Big Bang Obse

Gregory Harry
Massachusetts Institute of Technology

May 13, 2009
Gravitational Wave
Advanced Detector

Workshop

LIGO-G0900426




hat BBO Is and Is Not

-LISA space based GW detector
ctive BBO mission within NASA and/or ESA
ently no ongoing BBO research

of an idea than a project

NASA collected a team to look at

technologies
rt time
stly LIGO and LISA scientists

gned to determine where NASA research

rts should be focussed
hich technologies are mature?

hich crucial technologies need support?
here can LISA/LIGO solutions be used?

urther work since 2005 (that we are aware
me technology changes

tter understanding of some sources

thing happening in NASA

nterferometry for the Big Bang Observer. G. M. Harry, et

| and Quantum Gravity 23 (2006) 4887.




Bang Observer Concepi

ntific Goals | B S
. Advanced ]
vitational wave relics o L LIGO
n (Q,(f) < 107) |
entific objective
little sensitivity (?)
| - too high frequency (?)
uency has problemswith  +
events (C. Miller talk) e ey )
ared to DECIGO Mission Requir
dy inspirals - Fill sensitivity gap betw
r ground based ifos LIGO and LISA
arameter measurement «100 mHz - 10 Hz
zation eMust be space-based to g
sources eShorter arms than LISA f
issions Program Proposal) = Factor of 100
e Higher laser power for g
noise limited sensitivity
e Improved acceleration n

~
o

Big Bang
Observer

Strain Noise (1/+/Hz)



Presenter
Presentation Notes
Number of compact body inspirals at any given time at 0.3 Hz is 100s to 1000s

BBO sensitivity 1e-24 strain/rtHz or 5e-17 m/rtHz, factor of 1e4 better than LISA

Stochastic Background of LIGO right now is Omega 6e-6
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Presentation Notes
Slow roll inflation predicts W(f) ~ 10^-15, but hc(f) = Sqrt(3)/(pi Sqrt(2)) H0 1/f Sqrt(W(f)).  So hc goes as 1/f.



T/S is the ratio of density fluctuations to gravity waves in CMB quadrupole


BBO Sources - Others
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Type 1a supernova are rapidly rotating white dwarves exploding




e 10 kg hex masses
e 10 cm on a side

e About 6 kW of power
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Laser Shot Noise
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BBO Laser Noise
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Thermal Noise and
Materials Issues
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Control Scheme
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» Test masses held in drag
spacecraft
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Stage 2 Improvements
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BBO Status

e BBO mission within NASA
y no ongoing BBO research
SA collected a team to look at

hnologies

e
LIGO and LISA scientists

to determine where NASA research

hould be focussed

echnologies are mature?
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Einstein Program (including LISA)
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g priorities away from basic science
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