The Big Bang Observer

Gregory Harry

Massachusetts Institute of Technology

May 13, 2009
Gravitational Wave
Advanced Detector
Workshop

LIGO-G0900426

What BBO Is and Is Not

- Post-LISA space based GW detector
- No active BBO mission within NASA and/or ESA
- Currently no ongoing BBO research
- More of an idea than a project
- 2005 NASA collected a team to look at BBO technologies
 - Part time
 - Mostly LIGO and LISA scientists
- Designed to determine where NASA research efforts should be focussed
 - Which technologies are mature?
 - Which crucial technologies need support?
 - Where can LISA/LIGO solutions be used?
- No further work since 2005 (that we are aware of)
 - Some technology changes
 - Better understanding of some sources
 - Nothing happening in NASA
- •Laser Interferometry for the Big Bang Observer. G. M. Harry, et al.,

Big Bang Observer Concept

Scientific Goals

- Detect gravitational wave relics from inflation ($\Omega_{gw}(f) < 10^{-17}$)
 - Prime scientific objective
 - LISA too little sensitivity (?)
 - LIGO et al too high frequency (?)
 - Low frequency has problems with foreground events (C. Miller talk)
 - Not compared to DECIGO
- Compact body inspirals
 - Triggers for ground based ifos
 - Detailed parameter measurement
- Burst localization
- Unexpected sources

(NASA OSS Vision Missions Program Proposal)

Mission Requirements

- Fill sensitivity gap between Advanced LIGO and LISA
 - •100 mHz 10 Hz
- Must be space-based to get f < 10 Hz
- Shorter arms than LISA f > 100 mHz
 - Factor of 100
- Higher laser power for greater shot noise limited sensitivity
- Improved acceleration noise

BBO Stages

Stage One

- 3 spacecraft
- 5 X 10⁷ m arm length
- Solar orbit at 1 AU
 - Constellation makes one rotation every year
- 10 kg drag-free masses
- Launch in 2025 (?)
- 5 year long mission

Stage Two

- 12 spacecraft
- 3 constellations
 - One with six spacecraft
 - Two with three spacecraft
- Solar plasma correction
 - Radio interferometer
- Technology informed by Stage One
- Launch in 2029 ???
- Mission length ???

BBO Sources - Stochastic

- Alternate (non slow roll) inflation models can have different scales and spectras
 - Rising with f
 - •Undetectably low $\Omega(f)$

Detection of Inflation

- Measurement of stochastic gravitational wave spectrum
 - Parameter fitting
- •Very low frequency (~ 10⁻¹⁷ Hz) by fluctuations in cosmic microwave background
 - Need a second, higher frequency
- Slow roll inflation
- $\Omega(f) \sim 10^{-15} 10^{-17}$
 - Decreasing with frequency
 - Well below AdvLIGO sensitivity

BBO Sources - Others

Compact Body Inspirals

- Last year of every NS/NS, NS/BH, and BH/BH (stellar mass BH) at z<8
 - •Months of advanced notice for ground based ifos and γ ray bursts
 - •All mergers of intermediate mass BH
- •<1% distance accuracy</p>

Inspirals	Position	NS/NS SNR	BH/BH SNR	Events/ year
Stage 1	~1 arcmin	20	100	~104-105
Stage 2	~1 arcsec	60	300	~10 ⁵ -10 ⁶

Bursts

- Type 1a supernova
 - •< 1 Mpc (Stage 1)
 - •< 3 Mpc (Stage 2)
- •Cosmic/superstrings over entire range of tensions $G\mu/c^2 > 10^{-14}$

BBO Hardware Overview

- 2 lasers per spacecraft
- Each laser 300 W at 355 nm
 - Frequency tripled Nd:YAG
- 2 X 2.5 m collecting mirrors
- Arm lengths controlled on dark fringe
 - More like LIGO than LISA
 - Reduce power on photodiode
 - Suggestion to use LISA scheme for better calibration

- 10 kg hex masses
 - 10 cm on a side
- About 6 kW of power
 - ~ ½ for lasers
- 21 m² solar panels
 - 0.28 efficiency
- 21 m² array of thrusters
 - 24 μN of total thrust

Spacecraft

2.5 m diameter telescopes so will fit in single 5 m launch vehicle

8

Laser Shot Noise

$$S_{x}(f) = h c \lambda^{3} L^{2} / (2 \pi^{2} \eta P D^{4})$$

 h, c, π - Planck's constant, speed of light, pi

- 1 laser wavelength
- L arm length
- η photodiode quantum efficiency
- P laser power
- D mirror diameter (collection ability)

Need low wavelength, high efficiency, high power, and large mirrors

Advanced LIGO Nd:YAG Injection Locked End Pumped Rod Laser

- Largest mirrors that fit in launch vehicle
 - 2 X 2.5 m, all 3 fit in Delta IV
- Only things to improve are λ , η , and P
- Nd:YAG laser at 1064 nm
 - Frequency and intensity stabilization well understood
 - Frequency tripling practical limit
 - 300 W seems achievable
 - 200 W for Advanced LIGO
 - Must be space qualified

BBO Laser Noise Requirements

- Relative Intensity Noise (RIN)
 - 10⁻⁸/√Hz at 100 mHz
 - Set by AC radiation pressure
 - 10⁻⁶/√Hz at 100 mHz shown in LIGO laser
- Frequency noise set by arm length imbalance
 - △ L = 1 m by using radio link
 - $\delta f/f = 10^{-3} \text{ Hz}/\sqrt{\text{Hz}}$

- 0.3 Hz/√Hz (thermal noise)
- Further reduction stabilizing to arm
 - Proposed for LISA

Advanced LIGO Laser Relative Intensity Noise (RIN)

Optical Components - 1

- 2 lasers per spacecraft
 - 300 W output
 - Possibly delivered from other board
- Fabry-Perot cavity
 - Passive mode cleaner to stabilize beam direction and mode
 - Reference for frequency stabilization
 - Finesse of ~ 100, trade-off between shot noise and transmission
- 3 beams picked off
 - 16 W for sensing of local test mass
 - 8 W for interfering with incoming beam
 - 1 mW used to phase lock lasers
- Outgoing beam expanded to ~ 1 m
- Incoming beam reflected off of test mass before interference
 - Incoming beam Airy disk while local beam Gaussian
 - Contrast defect goal ~ 10-4

Optical Components - 2

- 16 W local sensing beam
 - Controls linear DOF of spacecraft
 - Quad photodiodes allow for angular DOF control
 - Balances DC radiation pressure from incoming beam
 - AC pressure causes acceleration noise
- RF modulation used for locking
 - Separate frequency for each laser of order ~ 10 MHz
 - 2 possibilities to apply sidebands
 - Before FP cavity cavity must pass RF control signal
 - After FP cavity EOM must handle full 300 W of power
- Photodiode requirements
 - High power handling (~2 mW)
 - High quantum efficiency (~ 0.6)
 - Low capacitance for RF modulation
 - Quad elements for angular control

Thermal Noise and Materials Issues

- Brownian motion of mirrors important
 - Limits frequency stabilization
 - Contributes to measurement noise
- Need to use low mechanical loss coatings
 - Fluctuation-Dissipation Theorem
 - Mechanical loss causes Brownian motion
- Most metals have high mechanical loss
 - Gold/Platinum used by LISA
- Coating thermal noise also problem for LIGO
 - Low mechanical loss dielectric coatings under development
 - Magnetic properties unknown
- Test mass material also important
 - 10 kg
 - Low mechanical loss
 - Low magnetic susceptibility
 - Control of charge build up

LISA Test Mass

Required Technologies

Laser

- Power 300 W
- Frequency tripled Nd:YAG
- RIN < 10⁻⁸ / THz at 100 mHz (LIGO)
- Frequency noise < 10⁻³ Hz/√Hz (LISA)
- High power optical components
 - EOM that takes 300 W
 - Photodiodes
 - High quantum efficiency at 355 nm
 - 2 mW with low capacitance (LIGO)

Materials

- Low thermal noise coatings (LIGO)
- Low magnetic susceptibility test mass

Techniques

- Frequency stabilization to long arm (LISA)
- Low acceleration noise actuators (LISA)
- All hardware space qualified (LISA)

LISA Pathfinder

LIGO Commissioning

Conclusions

- Big Bang Observer will fill an important future roll
 - Search for stochastic background from inflation
 - Fill in frequency gap
- Plan developing for overall mission
- Suggestion for how to do BBO interferometry
- Many technologies must be developed
- High power, low wavelength laser is crucial
 - P = 300 W
 - $\lambda = 355 \text{ nm}$
 - Very low intensity and frequency noise
- Photodiodes, EOMs, improved materials, etc. also important
- Have until 2025 or later to develop these
 - Very challenging, need to start soon

Outline

- Big Bang Observer Overview and Status
- Sources for BBO
- BBO Laser
 - Shot Noise
 - Other Noise Requirements
- BBO Optical Components
- BBO Control Scheme
- Materials Issues
 - Coating Thermal Noise
- Technology Research Needs
- Conclusion

Control Scheme

Photodiod	e Interfering Lasers	Recipient of feedback		
p1R	L1R - L3L*	Laser L1R		
r1R	L1L - L1R*	Spacecraft 1		
p1C	L1R - L1L	Laser L1L		
$_{ m r1L}$	L1R - L1L*	Spacecraft 1		
p1L	L1L - L2R*	Test mass 1 in 1-2 direction		
p2R	L2R - L1L*	Laser L2R		
r2R	L2L - L2R*	Spacecraft 2		
		-		
p2C	L2L - L2R	Free for additional use		
r2L	L2R - L2L*	Spacecraft 2		
p2L	L2L - L3R*	Laser L2L		
p3R	L3R - L2L*	Test mass 3 in 2-3 direction		
r3R	L3L - L3R*	Spacecraft 3		
		•		
рЗС	L3L - L3R	Laser L3R		
r3L	L3R - L3L*	Spacecraft 3		
p3L	L3L - L1R*	Laser L3L		
* Laser first bounces off of local test mass				

- Arm between S/C 1 and 3 used as stable frequency reference
 - Laser 1R locked to this reference
- Laser 1L locked to laser 1R
- Laser 2R locked to laser 1L
- Laser 3L locked to laser 1R

Position Control of Test Masses

- Test mass 1 controlled in direction 1-2
- Test mass 2 uncontrolled
 - Could be actuated on in direction
 1-3 to get additional signal
- Test mass 3 controlled in direction 2-3 s/C 2

Frequency Control

Orbits

- Stage 1 constellation follows 20°
 behind Earth
- Stage 3 constellations separated by 120°
- Plane of triangle tilted 60° out of ecliptic

- Test masses held in drag free spacecraft
- Each spacecraft in solar orbit at 1
 AU from sun
- Individual orbits preserve triangle configuration
- Constellation rolls around center one time each orbit

Stage 2 Improvements

- Four constellations
 - Two colocated
 - 12 spacecraft
 - ~ 1 AU of separation
 - < 1 arcsecond positioning of burst sources
- Possible technology improvements
 - Higher laser power
 - Higher laser frequency
- Possible change in arm length
 - Will depend on Stage 1 results

Correlated Noise

- Colocated constellations allow correlated search
- Must remove correlated noises
 - Refractive index fluctuations in solar wind plasma: Remove with added radio interferometer
 - Charging of proof mass from solar wind
 - Time varying B field gradients from solar wind
 - Thermal and radiation pressure fluctuations from solar radiation

BBO Status

- No active BBO mission within NASA
- Currently no ongoing BBO research
- 2005 NASA collected a team to look at BBO technologies
 - Part time
 - Mostly LIGO and LISA scientists
- Designed to determine where NASA research efforts should be focussed
 - Which technologies are mature?
 - Which technologies are advancing?
 - Which crucial technologies need support?
 - Where can LISA solutions be used?
- Beyond Einstein Program (including LISA)
 being reviewed by NASA
 - Changing priorities away from basic science
 - Manned trip to Mars is expensive

Bibliography

BBO Interferometry

"Laser Interferometry for the Big Bang Observer", G. M. Harry, P. Fritschel, D. A. Shaddock, W. Folkner, E. S. Phinney, Classical and Quantum Gravity 23 (2006) 4887.

BBO Astrophysics

"Beyond LISA: Exploring Future Gravitational-wave Missions", J. Crowder and N. J. Cornish, *Physical Review D* 72 (2005) 083005.

"Prospects for Direct Detection of Primordial Gravitational Waves", S. Chongchitnan and G. Efstathiou, *Physical Review D* **73** (2006) 083511.

LIGO

"Detector Description and Performance for the First Coincidence Observations between LIGO and GEO", B. Abbott et al., Nuclear Instrumentation and Methods in Physics Research A 517/1-3 (2004) 154.

"Second Generation Instruments for the Laser Interferometer Gravitational-wave Observatory", P. Fritschel, in *Gravitational-Wave Detection*, M. Cruise and P. Saulson, Proceedings of SPIE **4856** (2003) 282291.

LISA

"Laser Development for LISA", M. Tröbs et al., Classical and Quantum Gravity 23 (2006) \$151.

"LISA Interferometry: Recent Developments", G. Heinzel et al., Classical and Quantum Gravity 23 (2006) S119.