mill: km

\ unseen' .‘_ ! ‘ P=59ms -
M_=1-39 I\/b  M=tdam,
ER—7 8h . e=0617 .

b

Generic periastron shift:
At,(N) ~ PP, N?/2

P, from GW emission:

. N MpMc
By ~ = ) PO
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~44GO
# Azl GW Detectors
e Early detectors were resonant mass detectors

Tidal force from gravitational wave &

pulse excites resonant mode of bar.

Vibrations read by transducer and
amplified.

.

N

Joseph Weber with his
resonant bar.
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4& -. GW Detecto rs

° Early detectors were resonant mass detectors

Vibrations read by transducer and
amplified.

Strain Noise Power Spectral Density

L-'vrv“?‘ P

Liquid He

Housing

Shielding

|

Aluminum/ '\

Bar Transducer
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. -

Detectors

¥

Input Optics Bench (Laser)

D —

Seismic Isolation Stack e SN >
Optics Vacuum Enclosures Suspended Silica Test Mass
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%& GW Results o

® We are excludlng compact blnary coalescences out to
large distances.

Horizon distance - distance at which an optimally
positioned binary has expected SNR (p) = 8.

PR S . & ﬁ - ' .
s F e mf"‘“

LIGO-G0900434-v4 56 May 16,2009

Tuesday, May 19, 2009



