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What BBO Is and Is NotWhat BBO Is and Is Not

• Post-LISA space based GW detector 
• No active BBO mission within NASA and/or ESA 
• Currently no ongoing BBO research
• More of an idea than a project
• 2005 NASA collected a team to look at 

BBO technologies
• Part time
• Mostly LIGO and LISA scientists

• Designed to determine where NASA research
efforts should be focussed

• Which technologies are mature?
• Which crucial technologies need support?
• Where can LISA/LIGO solutions be used?

• No further work since 2005 (that we are aware of)
• Some technology changes
• Better understanding of some sources
• Nothing happening in NASA

•Laser Interferometry for the Big Bang Observer. G. M. Harry, et al., 
Classical and Quantum Gravity 23 (2006) 4887. 2
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Big Bang Observer ConceptBig Bang Observer Concept

LISA Advanced 
LIGO

Big Bang 
Observer

Scientific Goals
• Detect gravitational wave relics 
from inflation ( gw (f) < 10-17 )

• Prime scientific objective
• LISA - too little sensitivity (?)
• LIGO et al - too high frequency (?)
• Low frequency has problems with 
foreground events (C. Miller talk)
• Not compared to DECIGO

•Compact body inspirals
•Triggers for ground based ifos
•Detailed parameter measurement

•Burst localization 
•Unexpected sources
(NASA OSS Vision Missions Program Proposal)

Mission Requirements
• Fill sensitivity gap between Advanced 

LIGO and LISA
•100 mHz – 10 Hz

•Must be space-based to get f < 10 Hz
•Shorter arms than LISA f > 100 mHz

• Factor of 100
• Higher laser power for greater shot

noise limited sensitivity
• Improved acceleration noise

Presenter
Presentation Notes
Number of compact body inspirals at any given time at 0.3 Hz is 100s to 1000s

BBO sensitivity 1e-24 strain/rtHz or 5e-17 m/rtHz, factor of 1e4 better than LISA

Stochastic Background of LIGO right now is Omega 6e-6



BBO StagesBBO Stages

Initial LIGO

BBO Stage 1
Advanced LIGOLISA

BBO Stage 2

Stage One
• 3 spacecraft 
• 5 X 107 m arm length
• Solar orbit at 1 AU

• Constellation makes one 
rotation every year

• 10 kg drag-free masses 
• Launch in 2025 (?)
• 5 year long mission

Stage Two
• 12 spacecraft 
• 3 constellations

• One with six spacecraft
• Two with three spacecraft

• Solar plasma correction
• Radio interferometer

• Technology informed by Stage One
• Launch in 2029 ???
• Mission length ??? 4



BBO Sources BBO Sources -- StochasticStochastic

Detection of Inflation
• Measurement of stochastic 
gravitational wave spectrum 

• Parameter fitting
•Very low frequency (~ 10-17 Hz) by 
fluctuations in cosmic microwave 
background

• Need a second, higher frequency
•Slow roll inflation

• (f) ~10-15 – 10-17

• Decreasing with frequency 
• Well below AdvLIGO sensitivity

T/S =0.1
0.01
0.001
0.0001

•Alternate (non slow roll) inflation 
models can have different scales and 
spectras

•Rising with f
•Undetectably low (f)

BBO Stage 1

BBO Stage 2
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Presenter
Presentation Notes
Slow roll inflation predicts W(f) ~ 10^-15, but hc(f) = Sqrt(3)/(pi Sqrt(2)) H0 1/f Sqrt(W(f)).  So hc goes as 1/f.



T/S is the ratio of density fluctuations to gravity waves in CMB quadrupole



BBO Sources BBO Sources -- OthersOthers

Compact Body Inspirals
• Last year of every NS/NS, NS/BH, and 
BH/BH (stellar mass BH) at z<8

•Months of advanced notice for ground 
based ifos and  ray bursts
•All mergers of intermediate mass BH

•<1% distance accuracy

Bursts
•Type 1a supernova 

•< 1 Mpc (Stage 1)
•< 3 Mpc (Stage 2)

•Cosmic/superstrings over entire 
range of tensions Gc2 >10-14

Inspirals Position NS/NS 
SNR

BH/BH 
SNR

Events/ 
year

Stage 1 ~1 arcmin 20 100 ~104-105

Stage 2 ~1 arcsec 60 300 ~105-106
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Presenter
Presentation Notes
Type 1a supernova are rapidly rotating white dwarves exploding
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BBO Hardware OverviewBBO Hardware Overview

• 2 lasers per spacecraft
• Each laser 300 W at 355 nm 

• Frequency tripled Nd:YAG
• 2 X 2.5 m collecting mirrors
• Arm lengths controlled on dark fringe

• More like LIGO than LISA
• Reduce power on photodiode
• Suggestion to use LISA scheme for 
better calibration

• 10 kg hex masses 
• 10 cm on a side

• About 6 kW of power
• ~ ½ for lasers

• 21 m2 solar panels 
• 0.28 efficiency

• 21 m2 array of thrusters
• 24 N of total thrust



SpacecraftSpacecraft

Solar panels
(deployed)

2.5 m diameter
telescopes

Xenon ion 
engines
(for orbit 
insertion)

Radio antenna
(to Earth)

Radio antenna
(plasma calibration)

Micro-Newton  
thrusters (2 of 6)

2.5 m diameter telescopes so will fit 
in single 5 m launch vehicle
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Observer

9

Laser Shot NoiseLaser Shot Noise

Sx (f) = h c 3 L2 / ( 2 2  P D4 )

h, c,  - Planck’s constant, speed of light, pi
 - laser wavelength
L - arm length
 - photodiode quantum efficiency
P - laser power
D - mirror diameter (collection ability)

Need low wavelength, high efficiency, high 
power, and large mirrors

•Largest mirrors that fit in launch vehicle
• 2 X 2.5 m, all 3 fit in Delta IV

• Only things to improve are , , and P
• Nd:YAG laser at 1064 nm 

• Frequency and intensity 
stabilization well understood

• Frequency tripling practical limit
• 300 W seems achievable

• 200 W for Advanced LIGO
• Must be space qualified

Advanced LIGO Nd:YAG Injection 
Locked End Pumped Rod Laser

Shot Noise 
Limited



• Relative Intensity Noise (RIN)
• 10-8/√Hz at 100 mHz
• Set by AC radiation pressure
• 10-6/√Hz at 100 mHz shown in 
LIGO laser

•Frequency noise set by arm length 
imbalance

•  L = 1 m by using radio link 
•  f / f = 10-3 Hz/√Hz

BBO Laser Noise BBO Laser Noise 
RequirementsRequirements

Advanced LIGO Laser Relative 
Intensity Noise (RIN)
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•Active frequency stabilization to Fabry- 
Perot cavity 

• 0.3 Hz/√Hz (thermal noise)
• Further reduction stabilizing to arm

• Proposed for LISA
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Optical Components Optical Components -- 11
• 2 lasers per spacecraft 

• 300 W output
• Possibly delivered from other board

• Fabry-Perot cavity
• Passive mode cleaner to stabilize 

beam direction and mode
• Reference for frequency stabilization
• Finesse of ~ 100, trade-off between 

shot noise and transmission
• 3 beams picked off

• 16 W for sensing of local test mass
• 8 W for interfering with incoming beam
• 1 mW used to phase lock lasers

• Outgoing beam expanded to ~ 1 m
• Incoming beam reflected off of test 

mass before interference
• Incoming beam Airy disk while local 

beam Gaussian
• Contrast defect goal ~ 10-4
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Optical Components Optical Components -- 22

• 16 W local sensing beam
• Controls linear DOF of spacecraft
• Quad photodiodes allow for angular 

DOF control
• Balances DC radiation pressure from  

incoming beam 
• AC pressure causes acceleration noise 

• RF modulation used for locking
• Separate frequency for each laser

of order ~ 10 MHz
• 2 possibilities to apply sidebands
• Before FP cavity – cavity must 

pass RF control signal
• After FP cavity – EOM must 

handle full 300 W of power
• Photodiode requirements

• High power handling (~2 mW) 
• High quantum efficiency (~ 0.6)
• Low capacitance for RF modulation
• Quad elements for angular control
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Thermal Noise and Thermal Noise and 
Materials IssuesMaterials Issues

• Brownian motion of mirrors important
• Limits frequency stabilization
• Contributes to measurement noise

• Need to use low mechanical loss coatings
• Fluctuation-Dissipation Theorem 
• Mechanical loss causes Brownian motion

• Most metals have high mechanical loss
• Gold/Platinum used by LISA

• Coating thermal noise also problem for LIGO
• Low mechanical loss dielectric coatings

under development
• Magnetic properties unknown

• Test mass material also important
• 10 kg
• Low mechanical loss
• Low magnetic susceptibility
• Control of charge build up

LISA Test Mass

LIGO Coated Optic



Required TechnologiesRequired Technologies
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• Laser
• Power 300 W
• Frequency tripled Nd:YAG
• RIN < 10-8 /√Hz at 100 mHz (LIGO)
• Frequency noise < 10-3 Hz/√Hz (LISA)

• High power optical components
• EOM that takes 300 W
• Photodiodes

• High quantum efficiency at 355 nm 
• 2 mW with low capacitance (LIGO)

• Materials
• Low thermal noise coatings (LIGO)
• Low magnetic susceptibility test mass

• Techniques
• Frequency stabilization to long arm (LISA)
• Low acceleration noise actuators (LISA)
• All hardware space qualified (LISA)

LIGO Commissioning

LISA Pathfinder



ConclusionsConclusions

• Big Bang Observer will fill an important future roll
•Search for stochastic background from inflation
•Fill in frequency gap

• Plan developing for overall mission
• Suggestion for how to do BBO interferometry
• Many technologies must be developed 
• High power, low wavelength laser is crucial 

• P = 300 W
•  = 355 nm
• Very low intensity and frequency noise

• Photodiodes, EOMs, improved materials, etc. also important
• Have until 2025 or later to develop these

• Very challenging, need to start soon 
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OutlineOutline

• Big Bang Observer Overview and Status
• Sources for BBO
• BBO Laser

•Shot Noise
•Other Noise Requirements

• BBO Optical Components
• BBO Control Scheme
•Materials Issues

• Coating Thermal Noise
• Technology Research Needs
• Conclusion

16
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Control SchemeControl Scheme

Frequency Control

• Arm between S/C 1 and 3 used as stable
frequency reference

• Laser 1R locked to this reference 
• Laser 1L locked to laser 1R
• Laser 2R locked to laser 1L
• Laser 3L locked to laser 1R

Position Control of Test Masses

• Test mass 1 controlled in direction 1-2
• Test mass 2 uncontrolled

• Could be actuated on in direction 
1-3 to get additional signal

• Test mass 3 controlled in direction 2-3



OrbitsOrbits
• Test masses held in drag free 
spacecraft
• Each spacecraft in solar orbit at 1 
AU from sun 
• Individual orbits preserve triangle 
configuration
• Constellation rolls around center 
one time each orbit

• Stage 1 constellation follows 20o 

behind Earth
• Stage 3 constellations separated 
by 120o

• Plane of triangle tilted 60o out of 
ecliptic



Stage 2 ImprovementsStage 2 Improvements

Correlated Noise
•Colocated constellations allow correlated search
•Must remove correlated noises

• Refractive index fluctuations in solar wind 
plasma: Remove with added radio interferometer
• Charging of proof mass from solar wind
• Time varying B field gradients from solar wind 
• Thermal and radiation pressure fluctuations from 
solar radiation

• Four constellations
• Two colocated
• 12 spacecraft
• ~ 1 AU of separation 

< 1 arcsecond positioning of 
burst sources

• Possible technology improvements
• Higher laser power
• Higher laser frequency

• Possible change in arm length
• Will depend on Stage 1 results
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BBO StatusBBO Status

• No active BBO mission within NASA 
• Currently no ongoing BBO research
• 2005 NASA collected a team to look at 

BBO technologies
• Part time
• Mostly LIGO and LISA scientists

• Designed to determine where NASA research
efforts should be focussed

• Which technologies are mature?
• Which technologies are advancing?
• Which crucial technologies need support?
• Where can LISA solutions be used?

• Beyond Einstein Program (including LISA)
being reviewed by NASA 

• Changing priorities away from basic science
• Manned trip to Mars is expensive
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